Multiple Event Models Some Practical Aspects

Terry Therneau Divison of Biostatistics Mayo Foundation

March 2005

Introduction

- Mixed up models
 - multiple states
 - multiple visits/state
 - A clear win
- Directional models
 - multiple states/patient
 - no returns
 - Very useful for summaries
 - Perhaps for modeling
- Repeated events
 - one type of outcome
 - deterministic path
 - Savings in sample size
 - $-\ldots$ but worth it?

Crohn's disease

- a recurrent inflammatory disease of the gut
- of uncertain origin, but possibly immune-related
- frequently intestinal obstruction and abscess formation
- a high rate of recurrence
- treatment
 - anti-inflammatory (steroids, immunosuppression)
 - surgical removal of inflamed sections

The study

- 174 Olmsted County, Minnesota, residents, 1970–1993.
- 2 months to 24 years of follow-up ($\mu = 7.3$)

	Num	Entries to State					
State	Ever	1	2	3	4 - 5	6–9	10 +
Remission	146	40	49	28	16	10	3
Mild	138	50	32	20	23	11	2
Severe							
Drug-resp	64	44	12	2	4	2	0
Drug-dep	42	29	5	6	2	0	0
Drug-ref	45	29	13	1	2	0	0
Surgery	100	64	20	7	7	1	1
Postsurgery rem	85	55	22	6	1	0	1

Analysis

- Creating an analysis data set is fairly simple
- Cox models are interpretable in terms of rates of transition
- Questions
 - Do the gender's differ?
 - Is the model Markov?
 - What are the recurrence times, and durations in state?

- ...

Conclusions

- One *has* to use a multi-state model of some sort
 - Cannot follow unique paths (too many)
 - Sample size demads reuse
- Markov transition model assumes exponential waiting times (constant hazard) untenable
- The multi-state Cox model works very well
- Data sets like this are rare as hen's teeth

Multiple Events

Directional models

Directional models

Multiple possible paths for a patient.

No returns to a previous state.

Multiple Myeloma regimens

Multiple Myeloma regimens

Question: What fraction of patients reach each state?

- No censoring: 578/578, 355/578, 225/578, ... 33/578
- With censoring: redistribute-to-the-right algorithm.
 - At the time of censoring, redistribute the weight to an appropriate cohort.
- This solution is related to the *cumulative incidence* function
 - Survival curve: number who will reach an endpoint, assuming all other endpoints are removed
 - CI curve: number who will actually reach the endpoint

a		
b		
с		X
d		
e		x

Current incidence function

If there were no censoring, this would just be the number in each state, at each point in time.

plot(fit, col=1:6, mark.time=F, fun='expect')

- status = 1 if a transition occured at time xtime
- *state* = number or name of ending state (value ignored if censored)
- id = subject id, for multi-state transitions

Multiple Events

The number of people who get to state 5–6 is small So small that the plot is not readable.

It is useful to rescale:

- Competing risks for death or transition, Tx 1
- Competing risks for death or transition, Tx 2
- . . .
- Competing risks for death or transition, Tx 5

Cumulative Incidence Plots

What proportion of patients will actually appear at my office in any given state?

	18 months after initiation				
	% Dead	% Failed	%On Rx		
Tx 1	40	25	35		
Tx 2	48	28	24		
Tx 3	47	33	20		
Tx 4	48	34	18		
Tx 5	47	45	08		

At 18 months

- Dead: 4/10, 1/2, 1/2, 1/2, 1/2
- Prog: 1/4, 1/4, 1/3, 1/3, 1/2

Models

- The components of CI curves are hazards and survival
 Available from Cox models
- Relative risk: use standard models
- n can get really small
- Which coefficients?
 - Is the effect of x=age the same for Tx 1 \rightarrow Death and Tx 2 \rightarrow Death?

Directional models: Conclusions

- Very useful for summary overviews
- Models may be weak
 - Small n
 - State by coefficient interactions
 - Subject selection (unmeasured covariates)
- Data sets are uncommon.

The rest of the data

Common sizes

		0–1	2	3	4+
	Ν	event	events	events	events
Bladder cancer	86	57	7	8	14
Cystic fibrosis	645	564	53	20	8
CGD	128	111	9	5	3
Cardiac	2466	2428	38	-	-

"Multiple event" data sets often have <15% with multiples! How much juice *can* you squeeze out of a lemon? Multiple Events

Simple

22

The good

In many data sets, each extra observation is worth 1/4 to 1/3 of a "new" case.

It is easy to do the analysis.

Simple

Choice of setup

Anderson-Gill style

- "Mixed-up" model
- Advantages
 - data does not run out
 - stable coefficients
 - little bias due to selection
- Disadvantages
 - Is it really true?

Conditional model (PWP)

- Directional model
- Advantages
 - For acute disease, states are not the same
 - Easy to investigate state*covariate interactions
- Disadvantages
 - -run out of data very fast
 - major selection biases

Not so good

Consider the CGD study.

- 128 subjects, 44 first events, 32 "extra" events.
- A potential gain of 73% more information.
- With all the right covariates:
 - each extra event is worth about $\sim 25\%$ of a new one
 - treatment se drops from .34 to .31
- Nearly ideal study
- Was it worth it?

Bladder cancer study

- 86 subject, 47 first events, 65 "extra" events.
- Treatment se reduced from .30 to .28

Simple

Old joke:

"A conservative is someone who believes that nothing should ever be done for the first time."

- Many pharmaceutical statisticians
- appear to believe
- that the FDA believes
- that no analysis should ever be done for the first time.

Simple

Summary

- 1. If you've got the data, use it.
- 2. When some states have small *n*, several modeling issues become problematic. Summary and display may still be useful.
- 3. For acute disease data, use caution.
 - but still even if the gain is small, it's free
 - (in MDPIT, each original case cost over \$50,000)