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Software Maturity

Exists but you wouldn’t want it

Worked application(s) in a paper

software shared with friends
General program/ Splus function

— available from author and/or Statlib

— advertised

Available in a package

In SAS
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The models attempt to deal with correlated data

e Multiple events per subject
e Multiple event types per subject
e Correlated family members

e Correlation due to sampling plan
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Marginal models

Hueristic rationale:

Consider a weighted linear model, either the case
of subject weights or a fully known variance

matrix ..

If we fit the model ignoring the weights

e /3 usually changes very little

A

e Var(3) may be badly incorrect
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Marginal Cox models

There are three steps

e Set up the data set appropriately.

e F'it the data as though it were independent

observations.

e Fix up the variance, post fit, using a grouped

jackknife.

— Compute the dfbeta residual for each

observation

— Add these up to get the D; = effect of the
jth group

-V =D'D

— (Identical to the working-independence
method of GEE)
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Frailty Models

A good overview of problems and motivation is
given in Aalen, “Heterogeneity in survival

analysis”, Statistics in Medicine, 1988.

Assume that subject ¢ from family j has an
inherent, and unmeasured risk (frailty) w;, such
that

)\7; (t) — )\0 (t)wjeX’ﬂ
— )\0 (t>€X,L-ﬁ—{—Zm/ ,
where Z;; = 1 iff subject ¢ is a member of family
q.
Further assume
e The subjects are conditionally independent
given 7.

e ~ is a random variable from a known

distribution.



then a solution can be computed.
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Issues

Different models available

e Distribution of the frailty

— gamma
— log-normal

— positive stable
— inverse Gaussian

— ...Does it make any difference?
e Pattern of random effects

— 1 per subject or family
— Nested — block diagonal variance for ~

— Crossed

Each combination has it’s own, unique variant of
the EM algorithm.
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Penalized models

PPL = Penalized Partial Likelihood = PL -
penalty

Formally, let the Cox model hazard be
A (t) = )\O(t)eXiB‘f'Zi'Y
where

e (3 = unpenalized effects

e v = penalized effects

So
PPL = PL(83, v;data) — p(v, )

A simple example is “ridge regression” with

p(v,0) =0 7}
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Solution

If the ancillary parameter(s) 6 is known

e The solution of the Cox model for (3,7) is

simple.

— Straightforward addition to a standard
Cox program.

— Need p, p" and p”
e Well-recognized variance formulas.

— H~', where H;; = 0°PLL/03;00;
— H7'TH! where 1 = 82PL/35i85j

e Definitions for degrees of freedom.

e Connections to other techniques such as

GCV, AIC.

e An array of numerical techniques available.
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Implementation

This has been added to the S-Plus coxph function.

A given method requires

e define the penalty p, and its derivatives p’
and p”’

e define the logic for determining 6

e setup

These can be user-defined functions.

The gamma frailty (Nielson et al 1992) and
log-normal frailty (McGilchrist 93) map exactly
onto this structure.

See ftp://ftp.mayo.edu/pub/therneau
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Rat data

e Female rats from Mantel et. al.
e 3 rats/litter, one treated 4+ two placebo

e 50 litters
Marginal analysis

e The events are unordered: the time scale for
each observation starts at zero and goes to

event /censoring.

e The event types (death of rat A, death of rat
B) are identical: only one stratum.

e The data set will have 150 observations,

identical to an “1id” data set.

e Variables time, status, rx and litter.

> coxph(Surv(time, status) ~ rx + cluster(litter),
data=rats)

coef  exp(coef) se(coef) robust se Z P
rx 0.898 2.46 0.317 0.3 2.99 0.0028

Likelihood ratio test=7.87 on 1 df, p=0.00503 n= 150
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Gamma frailty

> coxph(Surv(time, status) ~ rx + gfrail(litter), rats)
coef se(coef) se2 Chisq DF p
rx 0.906 0.323 .319 7.88 1.0 0.005

Iterations: 6 outer, 19 Newton-Raphson
Variance of random effect= 0.474
Degrees of freedom for terms= 1.0 13.8
Likelihood ratio test=9.4 on 14.82 df, p=0.847 n= 150

Gaussian (normal) frailty

> coxph(Surv(time, status) ~ rx + nfrail(litter), rats)
coef se(coef) se2 Chisq DF p
rx 0.904 0.322 0.318 7.89 1.0 0.005

Iterations: 5 outer, 14 Newton-Raphson
Variance of random effect= 0.39
Degrees of freedom for terms= 1.0 11.4
Likelihood ratio test=34 on 12.39 df, p=0.000864 n= 150
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Colon cancer data

e 929 patients

— 315 Observation
— 310 Levamisole

— 304 Levamisole + H5FU

e Time to death and progression for each

subject

— 423 No events
— 92 One event

— 414 Two events

e Up to 9 years of follow-up

14
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Marginal fit

> coxph(Surv(time, status) ~ rx + extent + noded +

15

cluster(id) + strata(etype),

data=colon)

coef exp(coef) se(coef) robust se

V4

I

rxLev -0.0362 0.964 0.0768  0.1056 —0.343 7.3e-01
rxLev+5FU -0.4488 0.638 0.0840  0.1168 -3.842 1.2e-04
extent 0.5155 1.674 0.0796  0.1097 4.701 2.6e-0€
node4 0.8799 2.411 0.0681  0.0961 9.160 0.0e+0C
Gamma Gamma Normal

WLW o = Frailty = Frailty

Lev vs Obs | -0.04 -0.04 0.04 -0.03
Lev/5FU vs Obs | -0.45 -0.57 -0.51 -0.79
Extent 0.52 0.81 1.34 1.13

Nodes > 4 0.88 1.48 2.33 2.12

o2 1 — 8.06 6.95

iterations 4 1/5 10/76 8/103

‘df’ 4 513 1377 931
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Hidden Covariate Example

e True hazard for a subject is
A(t) = exp(z1 — 22).
e X, is uniform(-2,2) and unknown.

e X, is the 0/1 treatment variable, known.

e All observations have the same total

follow-up.
e Multiple sequential events per subject.

e We purposely have chosen that the hidden
variate have a larger eftfect than treatment.

e The true coeflicients are +1 and -1.

e 250 replications, 100 subjects per arm
Number of events
0 1-2 3-5 6-10
Control | 11 21 34 34
Treatment | 29 46 26 1

(606 events)
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Fit two marginal models:

e Events are sequential, so time is (0, first

event|, (first, second], ...

e A subject is not at risk for a second event
until they have had their first.

e Conditional model: First event, second event,
etc are each in a separate strata. (Events may
change the subject).

e AG model: All observations in one strata.

(Poisson process).

fitl <- coxph(Surv(start, stop, status) ~
rx + strata(enum) + cluster(

fit2 <- coxph(Surv(start, stop, status) ~ rx + cluster(id))

fit3 <- coxph(Surv(start, stop, status) ~

rx + strata(enum) + gfrail(i
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Summary

Seems to work.

The precision of the random effect is poor.

The connection to degrees of freedom is

unclear.
Less flexible than marginal models.

Not yet reliable.

18



SSUI: Presentation Hints

Open Issues

e Code

— Beta version available on

ftp://ftp.mayo.edu/pub/therneau

— WIill be a part of Splus proper eventually.

e Variance

— Which estimate is better?
— Should we bootstrap it?

o Frailty
— What other distributions can be
accomodated?

— Crossed or nested random effects.

— How well do the more general, extensible

rules work? AIC, BIC, PRESS, CIC, ...
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