Comparing Marginal and Random Effects (Frailty) Models

Terry M. Therneau Mayo Clinic

April 1998

My Perspective

- Software
- Examples
- Reliability
- Areas that need work

Software Maturity

- Exists but you wouldn't want it
- Worked application(s) in a paper software shared with friends
- General program/ Splus function
 - available from author and/or Statlib
 - advertised
- Available in a package
- In SAS

The models attempt to deal with correlated data

- Multiple events per subject
- Multiple event types per subject
- Correlated family members
- Correlation due to sampling plan
- •

Marginal models

Hueristic rationale:

Consider a weighted linear model, either the case of subject weights or a fully known variance matrix Σ .

If we fit the model ignoring the weights

- $\hat{\beta}$ usually changes very little
- $\operatorname{Var}(\hat{\beta})$ may be badly incorrect

Marginal Cox models

There are three steps

- Set up the data set appropriately.
- Fit the data as though it were independent observations.
- Fix up the variance, post fit, using a grouped jackknife.
 - Compute the *dfbeta* residual for each observation
 - Add these up to get the D_{j} = effect of the jth group
 - -V = D'D
 - (Identical to the working-independence method of GEE)

Frailty Models

A good overview of problems and motivation is given in Aalen, "Heterogeneity in survival analysis", Statistics in Medicine, 1988.

Assume that subject *i* from family *j* has an inherent, and unmeasured risk (frailty) ω_j , such that

$$\lambda_i(t) = \lambda_0(t)\omega_j e^{X_i\beta} = \lambda_0(t) e^{X_i\beta + Z_i\gamma},$$

where $Z_{ij} = 1$ iff subject *i* is a member of family *j*.

Further assume

- The subjects are conditionally independent given γ .
- γ is a random variable from a known distribution.

then a solution can be computed.

Issues

Different models available

- Distribution of the frailty
 - gamma
 - log-normal
 - positive stable
 - inverse Gaussian
 - $-\ldots$ Does it make any difference?
- Pattern of random effects
 - -1 per subject or family
 - Nested \rightarrow block diagonal variance for γ
 - Crossed

Each combination has it's own, unique variant of the EM algorithm.

Penalized models

PPL = Penalized Partial Likelihood = PL - penalty

Formally, let the Cox model hazard be

$$\lambda_i(t) = \lambda_0(t) e^{X_i \beta + Z_i \gamma}$$

where

•
$$\beta$$
 = unpenalized effects

•
$$\gamma = \text{penalized effects}$$

So

$$\mathrm{PPL} = \mathrm{PL}(\beta,\gamma;\mathrm{data}) - p(\gamma,\theta)$$

A simple example is "ridge regression" with

$$p(\gamma, \theta) = \theta \sum \gamma_j^2.$$

Solution

If the ancillary parameter(s) θ is known

- The solution of the Cox model for (β, γ) is simple.
 - Straightforward addition to a standard Cox program.
 - Need p, p' and p''
- Well-recognized variance formulas.
 - H^{-1} , where $H_{ij} = \partial^2 \text{PLL} / \partial \beta_i \partial \beta_j$
 - $H^{-1}\mathcal{I}H^{-1}$, where $\mathcal{I}_{ij} = \partial^2 \mathrm{PL}/\partial\beta_i \partial\beta_j$
- Definitions for degrees of freedom.
- Connections to other techniques such as GCV, AIC.
- An array of numerical techniques available.

Implementation

This has been added to the S-Plus coxph function. A given method requires

- define the penalty p, and its derivatives p' and p''
- define the logic for determining θ
- setup

These can be user-defined functions.

The gamma frailty (Nielson et al 1992) and log-normal frailty (McGilchrist 93) map exactly onto this structure.

See ftp://ftp.mayo.edu/pub/therneau

Rat data

- Female rats from Mantel et. al.
- 3 rats/litter, one treated + two placebo
- 50 litters

Marginal analysis

- The events are unordered: the time scale for each observation starts at zero and goes to event/censoring.
- The event types (death of rat A, death of rat B) are identical: only one stratum.
- The data set will have 150 observations, identical to an "iid" data set.
- Variables time, status, rx and litter.

```
> coxph(Surv(time, status) \sim rx + cluster(litter),
data=rats)
```

coef exp(coef) se(coef) robust se z p
rx 0.898 2.46 0.317 0.3 2.99 0.0028
Likelihood ratio test=7.87 on 1 df, p=0.00503 n= 150

```
Gamma frailty
```

> coxph(Surv(time, status) ~ rx + gfrail(litter), rats)
 coef se(coef) se2 Chisq DF p
rx 0.906 0.323 .319 7.88 1.0 0.005

Iterations: 6 outer, 19 Newton-Raphson
 Variance of random effect= 0.474
Degrees of freedom for terms= 1.0 13.8
Likelihood ratio test=9.4 on 14.82 df, p=0.847 n= 150

Gaussian (normal) frailty

> coxph(Surv(time, status) ~ rx + nfrail(litter), rats) coef se(coef) se2 Chisq DF p rx 0.904 0.322 0.318 7.89 1.0 0.005

Iterations: 5 outer, 14 Newton-Raphson
Variance of random effect= 0.39
Degrees of freedom for terms= 1.0 11.4
Likelihood ratio test=34 on 12.39 df, p=0.000864 n= 150

Colon cancer data

- 929 patients
 - 315 Observation
 - 310 Levamisole
 - 304 Levamisole + 5FU
- Time to death and progression for each subject
 - 423 No events
 - 92 One event
 - 414 Two events
- Up to 9 years of follow-up

Marginal fit

```
> coxph(Surv(time, status) \sim rx + extent + node4 + cluster(id) + strata(etype), data=colon)
```

	coef	<pre>exp(coef)</pre>	<pre>se(coef)</pre>	robust se	Z	P
rxLev	-0.0362	0.964	0.0768	0.1056	-0.343	7.3e-01
rxLev+5FU	-0.4488	0.638	0.0840	0.1168	-3.842	1.2e-04
extent	0.5155	1.674	0.0796	0.1097	4.701	2.6e-06
node4	0.8799	2.411	0.0681	0.0961	9.160	0.0e+00

		Gamma	Gamma	Normal
	WLW	$\sigma = 1$	Frailty	Frailty
Lev vs Obs	-0.04	-0.04	0.04	-0.03
Lev/5FU vs Obs	-0.45	-0.57	-0.51	-0.79
Extent	0.52	0.81	1.34	1.13
Nodes > 4	0.88	1.48	2.33	2.12
σ^2	1	_	8.06	6.95
iterations	4	1/5	10/76	8/103
'df'	4	513	1377	931

Hidden Covariate Example

- True hazard for a subject is $\lambda(t) = \exp(x_1 x_2).$
- X_1 is uniform(-2,2) and unknown.
- X_2 is the 0/1 treatment variable, known.
- All observations have the same total follow-up.
- Multiple sequential events per subject.
- We purposely have chosen that the hidden variate have a larger effect than treatment.
- The true coefficients are +1 and -1.
- 250 replications, 100 subjects per arm

	Number of events				
	0	1-2	3-5	6-10	
Control	11	21	34	34	
Treatment	29	46	26	1	

 $^{(606 \}text{ events})$

Fit two marginal models:

- Events are sequential, so time is (0, first event], (first, second], ...
- A subject is not at risk for a second event until they have had their first.
- Conditional model: First event, second event, etc are each in a separate strata. (Events may change the subject).
- AG model: All observations in one strata. (Poisson process).

Summary

- Seems to work.
- The precision of the random effect is poor.
- The connection to degrees of freedom is unclear.
- Less flexible than marginal models.
- Not yet reliable.

Open Issues

• Code

- Beta version available on ftp://ftp.mayo.edu/pub/therneau
- Will be a part of Splus proper eventually.
- Variance
 - Which estimate is better?
 - Should we bootstrap it?
- Frailty
 - What other distributions can be accomodated?
 - Crossed or nested random effects.
 - How well do the more general, extensible rules work? AIC, BIC, PRESS, CIC, ...