Wild-type human TDP-43 expression causes TDP-43 phosphorylation, motor deficits, early mortality, and mitochondrial aggregation in transgenic mice

Yongjie Zhang, Yafei Xu, Tania Gendron, Wen-Lang Lin, Simon D'Alton, Mike Hutton, Eileen McGowan, Dennis W. Dickson, Jada Lewis and Leonard Petrucelli

Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL

ABSTRACT

Transcriptional response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in human familial and sporadic cases of amyotrophic lateral sclerosis (ALS), highlighting its possible role in ALS pathogenesis. To clarify the role of wild-type TDP-43 in the brain and spinal cord, we have generated transgenic (TDP-43

Reduced Brain and Body Weight and Abnormal Escape Response in TDP-43

Axonal Degeneration and Myelin Degeneration in TDP-43

CONCLUSIONS

ACKNOWLEDGEMENTS

This work was supported by AFAR Florida Postdoctoral Fellowship (YZ), the Mayo Clinic Foundation, R01AG26251 and 2R56AG026251-03A1 (LP), and P01-AG17216-08 (LP, DWD), National Institutes of Health/National Institute of Neurological Disorders and Stroke [R01 NS 063946-01 (LP)], Amyotrophic Lateral Sclerosis Association (LP and JL) and Department of Defense [USAMRIC P080934 (LP and JL)].