Lung Regeneration


Dennis Wigle, M.D., Ph.D.: So it's actually a very exciting time in the space of lung regeneration right now with a number of technologies that have really leapt forward in the last couple of years and have really made it a potential clinical reality that you really might be able to take cells from a patient, use things like decellularized matrices in order to be able to repopulate a lung matrix and really build an artificial or new lung for someone. Now that's obviously all at a research stage right now, but what was really science fiction, you know, going back four, five years ago, there's now a number of individual pieces of technology that, when you bring those together, have really made the potential to be able to build new lungs artificially a potential clinical reality.

So if you look at the hundreds of thousands of patients that currently have end-stage lung disease just in the United States alone, let alone many fold greater number throughout the world, there's a large number of people that really are not candidates for lung transplantation or other potential therapies, of which a very small number might actually be candidates for, that don't really have any other treatment options. If you look at the whole population of people dying of lung cancer in the United States every year, there's almost 180- to 190,000 people every year that are gonna die of that disease. So the potential to be able to build new lung tissue, whether it's a whole lung, whether it's parts of a lung, whether it's to just make an existing lung that isn't working well work better, there's a huge unmet patient need here in terms of people that are either suffering or either dying also from these diseases where these technologies could potentially be applied.

It's a very exciting time. There's obviously a lot of work that needs to be done in order to really translate these technologies into something that's useful for patient care. But the future is very bright, and there's obvious progress here where you can envision this being a clinical reality, where going back even five years ago or more it was really just science fiction at that point.

Regenerative medicine has the potential to provide innovative new therapies for people with lung diseases, including chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, cystic fibrosis, pulmonary arterial hypertension and bronchiolitis obliterans.

In their end stages, these diseases are today treated with medications or lung transplants, though there is an ongoing shortage of donor lungs that are acceptable for transplantation.

Focus areas

Research into lung preservation, lung recellularization and stem cell biology in the Center for Regenerative Medicine is leading to the development of new regenerative therapies for people with a wide range of lung diseases. Stephen D. Cassivi, M.D., and Dennis Wigle, M.D., Ph.D., both at Mayo Clinic's campus in Rochester, Minnesota, lead these efforts.

  • Recellularization of decellularized lungs. Mayo Clinic researchers are studying lung decellularization and recellularization toward a goal of on-demand production of patient-specific, transplant-ready lungs.

    Lung decellularization involves removing all the cells from a donor lung, leaving behind just a tissue scaffold that can be repopulated (recellularized) with induced pluripotent stem (iPS) cells derived from a patient's own cells. Mayo researchers are working toward generating a functioning lung suitable for transplantation by recellularizing a decellularized porcine lung.

    Given these promising results in animal models, Mayo investigators are now working to recellularize human lungs. They're also populating decellularized matrix fragments with iPS cells to determine how iPS cells can optimally be made to differentiate into various types of lung cells.

  • Stem cell engineering. To better understand how to effectively and consistently produce patient-specific iPS cells for lung-related clinical applications, Mayo Clinic researchers are conducting a clinical trial in which they generate iPS cells from skin fibroblasts of people with various end-stage lung diseases.

    With further research, investigators believe these iPS cells could be differentiated into patient-specific pulmonary epithelial cells and delivered back to the patient by way of cell therapy.