Effect of TTFields (150 kHz) in Non-small Cell Lung Cancer (NSCLC) Patients With 1-10 Brain Metastases Following Radiosurgery (METIS)

Overview

About this study

The study is a prospective, randomized controlled phase III trial, to test the efficacy, safety and neurocognitive outcomes of advanced NSCLC patients, following stereotactic radiosurgery (SRS) for 1-10 brain metastases, treated with NovoTTF-100M compared to supportive treatment alone. The device is an experimental, portable, battery operated device for chronic administration of alternating electric fields (termed TTFields or TTF) to the region of the malignant tumor, by means of surface, insulated electrode arrays.

Participation eligibility

Participant eligibility includes age, gender, type and stage of disease, and previous treatments or health concerns. Guidelines differ from study to study, and identify who can or cannot participate. There is no guarantee that every individual who qualifies and wants to participate in a trial will be enrolled. Contact the study team to discuss study eligibility and potential participation.

Inclusion Criteria:

  1. 18 years of age and older
  2. Life expectancy of ≥ 3 months
  3. New diagnosis of brain metastases from a histologically or cytologically confirmed primary or metastatic NSCLC tumor within 5 years of registration on the study. If the original histological proof of malignancy is greater than 5 years, then pathological confirmation is required (i.e.: from extra-cranial or intracranial disease).
  4. Karnofsky performance status (KPS) ≥ 70
  5. 1 inoperable brain metastasis or 2- 10 brain lesions per screening MRI, confirmed by contrast enhanced MRI amenable to SRS according to the following criteria:
    1. largest tumor volume < 10 cc
    2. longest tumor diameter < 3 cm
    3. Cumulative volume of all tumors ≤ 15 cc
  6. At least one measurable lesion per RANO-BM (Response Assessment in Neuro-Oncology Brain Metastases) Criteria for brain metastasis
  7. Patients must be receiving optimal therapy for their extracranial disease according to local practice at each center. Patients may continue on systemic therapy while receiving TTFields.
  8. Able to operate the NovoTTF-100M device independently or with the help of a caregiver
  9. Clinical trials prior to enrollment are allowed, as long as no brain directed therapy was included (current treatment trials are exclusionary)

Exclusion Criteria:

  1. Patients who are known to have somatic tumor mutations in the following genes, for which targeted agents are available that directly affect the treatment of brain metastasis: Anaplastic lymphoma kinase (ALK), epidermal growth factor receptor (EGFR), ROS-1 proto-oncogene, and proto-oncogene B-RAF
  2. Patients who have a single, operable brain metastasis
  3. Patients with significant edema leading to risk of brain herniation
  4. Patients with midline shift > 10mm
  5. Patients with intractable seizures
  6. Leptomeningeal metastases
  7. Recurrent brain metastases
  8. Prior WBRT for newly diagnosed brain metastases
  9. Severe comorbidities:
    1. Clinically-significant inadequate hematological, hepatic and renal function, defined as: Neutrophil count < 1.5 x 10 9/L and platelet count < 100 x 10^9/L; bilirubin > 1.5 x upper limit of normal (ULN); aspartate transaminase (AST) and/or alanine aminotransferase (ALT) > 2.5 x ULN or > 5 x ULN if patient has documented liver metastases; and serum creatinine > 1.5 x ULN
    2. History of significant cardiovascular disease unless the disease is well controlled. Significant cardiac disease includes second/third degree heart block; significant ischemic heart disease; poorly controlled hypertension; congestive heart failure of the New York Heart Association (NYHA) Class II or worse (slight limitation of physical activity; comfortable at rest, but ordinary activity results in fatigue, palpitation or dyspnea).
    3. History of arrhythmia that is symptomatic or requires treatment. Patients with atrial fibrillation or flutter controlled by medication are not excluded from participation in the trial.
    4. History of cerebrovascular accident (CVA) within 6 months prior to randomization or that is not stable
    5. Active infection or serious underlying medical condition that would impair the ability of the patient to received protocol therapy
    6. History of any psychiatric condition that might impair patient's ability to understand or comply with the requirements of the study or to provide consent
  10. Implantable electronic medical devices in the brain
  11. Known allergies to medical adhesives or hydrogel
  12. Currently pregnant or breastfeeding
  13. Concurrent brain directed therapy (beyond SRS and NovoTTF-100M as per protocol)

Participating Mayo Clinic locations

Study statuses change often. Please contact the study team for the most up-to-date information regarding possible participation.

Mayo Clinic Location Status Contact

Scottsdale/Phoenix, Ariz.

Mayo Clinic principal investigator

Terence Sio, M.D., M.S.

Open for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

(855) 776-0015

Jacksonville, Fla.

Mayo Clinic principal investigator

Daniel Trifiletti, M.D.

Open for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

(855) 776-0015

Rochester, Minn.

Mayo Clinic principal investigator

Yolanda Garces, M.D.

Closed for enrollment

Contact information:

Cancer Center Clinical Trials Referral Office

(855) 776-0015

More information

Publications

  • Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. Read More on PubMed
  • Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells. Read More on PubMed
  • CNS metastases are the most common cause of malignant brain tumours in adults. Historically, patients with brain metastases have been excluded from most clinical trials, but their inclusion is now becoming more common. The medical literature is difficult to interpret because of substantial variation in the response and progression criteria used across clinical trials. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) working group is an international, multidisciplinary effort to develop standard response and progression criteria for use in clinical trials of treatment for brain metastases. Previous efforts have focused on aspects of trial design, such as patient population, variations in existing response and progression criteria, and challenges when incorporating neurological, neuro-cognitive, and quality-of-life endpoints into trials of patients with brain metastases. Here, we present our recommendations for standard response and progression criteria for the assessment of brain metastases in clinical trials. The proposed criteria will hopefully facilitate the development of novel approaches to this difficult problem by providing more uniformity in the assessment of CNS metastases across trials. Read More on PubMed
  • Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Common treatment modalities for NSCLC include surgery, radiotherapy, chemotherapy, and, in recent years, the clinical management paradigm has evolved with the advent of targeted therapies. Despite such advances, the impact of systemic therapies for advanced disease remains modest, and as such, the prognosis for patients with NSCLC remains poor. Standard modalities are not without their respective toxicities and there is a clear need to improve both efficacy and safety for current management approaches. Tumor-treating fields (TTFields) are low-intensity, intermediate-frequency alternating electric fields that disrupt proper spindle microtubule arrangement, thereby leading to mitotic arrest and ultimately to cell death. We evaluated the effects of combining TTFields with standard chemotherapeutic agents on several NSCLC cell lines, both in vitro and in vivo. Frequency titration curves demonstrated that the inhibitory effects of TTFields were maximal at 150 kHz for all NSCLC cell lines tested, and that the addition of TTFields to chemotherapy resulted in enhanced treatment efficacy across all cell lines. We investigated the response of Lewis lung carcinoma and KLN205 squamous cell carcinoma in mice treated with TTFields in combination with pemetrexed, cisplatin, or paclitaxel and compared these to the efficacy observed in mice exposed only to the single agents. Combining TTFields with these therapeutic agents enhanced treatment efficacy in comparison with the respective single agents and control groups in all animal models. Together, these findings suggest that combining TTFields therapy with chemotherapy may provide an additive efficacy benefit in the management of NSCLC. Read More on PubMed
  • Low intensity, intermediate frequency, alternating electric fields (Tumor Treating Fields; TTFields) exhibit anti-mitotic activity in cancer cells. Promising preclinical data have led to a single arm phase I/II trial in NSCLC patients. Read More on PubMed
  • NovoTTF-100A is a portable device delivering low-intensity, intermediate frequency electric fields via non-invasive, transducer arrays. Tumour Treatment Fields (TTF), a completely new therapeutic modality in cancer treatment, physically interfere with cell division. Read More on PubMed
  • Tumor treating fields (TTFields) are low intensity, intermediate frequency, alternating electric fields used to treat cancerous tumors. This novel treatment modality effectively inhibits the growth of solid tumors in vivo and has shown promise in pilot clinical trials in patients with advanced stage solid tumors. TTFields were tested for their potential to inhibit metastatic spread of solid tumors to the lungs in two animal models: (1) Mice injected with malignant melanoma cells (B16F10) into the tail vein, (2) New Zealand White rabbits implanted with VX-2 tumors within the kidney capsule. Mice and rabbits were treated using two-directional TTFields at 100-200 kHz. Animals were either monitored for survival, or sacrificed for pathological and histological analysis of the lungs. The total number of lung surface metastases and the absolute weight of the lungs were both significantly lower in TTFields treated mice then in sham control mice. TTFields treated rabbits survived longer than sham control animals. This extension in survival was found to be due to an inhibition of metastatic spread, seeding or growth in the lungs of TTFields treated rabbits compared to controls. Histologically, extensive peri- and intra-tumoral immune cell infiltration was seen in TTFields treated rabbits only. These results raise the possibility that in addition to their proven inhibitory effect on the growth of solid tumors, TTFields may also have clinical benefit in the prevention of metastatic spread from primary tumors. Read More on PubMed
  • We have recently shown that low intensity, intermediate frequency, electric fields inhibit by an anti-microtubule mechanism of action, cancerous cell growth in vitro. Using implanted electrodes, these fields were also shown to inhibit the growth of dermal tumors in mice. The present study extends these findings to additional cell lines [human breast carcinoma; MDA-MB-231, and human non-small-cell lung carcinoma (H1299)] and to animal tumor models (intradermal B16F1 melanoma and intracranial F-98 glioma) using external insulated electrodes. These findings led to the initiation of a pilot clinical trial of the effects of TTFields in 10 patients with recurrent glioblastoma (GBM). Median time to disease progression in these patients was 26.1 weeks and median overall survival was 62.2 weeks. These time to disease progression and OS values are more than double the reported medians of historical control patients. No device-related serious adverse events were seen after >70 months of cumulative treatment in all of the patients. The only device-related side effect seen was a mild to moderate contact dermatitis beneath the field delivering electrodes. We conclude that TTFields are a safe and effective new treatment modality which effectively slows down tumor growth in vitro, in vivo and, as demonstrated here, in human cancer patients. Read More on PubMed
  • Low-intensity, intermediate-frequency (100-300 kHz), alternating electric fields, delivered by means of insulated electrodes, were found to have a profound inhibitory effect on the growth rate of a variety of human and rodent tumor cell lines (Patricia C, U-118, U-87, H-1299, MDA231, PC3, B16F1, F-98, C-6, RG2, and CT-26) and malignant tumors in animals. This effect, shown to be nonthermal, selectively affects dividing cells while quiescent cells are left intact. These fields act in two modes: arrest of cell proliferation and destruction of cells while undergoing division. Both effects are demonstrated when such fields are applied for 24 h to cells undergoing mitosis that is oriented roughly along the field direction. The first mode of action is manifested by interference with the proper formation of the mitotic spindle, whereas the second results in rapid disintegration of the dividing cells. Both effects, which are frequency dependent, are consistent with the computed directional forces exerted by these specific fields on charges and dipoles within the dividing cells. In vivo treatment of tumors in C57BL/6 and BALB/c mice (B16F1 and CT-26 syngeneic tumor models, respectively), resulted in significant slowing of tumor growth and extensive destruction of tumor cells within 3-6 days. These findings demonstrate the potential applicability of the described electric fields as a novel therapeutic modality for malignant tumors. Read More on PubMed

Study Results Summary

Not yet available

Supplemental Study Information

Not yet available

.
CLS-20312019

Mayo Clinic Footer