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1. Preface 

This technical report is being written to present in one place a unified discussion of the concept of 

attributable risk(AR). This discussion includes not only basic introductory material, but also a 

unified mathematical construct which allows several natural extensions including adjustment for 

covariates and multiple risk factors. The most significant contributions are 1) a generalized definition 

and associated point and interval estimates for AR under several study designs and 2) S-PLUS 

(MathSoft Inc., Becker, Chambers, and Wilks, 1988) software developed for estimation of AR and 

the standard error of the estimate in these settings. A shell archive containing the software and 

related materials can be accessed via anonymous ftp from ftp . stolaf . edu in the directory 

pub/kahn/atrlsk. Questions can be mailed directly to kalm@stolaf .edu. 

2. Introduction and Definitions 

Levin (1953) seems to have been the first to introduce the idea of attributable risk. In his 

manuscript, which pertained to the occurrence of lung cancer in males, he reviewed four studies and 

Table V of his manuscript contains a column entitled, “Indicated percent of all lung cancer 

‘attributable’ to smoking.” His derivation of the formula used to calculate this percent was brief but 

correct. The percents quoted in the table ranged from 56 to 92 and Levm said, “If the latter figure is 

correct, elimination of smoking would almost eliminate lung cancer (other factors remaining the 

same) whereas if 56 is nearer the true fig-me, then elimination of smoking would reduce lung cancer 

by about one-half, if smoking is a truly causative agent with respect to lung cancer.” 

This quote is important, not because of any residual lung cancer-smoking controversy, but because it 

illustrates the potential public health utility of the concept of attributable risk and because it 

properly warns of the need for causality to be established before attribution can be legitimately 

converted to action. 

Subsequent to Levin’s publication, many authors have dealt with the concept of attributable risk, 

first to discuss its utility and how to estimate it [Cole (1971), Miettinen (1974), Markush (1977)] and 

then to establish a strong statistical foundation for the estimation of attributable risk [Miettinen 

(1974), Walter (1975)]. Eventually, [Walter (1976, 1978), Leung (1981), Denman (1983), Kuritz 

(1987)] expressions for, and estimates of, the standard errors of these various attributable risk 

estimates were obtained. More recently, there has been much written about how to take into 

consideration the influence of other factors while estimating the risk attributable to a specific factor 

of interest [Miettinen (1974), Ejigou (1979), Walter (1980, 1983), Whittemore (1982, 1983), Bruzzi 

(1985), Kuritz (1988), Benichou (1990, 1991), Coughlin (1991), Drescher (1991), Kooperberg (1991)]. 
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There has also been some recent work concerning a related quantity, prevented fraction, in 

cross-sectional studies by Garguillo, et al (1995). 

2.1. Definitions 

Unfortunately, no consensus has arisen as to an “official?’ terminology or symbolism. In general, the 

term attributable risk, which we will abbreviate AR, is used to refer to what is more properly called 

the population attributable risk. Some authors [Miettinen (1974), Kleinbaum (1982)] use the term 

etiologrc fraction (EF) to refer to the same concept. Traditionally AR ~111 be expressed as a percent, 

as Levin did, although the usual formulas will not show the multiplier (100) necessary to convert a 

proportion to a percent. 

The concept of attributable risk is deceptively simple. It is the proportion of those diseased members 

of a population who are diseased because they possess or were exposed to some “risk factor.” By way 

of a simple and completely artificial example, suppose there are 1000 diseased individuals in a 

population but there would have been only 600 if no one in the population possessed the risk factor. 

Thus, there are apparently 400 “excess” cases and the attributable risk is 40% (400/1000). 

Implicit in this discussion is the idea of a population of individuals, some of whom may possess the 

risk factor and some of whom may be or may become diseased. Less clearly, there is also some 

implication regarding time in reference to the population and the disease. At a particular point in 

time the proportions of people in the population at that time who; i) have the disease, called the 

prevalence rate of the disease, or ii) have the risk factor, called the prevalence rate of the factor, are 

the two main proportions available. A study designed solely to obtain prevalence data is called a 

cross-sectoonal study. The attributable risk estimates obtained from such data would also refer to the 

“excess” disease in the population at that point in time. 

If members of a population are followed for a period of time to observe newly dragnosed cases of the 

disease, the rate (cases per year of follow-up) of newly diagnosed disease is called the inczdence rate. 

A study designed to estimate incidence of a disease is generically referred to as a longitudinal study. 

Normally, the incidence rate would be estimated separately for those with and without the risk factor 

and the attributable risk estimates obtained from incidence data would apply to new cases of the 

disease. 

In the expressions which follow, the probabilities may be thought of as prevalence rates or incidence 

rates or just plain proportions. The precise interpretation of each depends upon the nature of the 
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information available. As is standard notation, let 

P(D) - probability of disease , 

P(P) - probability of risk factor , 

P(D ] F) - conditional probability of disease among those with the factor , 

P(D ] F) - conditional probability of disease among those without the factor , 

P(F ] D) - conditional probability of the factor being present among those who are diseased , 

P(F ] a) - conditional probability of the factor being present among those not diseased , 

P(D ( F)/P(D ( F) - relative risk (RR). 

Relative risk (RR) is properly thought of in terms of the ratios of two cumulative incidence rates. 

However, it IS often approximated by the ratio of the odds of being diseased with the factor to the 

odds of being diseased without the factor. We will assume RR > 1 which implies that the factor is 

truly a risk factor and not a protective factor. 

Kleinbaum, et al. (1982), defined populatron attributable risk as I*/I where I is the total number of 

diseased individuals in the population and I* the number attributed to the factor. In terms of the 

probabilities defined above, if there is a homogeneous population of N individuals, then 

I = N P(D) = expected number of diseased individuals in the population. If the probability of 

drsease among those with the risk factor could be reduced to that of those without the risk factor 

then N P(D ] F) = expected number of diseased individuals. Thus, 1’ = N P(D) - NP(D ] F) = 

excess number of diseased individuals and 

AR = S/I = 
P(D) - P(D ] F) 

P(D) . 

This is a commonly seen formula for AR whose use requires estimates of the rate (prevalence or 

incidence) of disease in the total population and of the rate of disease in those without the factor. 

Some algebra involving conditional probability arguments and Bayes’ theorem lead from equation (1) 

to the expression (2) below which is actually the form used by Levin, 

AR = W) P= - 1) 
P(F)(RR-l)+l. (2) 

This is the most common version of AR . Its use in providing an estimate of AR requires an 

estimate of the relative risk, RR , and an estimate of P(F), the prevalence of the risk factor in the 

population. Such estimates could actually come from different studies. 

Apparently Miettinen (1974) was the first to note that more algebra could lead to the following 

formula for AR , 

AR = P(F ] D)[RR - l]/RR . (3) 
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The use of (3) to estimate AR requires an estimate of RR, available from all study types, and an 

estimate of P(F ] D), the prevalence of the factor among the diseased individuals. An unbiased 

estimate of P(F [ D) may be obtained from a random sample of cases. Hospitalized patients are 

unlikely to be a random sample although an estimate based on them might not be seriously biased 

depending on the disease. A population-based study, using all incidence cases of the disease occurring 

during some time period, would be the best study from which to base estimates of AR using 

equation (3). 

Equations (2) and (3) demonstrate the dual influence of relative risk and the prevalence of the factor 

on the value of attributable risk. This is further illustrated in figure 1. Thus, a factor which has an 

extremely high relative risk will have minimal impact on the population if it occurs only rarely. For 

example, suppose a factor has a relative risk of RR = 10 but is found in only 1% of the population. 

Then AR = .Ol(lO - l)/[.Ol(lO - 1) + l] = .09/1.09 = .0826. That is, such a factor would account for 

barely 8% of the disease in the population. Conversely, a factor with a relative risk of 2 and a 

prevalence of 50% would have an AR of .5(2 - 1)/[.5(2 - 1) + l] = .5/1.5 = .333, accounting for l/3 

of the cases of disease. If such a common factor also had a high relative risk (e.g., 10) it would 

account for over 80% of the disease. 

Equations (2) and (3) are the primary formulas for estimating AR . Their derivation provided tools 

for estimating AR but, until it became possible to test hypotheses about AR and/or to obtain 

confidence interval estimates, AR was not a particularly useful concept. 

The null hypothesis of interest would be that there is no excess disease attributable to the risk factor, 

He : AR = 0. Obviously, from equations (2) and (3), RR = 1 implies AR = 0 as does lack of the 

risk factor in the population or among the diseased (i.c. P(F) = 0 = P(F ] D)) which would make 

the whole discussion very uninteresting. Thus, in any realistic situation, hypothesis testing regarding 

AR is equivalent to hypothesis testing regarding RR. Since there is an extensive literature on testing 

hypotheses about RR we will not address the issue further. 

If A^R is an estimate of AR, it is affected by random influences, through the sampling scheme, and so 

has a probability distribution. This distribution in turn has a variance (V), the square root of which 

is the standard error of the estimate (SE). Estimating V depends on the sampling scheme (study 

design) which led to the estimate AR. The first problem is to find an expression for V and then to 

determine how to estimate it, i.e., to find P, an estimate of I/. Then an estimate of SE is given by 

53=X67 

Miettinen (1974) put it well when he stated that, “The sampling variability of the above estimators 

poses a rather challenging problem. No results are available.” Walter (1975, 1976, 1978) seems to 

have been the first to seriously attack the problems of determining the distribution of A^R and of 
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estimating the standard error of E in general (i.e., not assuming Hc to be true). He first 
- 

established (1975) that AR has approximately a Gaussian (normal) distribution if the sample sizes 

are large enough. Then (1976, 1978) he provided some alternative formulas for V and P depending 

on the study design. These formulas are asymptotically correct, i.e., they work well for “large” 

samples. These two results could then be used to obtain confidence intervals. Thus, 

(4) 

is approximately a lOO(1 - cy)% confidence interval for AR where z+ is the lOO(1 - rw/2) percentile 

of the standard Gaussian distribution. 

Walter (1976) proposed a log transformation involving In (1 - A*R> whose variance could be 

estimated more precisely so that corresponding confidence intervals would perhaps be more correct 

and/or narrower. Leung and Kupper (1981) proposed a logit transformation using logit (AIR> 3 

In (AR/ (1 - AR.)) to achieve the same purpose. They established that, for situations in -which 

.21 < A^R < .79, the confidence intervals for AR derived using the logit transformation are shorter 

than the confidence intervals resulting from using the variances from Walter in equation (4). This 

result was confirmed by Whittemore (1982) who concluded that there was no advantage to the use of 

the log transformation and that the logit transformation should be used in the interval specified and 

otherwise confidence intervals should be obtained using equation (4). 

2.2. Special Designs 

We will touch hriefly on three basic study designs and give examples of their application in the stroke 

literature. 

Design I : A single random (cross-sectional) sample of the population with the sampled subjects being 

followed for a period of time. This might he described as a cross-sectional sample with a 

longitudinal component. 

Design II : Two random samples (stratified cross-sectional), one of exposed and the other of unexposed 

members of the population with the sampled subjects being followed for a period of time. 

Design III : Two random samples, one of cases of the disease and the other of members of the population 

without the disease. This is called a case/co&o2 study. There are two versions of this design 

depending on whether the controls are selected randomly or matched individually to the cases. 

A generic display of the data from each such design involving a single dichotomous risk factor may be 

presented in the familiar tabular form as below: 
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Disease 

Yes No 

Yes a b ml 

Risk Factor 

No c d rns 

n1 7L2 iv 

Design I 

N - size of random sample from the population 

mr=a+b- number with the risk factor (exposed) at beginning of follow-up 

a - number of exposed individuals who develop disease during follow-up 

mz=c+d- number without the risk factor (unexposed) at beginning of follow-up 

c - number of unexposed who develop disease during follow-up 

Design II 

ml - size of sample of exposed individuals 

a - number of exposed individuals who develop drsease during follow-up 

9722 - size of sample of unexposed individuals 

c - number of unexposed individuals who develop disease during follow-up 

Design III-a 

711 - number of cases 

ns - number of controls 

a - number of cases with the risk factor 

b - number of controls with the risk factor 

Design III-b (Note that the generic table does not apply here.) 

Case 

Controls 

Exposed Not Exposed 

Exposed a b 

Not Exposed c d 
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N - total number of cases (also total number of controls since they are 1 : 1 matched) 

a - number of case/control pairs in which both have the risk factor (both are exposed) 

b - number of case/control pairs in which case is exposed and control is not 

c - number of case/control pairs in which control is exposed and case is not 

d - number of case/control pairs in which neither is exposed 

We now give forms for estimating AR and the associated standard error of the estimator in each of 

the designs. 

2.21. Design I 

P(F) is estimated by ml/N and, using equation (2), 

Prom Walter (1978) an estimate of the asymptotic variance of A^R for this design is given by 

v= cN[ad(N-c)+bc’] 

n:rnl 

The lo@ transformation yields confidence intervals as follows: 

( 

ad-bc ad-bc 
(ad - bc) + No?’ (ad - bc) + NcepU > 

where 

72. = h/2 
(a+c)(c+d)(ad(N-c)+bc2) 

NC (ad - bc)* . 

22.2. Desrgn II 

Since P(F) cannot be estimated directly from this design it must be obtained from some other 

source. Assume 0 is the value of P(F) so obtained. Then, 

- o( ) 
EZ-1 

AR=eL:l ) 

r3 (ad - bc) 

a-1 fl =O(ad--bc)+cmr ’ 

and from Walter (1976), assuming 0 is known without error, 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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The logit transformation yields confidence intervals as follows: 

( 
f3 (a9722 - ml) Q(amz-m) 

0 (am2 - ml) + cmle" ' 0 (am2 - ~77~) + crnle-u > 

where 

2.2.X Design III-a 

In casocontrol designs the relative risk estimate is based on the odds ratio. Thus, in this unmatched 

design, 

and, using equation 

estimated by a/nr, 

and from Walter (1978), 

(3) and assuming the cases in the study represent all cases so P(F 1 D) can be 

(14) 

The logit transformation yields the following confidence interval for AR , 

ad-be ad-be 
(ad-bc)+c(b+d)e% ’ (ad-bc)+c(b+d)e-U > 

where 

22.4. Deszgn III-b 

With one control “matched” to each case 

rR = b 
C’ 

and, usmg equation (3) and assuming the cases in the study represent all cases so P(F ) 0) can be 

estimated by ml/N, 
(a + b) (b - c) 

bN ’ 

Then, from Kuritz and Landis (1987) 

a(b-C)2+ (b2;ac)2 +c(a+b)2- (a+bl>b-c)') . 

(15) 

(1’3) 
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2.3. Examples 

2.3.1. Example (Design I) 

Davis, et al (1987), reported on a study of all residents of Rochester, MN, who had a general 

examination in 1960. Those over age 50 with no history of stroke or TIA at the time of this 

examination were followed to determine the occurrence of such events. The results of the first 5 years 

of follow-up are summarized in reference to a diagnosis of hypertension (on antihypertensive therapy 

or BP 2 160/95 mmHg in the medical record) in the following table. 

Hypertension I 
Using equations (5), (6), and (7) we obtain 

cR = (70) (814) 
(9)(962) = 6.58 ’ 

#(F) = g = .542, 

cR = (70)(805) - (9)(892) 
rww 

= .751 , 

Q = g(1776) U’WWW7) + @92)(92) 
(793)(8143) 

= .00599, 

SK2 = .0774 . 

The 95% confidence interval for AR is .751 f 1.96(.0774) or (60.0% , 90.3%) 

The logit-transformed 95% confidence interval for AR is (57.3% , 87.2%). 

From this example it would appear that between 57% and 90% of cases of stroke or TIA occurring 

during the 5-year follow-up could be attributed to the diagnosis of hypertension. 

2.32. Example (Deszgn II) 

Wiebers, et al., (1990) reported on the five-year follow-up of 566 patients with asymptomatic carotid 

bruit and 428 without bruit. Among the 566, sixty-three (63) experienced unilateral or bilateral 

carotid system cerebral ischemic symptoms (TIA or cerebral infarction) during the follow-up whereas 

among the 428, only thirteen (13) experienced such events. This may be summarized as: 

12 



Carotid System 

Cerebral Ischemic Symptoms 

Yes No 

With Bruit 63 503 566 

Without Bruit 13 415 428 

From equations (9), (lo), and (ll), respectively 

CR = (63)(428) = 3 66 
(13)(566) ’ ’ 

iii = 
8((63)(415) - (503)(13)) e(l9606) 

0 ((63)(415) - (503)(13)) + (13)(566) = e(l9606) + 7358 ’ 

(63)(13)(566)(428) v = e2 ((8((63)(415)-(603)(13))C(13)(566))~ 
zzz 198401112 

e2 ((8(19606)+7358) 
' (.08869286) . 

In an earlier study Sandok, et al (1982), reported the prevalence of asymptomatic carotid bruit to be 

12.6% while in this study the process of selecting a sample free of bruit led to a prevalence estimate of 

10.3%. Using 01 = .126 and 02 = .103 in the prior equations yields respectively, two estimates, A& 
- 

and AR2, for AR as follows: 

- (19606)(.126) 
AR1 = (1g606)(.126) + 7358 = .251 (25.1%) , 

(19606)(.103) 
AR2 = (1g606)(.103) + 7358 = .215 (21.5%) . 

The corresponding variance estimates would be: 

198401112 
2 

^ 

’ = (.126)2 ((19606)(.126) + 7358)2 
(.08869286) = (.126)2(2.053914)2(.08869286) = .005940109 , 

53, = fi = .077 , 

198401112 
2 

’ = (‘lo3j2 ((19606)(.103) + 7358)2 
(.08869286) = (.103)2(2.2562)2(.08869286) = .004789809 , 

372, = fi = .069 . 
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The corresponding 95% confidence intervals for AR would be 

.251+ 1.96(.0771) or (10.0%,40.2%) 

using 01 and 

.215 f 1.96(.069) or (go%, 35.1%) 

using e2. 

The 95% confidence intervals based on the logit transformation are (13.1%, 42.8%) using 01 and 

(ll.O%, 38.0%) using 8s. 

Thus, it would appear that somewhere between 8% and 40% of episodes of “cerebral ischemic 

symptoms” could be attributed to the presence of asymptomatic carotid bruits. This example shows 

that even relatively minor differences in the value of 0 can have rather major effects on P and, 

consequently, on the corresponding interval estimates. 

23.3. Example (Desrgn III-a) 

In a recent study, all cases of cerebral infarcts occurring in residents over the age of 50 of Rochester, 

MN, during the period from 1960-1984 (inclusive) were identified, as were a corresponding number of 

controls. All medical records were reviewed for evidence of hypertension (on therapy or with recorded 

BP 2 160/95 mmHg). The data are summarized in the following table: 

Cases Controls 

Yes 938 763 

Hypertension 

No 384 559 

1322 1322 

From equations (12), (13), and (14) respectively, 

R^R = (93WW = 1 7g 

(384)(763) ’ ’ 

@(F 1 D) = g = .71 , 

rR = (938)(559) - (763)(384) 
(559)(1322) 

= .313 ) 

p = (384)(1322) 

> 

2 938 763 
(559)(1322) (384)(1322) = (559)(1322) = ‘O”14 ’ 
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52 = .0369 . 

This gives a 95% confidence interval of .313 f 1.96(.0369) or (24.1%, 38.5%). The 95% CI based on 

the logit transformation is (24.6%, 38.9%). 

23.4. Example (Design III-b) 

The case-control study of ischemic stroke described in the previous example was actually designed as 

a matched-pairs study with a single control being matched to each case on the basis of gender, age at 

time of stroke (f5 years) and calendar year at time of stroke (f5 years). The data are summarized in 

the following matched-pair tables and associated analysis. 

Controls Controls 

HBP No HBP HBP No HBP 

HBP 563 HBP 563 375 375 

Case Case 

No HBP 200 No HBP 200 184 184 

1322 1322 

fiii = E = 1.875 , 

l?(F 1 D) = 938/1322 = .71 , 

TR = ww375 - 200) = .331 
(375)(1322) ’ 

1 (3752 + (563)(200))* 
(375)(1322) 375 

+ (200)(938)* - (g38;;;~)2 = .00014, 

ZE = .0374 

Thus, a 95% confidence interval is .331 f 1.96(.0374) or (25.8%,40.4%) . 

The unmatched analysis of the same data resulted in an AR estimate of 31.3% not appreciably 

different from the 33.1% obtained by this, more proper, analysis. 
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23.5. Example, matched set case-control 

Finally, there is another design, a matched-set case-control design, in which the notion of attributable 

risk is of interest. This design does not readily admit to a simple tabular summary or analysis as has 

been discussed for the previous designs. It is similar to a matched case-control design except that 

now there may be multiple controls matched to each case. 

The example used in this manuscript comes from a population based study of temporal arteritis 

(Machado, et al, 1989). In this study, a case was defined to be a patient suffering from temporal 

arterltis. Four controls were matched to each case by age (within a year) and gender. 

One question of interest was the extent, if any, to which smoking contributed to the risk of temporal 

arterits. After adjusting for whether a patient had a history of angina, the methods to be described 

in section 3.3.3 of this manuscript yield an estimated attributable risk of 0.235 with a standard error 

of approximately 0.056. 

3. The mathematics of attributable risk 

In this section we review some of the mathematical background concerning population attributable 

risk from section 2 and generalize estimation of AR in case-control designs. 

Recall that for a dichotomous risk factor, F, the population attributable risk (AR) is defined by 

AR = ‘CD) -‘tDIF”) = 1 _ P(DIF) 
P(D) P(D) ’ 

which, as we saw in (3), can be rewritten as 

AR = P(FjD) (1 - A) . (17) 

From this we can see how both P( F 1 D) and RR affect AR, namely 

0 2 AR < min(P(F(D), 1-k) . 

3.1. Case-Control Studies 

Equation (17) is most useful for estimating AR m case-control designs since sampling is stratlfied by 

disease status. However, the probabilities, P(D I F) and P(D I P) are not direct.ly estimable and, 

hence, RR = P(D I F)/P(D IF) is not directly estimable in case-control studies. Since sampling is 

stratified by disease status, the estimable quantities are P(F ID), P(F ID)). Hence, 

odds(F I D) = P(F I D)/P(a I D), odds(F Ia) = P(F I D)/P(F ID) and the odds ratio (OR ), 
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defined by 
OR = odds(F ID) W I DF’(F I D) 

odds(F 1 D) = P(F 1 D)P(FI D) ’ 

are estimable. Equivalently, the above expression can be written as 

OR = odds(D I F) 
-- 

W’ I W’(~ I F) 
odds(D IF) = P(D I F)P(D 1 F) . 

Thus. we see that 

OR=RR 

which can also be written as 

(l-P(D))OR+P(D) 
RR= (l-P(D))+P(D) 

So, RR = OR if 

i) P(D) z 0 (i.e. disease is rare), or 

ii) P(F ) D) << P(F) D). 

If either of i) or ii) above are reasonable assumptions then the OR estimate is nearly the same as the 

RR estimate. The rare disease assumption, i), is often tenable in case-control studies where odds 

ratios are estimated as measures of association between risk factors and disease. Under the 

assumption that RR > 1, ii) is untenable. 

3.1.1. Odds Ratio and Logtsttc Regression 

Logistic regression, as a way of modelling probabilities, odds and odds ratios, provides an important 

tool for expanding analysis of case-control studies from the single dichotomous risk factor to the more 

realistic circumstance in which there are multiple risk factors and/or confounders and/or effect 

modifiers. Let 

and 

F= 
i 

0 if individual is not exposed 

1 if individual is exposed 

D= 
{ 

0 if individual is not diseased(control) 

1 if individual is diseased(case) . 

For a real-valued parameter, 6’1, the logistic model specifies 

P(D=llF=l)= 1+1,-e, =l-P(D=OIF=l), 
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which implies that odds(D = 11 F = 1) = eB1. This then yields 

logit(P(D=l(F=l))=ln(odds(D=l~F=l)) = 81. 

Similarly, for 00 E I& 

logit(P(D=l~F=O))rln(odds(D=l~F=O)) = 80. 

Together these yield 

More generally, 

Thus, 

w = 1 IF) = 1+ e-:a+PF) =l-P(D=OIF). 

odds(D = 1 IF) = ea+pF ++logit(P(D=lIF))=cr+fiF, 

which gives 

In (OR) = In 
odds(D=lIF=l) 
odds(D=ljF=O) > 

=In(odds(D=lIF=l))-ln(odds(D=lIF=O)) 

= a + P (1) - (a + P (0)) 

zz P 

e OR = ep. 

Hence, in a case-control design logistic regression can be used for estimating OR (and thus, RR) by 

estimating 0. 

3.12. Polychotomous Ezposures wrth No Confounding Factors 

As before, define 

0 if individual is not diseased 
D= 

1 if individual is diseased 

Now we will assume a polychotomous exposure variable. That is, suppose that there exist K + I 

exposure categories, I&, . . , EK and for i = 1,. . . , If, define 

Fz = 
0 if individual is not exposed at level E, 

1 if individual is exposed at level E, 
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Define Fi to be the vector in WK with zth component equal to 1 and all other components equal to 0, 

and Fo = (0,. . . ,O)’ E Rx. Define the risk of exposure level z relative to exposure level 0 (i.e. 

-ho 1 by 
RKo = P(D IF4 

P(D PO) ’ 
O&s is defined similarly, namely 

oRo 3 PV’ = 1 IF,) PC D = 0 PO) 
P(D = 0 IF,) P( D = 1 IFo) 

The logistic model then specifies for z = 0,. . . , K 

odds(D = 1 IF,) = ea+p’Fz ti logit(P(D=lIF,))=a+/J’F,, 

for parameters LY and /3’ = (01,. _ . , /3~). In this case, 

logit(P(D=lIF,))=a+a , logit(P(D=lIFe))=a, ln(OI&o)=/?i e OR,-,=&. 

As per our earlier discussion, OR.,, z RR0 provided that P(D = 1) is small. Thus, for case control 

studies we will use OR,, as an approximation to RI&e and we estimate OR0 by 66Rs = 2~. 

3.1.3. Contmuous Risk Factor 

If there are “risk factors” such as blood pressure, body mass index or level of tobacco use, the logistic 

regression model provides a useful tool for assessing the relationship between that factor and the 

disease. Thus, if F represents a (possibly vector-valued) risk factor, then 

~~(ORFF,) =P'(F--Fo) 

is a measure of the risk to an individual with level F relative to an individual with level Fs. This is 

equivalent to OR,, as defined in the previous section using F = F,. 

3.14. Multiple Risk Factors and Confounding Factors 

Within the above settings it is possible, indeed likely, that multiple risk factors and confounding 

factors must be accounted for. If the vector X = (Xl,. . ,X,,J represents such confounding factors 

andF= (PI,... , FK), then the logistic model defines 

logit(P(D = lIF, X)) = 

cu+.-jX+P’F. (18) 

Then with the vector of baseline exposure levels denoted as Fo, we have 

as before. 
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3.2. General &get Distribution 

Finally, we describe how to generalize the target distribution. Instead, of referring each observed 

exposure level F to a single exposure value (vector) Fs as above, suppose the target exposure level is 

itself determined by the observed exposure level. For example, instead of targetmg all HBP to HBP, 

we target levels of diastolic blood pressure (DBP) to be reduced by 10%. 

In general, we would like to choose a target distribution based on Fs E Fe(F). In the above blood 

pressure example, DBPo = .9 DBP. Using Fs we can, for a given vector of exposure levels, create the 

corresponding vector of target exposure levels. 

OR is still of interest and is estimable by 

In (OR& FOP.) 1 X 1 = P’ (F, - Fo (F,) ) 

where F, is the (vector of) observed exposure level(s) for individual i and Fs(F,) is that individual’s 

targeted exposure level. 

This provides a very general context for estimating OR using the logistic model. The risk factor, F, 

may represent something as simple as a single dichotomous factor or may incorporate multiple, 

interrelated risk factors of different forms, including interactions among the risk factors and/or 

interactions between risk factors and confounding factors. 

3.3. Logistic Regression and Odds Ratios in Case-Control Designs 

The logistic regression model described above accomodates both the unmatched, pair-matched and 

matched set case-control designs. (For more detail on these issues, see Breslow and Day, 1980.) Here 

we give a simple outline of how logistic regression is used to estimate OR in these designs. 

33.1. Unmatched Case-Control Design 

For an unmatched case-control design the estimated odds ratios for each case can be obtained 

through the previously described logistic regression models. This follows since 

OR=P(D=llF,X)P(D=OIFo,X) 
P(D=OIF,X)P(D=lIFo,X) 

=P(FID=l,X)P(FoJD=O,X) 
P(FID=O,X)P(FolD=l,X)’ 

The last expression employs probabilities (pdf’s) that are accessible in a case-control design since 

data are gathered conditional on disease status. Because of the above equality, OR is estimable using 

logistic regression with disease status as the response variable even though it is also the variable on 

which the data are stratified. 
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3.32. Parr-matched Case-Contml Desrgn 

In a pair-matched case-control design a case, an individual with the disease, is matched with a 

control, an individual without the disease, according to some possibly confounding variables, such as 

age and gender. (For example, see section 2.2.4.) In this case, there is no information concerning the 

risk of disease associated with the exposure(s) for case-control pairs who have the same exposure 

status. Hence, we estimate OR by conditioning on case-control pairs with differing exposure status. 

This is done via conditional logistic regression. 

Suppose that for the ~~~ case-control pair we have two vectors, x.-m,1 and x,,ntml,i, which may contain 

both confounder and exposure information. In particular, qm,i and ~,,~~,,l,~ may contain interactions 

between matching variables and confounder or exposure variables that were not used to match cases 

and controls. Further, suppose we have some target distribution for the exposure(s) so that for each 

case Fe, E Fe (x,,,,,) is a vector, like xcae,i : with the target exposure level(s) substituted for the 

individual’s original exposure level(s). Then an estimator of OR for the case of the ifh pair, 

O^R(xcase,l , Fe*), can be found by 

a) estimating B in a logistic regression model for the pairs as 

logit(P (D = 11 xcase,l , xxmtrol,d) = a + P’4 > 

where d, E xcase,, - x,,,~~~I,, , and each outcome is 1, 

b) using b to get, 

O^R(x, , Fo,) = ep b. -Fd . 

This is easily done in S-PLUS (Becker, Chambers, and Wilks, 1988) using the glm command or in 

SAS (SAS/STAT User’s Guide, 1990) using proc logistic. 

3.3.3. N,:M, Matched Sets Case-Control Design 

In a matched sets case-control design, possibly several (NJ cases are matched with possibly several 

(AI,) controls according to some possibly confounding variables. In this design, there is no 

information concerning the risk of disease associated with the exposure(s) for case-control sets in 

which all members have the same exposure status. Hence, we &imate OR by conditioning on 

case-control sets for which at least some cases have differing exposure status from some controls. As 

before, this is done via conditional logistic regression. 

Suppose that the 2 th of n matched sets contains NI cases and M, controls. In most such studies 

N, = 1 so that each set contains a single case. Denote by xv0 the covariate vector of exposures and 
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confounders for the cases, j = 1,. . . , N,, and x,,l the covariate vector of exposures and confounders 

for the jth control, j = 1,. . . , Mt. Note that xi30 and xrlr may contain interactions between matching 

variables and confounder or exposure varrables that were not used to match cases and controls. 

Further, suppose we have some target distribution for the exposure(s) so that for each case 

F,s E F (~~~0) is a vector, like xye , with the target exposure level(s) substituted for the 

individual’s original exposure level(s). An estimator of OR for the case of the tth set, &.(x,e , F,js), 

is obtained as follows. First, estimate /I with p which maximizes the conditional likelihood function 

(Breslow and Day, 1980) 

-w) = fJ N, 
g-P (fl XYO) 

‘=l Jz exp (P’qo) + 2 exp (P’ql) ’ 
3=1 

Then 

6&x,, F,o) = e(p(xuo -%o) . 

Since this likelihood function is equivalent to that used in a stratified Cox proportional hazards 

model, where the matched sets are the strata, this is easily done in S-PLUS (Becker, Chambers, and 

Wilks, 1988) using coxph. 

In SAS (SAS/STAT User’s Guide, 1990) these estimates are computed using proc phglm. 

3.4. Generalization of AR 

Now that the definition and estimation of RR has been generalized using OR and logistic regression, 

it is necessary to generalize the definition of AR to accomodate these more complex and realistic 

structures. 

The generalization discussed here is due to Bruzzi, et al (1985) and has been discussed by Benichou, 

et al (1991) in more detail. 

Recall that for a dichotomous risk factor where D represents a case and ?? represents a control, 

AR = P(FID) (1-A) 

zz l-P(FID) -“‘z) 

= 1- 
( 
P(FoID) + P(FlID) 

RRoo R-R.10 >- 
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where RR.es = 1 and RR.10 = w]. Using the notation of section 3.1.2 for a polychotomous risk 

factor, the above expression for AR can be generalized as 

K P(EID) AR=l-x 
r=O RR?0 . 

To generalize this slightly, suppose we have an exposure variable with K + 1 levels denoted by 

4, . . , FK, and a baseline level denoted by Fo. Further, suppose we have discrete-valued covariates 

denoted by X = (Xl,. . . , Xm). Then we define the attributable risk by 

where the summations extend over all possible values of each covariate. 

More generally, suppose we have any exposure variable (i.e. risk factor) denoted by F. (Note that 

now F can be vector-valued, discrete, continuous, or some mixture.) Also, let Fs be the single 

baseline value to which all levels of the exposure will be referred. Further, suppose we have covariates 

(these too may be drscrete, continuous, or a mixture) denoted by X = (Xl,. . . ,Xm). Then the 

attributable risk associated with the entire vector F is defined by 

AR=l- 
I 

1 

=FF,IX 
dF(F, z 1 D) . 

where F represents the conditional joint distribution function of the random variates F and X among 

the diseased. A semi-parametric estimator of AR is obtained by estimating RR by 6% from the 

appropriate logistic regression and by estimating F with the empirical (conditronal) distribution 

function, @. 

Most generally, instead of referring each exposure level to a single value, suppose we allow for an 

arbitrary target distribution (see section 5). Let Fe(F) be the targeted level of exposure for an 

individual currently exposed at level F and suppose the covariates are denoted by X = (Xl,. . . , X,,J 

Then the attributable risk (this version has also been called the general impact fraction) is defined by 

AR=l- 
I 

1 
RR(Fo(F),Flx) dF(F’s’D)’ 

where F represents the conditional joint distribution function of the random variates F and X among 

the diseased and 

RR (Fo(F),F I4 = W I F, 4/W I FOP), 4. 

To obtain an estimate of AR let Fs, E Fc (F,) be the target exposure level for individual I who has 

an observed exposure level Fi. Then an estimator of (19) is 
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where nr is the number of cases, summation extends over all cases and b is a likelihood or conditional 

likelihood estimate of the parameter vector, /3, in a logistic model as previously discussed. Note that 

when interest is in a specific component of F the remaining components may be treated as part of X. 

In the ease of multiple exposures 0, F, and For are vector-valued. Also note that (18) allows one to 

include interactions between risk factors and confounding factors. 

The heart of this technical report lies in calculating an estimate of the standard error of A^R. 

Benichou and Gail (1990) provide the most general expression for the variance of E, but it is only 

applicable in unmatched case-control designs with discrete exposures referred to a single-valued 

target exposure. Further, no one has been able to generate software to implement the variance 

expression given in Benichou and Gail, 1990. In section 3.5 we prove the asymptotic normality of E 

for the general case of a vector-valued (possibly discrete, continuous, or mixed) exposure variable and 

an arbitrary target exposure distribution. In the proof, we rederive an asymptotic variance expression 

which clearly shows where the difficulty in the computations lie. 

Due to the intractibility of computing the standard error of A^R, we resort to resampling methods, 

namely the bootstrap and jackknife. We find both methods to be reliable, accurate and reasonably 

efficient computationally. The jackknife 1s preferred to the bootstrap as it is typically much faster and 

nearly equivalent to the bootstrap in this problem, though care should always be taken in any 

application of interest to make sure the two methods give similar answers. The bootstrap is preferred 

in any case where the two methods give grossly dissimilar results. In the next section we review why 

this is the case, as well as the basic background for bootstrap and jackknife methods for estimating 

the standard error of A^R. 

3.5. Asymptotic Normality of A^R 

In this section, we prove that &?. is asymptotically normal in both the unmatched and pair-matched 

cases. To do this, let the number of cases be n and the number of controls be rn. In the unmatched 

case-control design assume that 0 < lim,,,,,, 2 < co. Further, in the unmatched design, let 

N E n + m In the pair-matched design, let N E n. Then N represents the sample size from which 

(conditional) logistic regression parameters are estimated. 

Let F be the cumulative conditional distribution function of the exposures among the diseased, and 

@ the empirical conditional distribution function of the exposures among the diseased, then 

6 (@ - P) 4 Brownian Bridge process 

and, for any n, this process is bounded with mean zero. 
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Further, if a E I$ is the (conditional) logistic regression estimator yielding the odds ratio estimate of 

relative risk, then 

q-0) 3 NL (O,%) > (22) 

where Cg is the inverse of the information matrix at p. From this we have, for a fixed x and target 

exposure b(x), 

fi (e-i%x--bW _ e-P(x-b(xN ) 4 N (0, (x - b (x))‘Cg (x - b(x))) _ (23) 

Also note that, under the assumption that OR and o^R exceed 1 for any N, this process is bounded 

between -fi and fi. 

Theorem : fi (E - AR) 4 N(0, V), where V is the asymptotic variance of E calculated in 

the manner of Benichou and Gail (1991). 

To show this, rewrite 

fi (a-AR) = fi/ (e- B'(x-b(x)) +%-b(x))) d (k-p) 

+ fi/ e-8’(=--hW d (” - F) 

+ fi (e-b’(W4) _ e-P’(=-W) dF 
J > 

(24) 

(25) 

(26) 

From (21) and (23) we see that (24) converges in probability to 0 since the integrand in (24) is going 

to a mean 0, finite variance process at a rate of fi and the measure is going to a mean 0, finite 

variance process at a rate of fi. Thus, a multiplier of &% is needed to obtain a nondegenerate 

limiting distribution. So, we can ignore the first term, (24), for large N. 

The second term, (25), also has an asymptotic normal distribution. This follows from (21) and the 

fact that 0 < mliim E =K<co. Then 

e-gl(x-b(x)) d (fi (@’ - F)) 4 N (0, K VFW (/ e-P’(x-b(x)) dW’(x))) , 

where lim 
N 
- = K and W” represents a Brownian Bridge process. m,n+cc n 

The variance term above is simply the variability of l/RR( x among the diseased individuals. Note ) 

that as in section 3 of Benichou and Gail (1990), this is easily estimated by 

ge- zP’(xi-b(w)) _ ,-I =$e-b’(xi-W) . 
Finally, consider the limit of the third term, (26). The integrands in (26) are uniformly integrable 

since we restrict RR 2 1 H 0 < l/RR 5 1 which implies that the integrands, 
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&ij (e-B’WW) - e -fl’(x-b(x)) > have as their support (-a, a). As N gets large the tails of 

the distribution of these integrands decay exponentrally which implies that the integrands are 

uniformly integrable. So, the limit can be taken inside the integral yielding 

(26) + E (Z&x - b (x))‘CO (x - b (x)) 1 D) 

where 2 is a standard normal random variable independent of D. Hence, the third term, (26), has 

asymptotic mean 0 and asymptotic variance W = E ((x - b (x))’ Co (x - b (x)) 1 D) , which is easily 

estimated by 

i 2 (x, - b (4) gB bz - b (4) , 
1=1 

where the summation extends over all cases. 

Together these give us that fi (.A%. - AR) is asymptotically normal with mean 0 and variance 

given by W + K Var (s e- fl(x-b(x)) &P(x)) -t 2 Cov ((25), (26)). The covariance term can be 

estimated using a delta method for implicitly defined random variables as described in Benichou and 

Gail, 1989. However, it is exactly this covariance calculation that makes these computations so 

difficult to implement efficiently. 

For an unmatched design with a sing&valued target distribution, this asymptotic variance 

calculation coincides exactly with that given in Benichou and Gail (1990). In any setting other than 

the most restrictive, unrealistic cases, calculation of the asymptotic variance is too complicated for 

generally applicable, swift running implementation, due almost exclusively to the covariance term. 

Furthermore, Benichou and Gail’s delta method approach is approximately the infinitesimal jackknife 

method for calculating variance (Efron and Tibshirani, 1993). In the case that the estimator is linear, 

as is nearly the case for AR, the infinitesimal jackknife, jackknife and bootstrap yield the same 

variance estimates. In the vast majority of cases, the jackknife is the most efficient computationally. 

4. The bootstrap and jackknife estimates of variance 

The ideal. frequentist notion of the variance (or the sampling distribution) of an estimator arises from 

imagining that the experiment was repeated infinitely, observing a value of the estimator from each 

“experiment”. The distribution of all these hypothetical values is, by definition, the sampling 

distribution of the estimator. In many cases this yields tools by which one could find the variance, or 

confidence intervals, etc. for the corresponding parameter. In cases where the sampling distribution is 

either incalculable or intractable other techniques must be used for finding the variance (or 

distribution) of an estimator. Below we outline several techniques for obtaining the variance (or 

distribution) of an estimator. 
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1) Theory. 

a) For some models, one can find an expression for the exact variance (sampling distribution) 

of the estimator. That is, under the model assumptions we can describe mathematically 

what would result if we repeated the experiment infinitely. 

b) In many settings, one can derive an asymptotic approximation to the variance or sampling 

distribution (e.g. delta method, central limit theorem). 

2) Resample. 

Use the observed data to “repeat” the experiment “infinitely”. This includes the bootstrap, 

jackknife and the Bayesian bootstrap. 

4.1. How does the bootstrap work in the unmatched case-control designs? 

In this case, the data obtained for each subject are level of exposure (denote this by E), data on 

confounders/stratifiers, say x, and knowledge of the disease status (i.e. case or control), denote this 

by D. As in Freedman, et al, 1991, consider having written this information down on a slip of paper, 

one slip per subject. Then the design and data are described by the following “box model”: 

Cases Controls 

The diagram indicates that there are two boxes; one for “Cases” containing nr tickets, one for each of 

the cases, and another box for “Controls” containing ne tickets, one for each of the controls. From 

these observed data we can calculate E. 

To carry out the bootstrap for estimating the standard error of E, draw a sample with replacement 

of size r~r from the Cases box and a sample wrth replacement of size ne from the Controls box. This 

gives a “new” data set with nr cases and ne controls. From this new data set we calculate A^R. 

Repeating this procedure (resamplng from the original data to obtain “new” data sets with nr cases 

and ne controls) yields a sequence of z’s,. We obtain an approximation to the sampling distribution 

of E through this sequence. 

For example, suppose the observed data are: 
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D D 

Then m - - .313 and the boxes full of tickets look like 

Draw a sample with replacement of size 1322 from the Cases box and a sample with replacement of 

size 1322 from the Controls box and calculate E. For example, we might get 

D D 

E 963 733 

I 

z 359 589 

1322 1322 

with A^R N - .390. Carrying out this resampling repeatedly yields an approximation to numerous 
- (1) realizations from the sampling distribution of E, say AR , . . . , AR -(B) (e g. in our example 

E(l) = .390) and an estimate of the standard error of &% is the standard deviation of 

ii%@) . . . iiicB) 1 7 ,namely~~,where~isthemeanof~‘ll,...,~’B’. 

4.2. How does the bootstrap work in pair-matched casecontrol designs? 

In the pair-matched case-control design, simply resample the pairs with replacement. That is, for the 

pair-matched design the box model will look like 

n 

There is one ticket for each of the n case-control pairs. Each ticket has the exposure, E, and 

confounder/stratifier, x, for the case and for the control in that pair. The bootstrap procedure then 

draws a sample of size n with replacement from this box obtaining an estimate of AR. As before, 

repeat this to obtain an approximation to the sampling distribution of E. 
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4.3. How does the bootstrap work in matched sets case-control designs? 

In the matched sets case-control design, simply resample the sets with replacement. That is, for the 

matched sets design the box model will contain one ticket for each of the n case-control sets. Each 

ticket has the exposure, E, and confounder/stratifier, x, for the cases and for the controls in that set. 

The bootstrap procedure then draws a sample of size n with replacement from this box obtaining an 

estimate of AR. As before, repeat this to obtain an approximation to the sampling distribution of 

iii?. 

4.4. How does the jackknife work in unmatched case-control designs? 

As in section 4.1, suppose that we have gathered data according to an unmatched case-control design 

and that we represent this by the following box model: 

Cases Controls 

where E represents the exposure status of the subject and x represents confounder/stratifier 

information. 

The zth jackknrfe value of the estimator (AR.) is obtained by deleting (i.e. temporarily removing from 
- c-4 

the data set) the zth subject and calculating the estimator, say AR Doing this for each i yields 

the jackknife distribution of the estimator. 

For example, suppose the observed data are: 

D B 

A^R M .313. Then one jackknife value for A^R (the one obtained when deleting a patient who is both 

exposed and diseased) is obtained by estimating Ai% from the table 
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&-1) =: .312539. 

There will be 938 of these, one for each exposed case. Similarly, we get 763 jackknife values of 

0.3135787 corresponding to the deletion of an exposed control, 384 jackknife values of 0.3143293 and 

559 jackknife values of 0.3123485. From this we get a an estimated standard error of 0.03689. using 

the formula for computing the standard error from a jackknife sample found in section 4.7. 

4.5. How does the jackknife work in a pair-matched case-control design? 

- C-2) In a pair-matched case-control design we get AR 
-C--1) 

by deleting the zth pair and computing A^R from 

the remaining n - 1 pairs. This yields AR , . . . , ,--,(+I from which we can compute the jackknife 

standard error estimate of A^R. 

4.6. How does the jackknife work in a matched set case-control design? 

- C-1) In a matched set case-control design we get AR 
-C-l) 

by deleting the zth set and computing A& from 

the remaining n - 1 sets. This yields AR ,...,GP) from which we compute the jackknife 

standard error estimate of A^R. 

4.7. Standard Results for Bootstrap and Jackknife Estimates of Standard Error 

In general, if e(-‘) is the ith jackknife value of some estimator, 4, where a = 1,. . . , n, then the 

jackknife estimate of variance is given by 

where z is the mean of @‘), . . . , e^(-“1, Efron, 1987. 

Result: (Efron, 198’7) (Relationship between jackknife and bootstrap estimates of variance.) 

If 8 is a lenear statistic, then 
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The simplest and most natural definition of a Zrnear statistic is that 6 can be written as 

For example, 

and 

7 + ; -&xi)* 
r=l 

are linear statistics. 

is not a linear statistic since (x, - z)* cannot be written as a(~,), a function of a single one of the x’s 

We address the issue of linearity for A^R in the next section. 

4.7.1. Problems with the jackknife. 

1) Non-line&y 

The bootstrap accounts for the curvature in a non-linear statistic while the jackknife 

corresponds to a specific linear approximation of the statistic. Unless the non-linearity of the 

statistic is drastic, there is typically not a big discrepancy between the two estimates of variance. 

2) Lack of smoothness 

If the statistic is not smooth (e.g. discontinuous, nondifferentiable) then the jackknife estimate 

of variance can breakdown entirely. For example, because the median changes discontinuously 

as you change a single data point, a linear approximation to the median cannot be expected to 

work well, if at all. 

Claim : 

is smooth, bounded and “almost” linear. 

The smoothness results from the fact that A^R is a simple function of the average of the reciprocals of 

the odds ratios. The non-linearity results from the fact that ,6 is a function of all the xJ’s. Along the 
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lines of Efron and Tibshirani (1992), we are currently working on a diagnostic for automatically 

measuring and graphically diagnosing the extent of this nonlinearity in any of the designs discussed in 

this report. 

We have tested these techniques on small and large data sets from unmatched, matched-pair and 

matched-set designs, simple and complicated exposure structure, and large and small A^R. We 

conjecture that the cases in which the jackknife estimate of standard error for AR breaks down are 

pathological enough as to be of little practical consequence. 

Practically, we suggest analyses begin by exploring models and obtaining interval estimates of A^R 

using just the jackknife, not the bootstrap, smce the jackknife is faster, especially in problems with 

many subjects and/or many logistic regression parameters. However, any final inferences and 

interpretations should be withheld until the results from a bootstrap are obtained and compared with 

results using the jackknife. If the results from the jackknife and the bootstrap disagree substantially, 

thought must be given to the data and the model. 

For example, in model 15 of Benichou (1991) it is noted that no standard error estimate can be 

obtained since the model is saturated and the observed information matrix is non-invertible at the 

MLE. Our results (Appendix) found that the jackknife gives an estimate for the standard error of 

A^R in this model, but the bootstrap fails due to the sparsity of the corresponding data matrix. Some 

of the bootstrap samples yielded no cases in high-risk categories which leads to a bootstrap estimate 

that is negative (i.e. A^R < 0) indicating a protective effect for the exposure variable’s presumed 

high-risk categories. This happened in both of the saturated models (models 10 and 15) since the 

data are simply spread too thin. However, in these cases if we simply focus on all the non-negative 

bootstrap estimates the results are quite close to those using the jackknife. 

We now consider a number of examples, including brief descriptions of S-plus software for carrying 

out these procedures. 

5. Examples using the software, arhat 

In this section we carry out some of the computations described previously by way of an S-PLUS 

program, arhat. The syntax of arhat is similar to the modelling functions in S-PLUS such as lm, 

glm, coxph, etc. The unique aspect of the concept of attributable risk, and hence, arhat, is that 

there is a clear distinction between explanatory variables considered to be exposure variables and 

explanatory variables that are are not considered exposure variables. For arhat, this distinction is 

made in the formula of the call to arhat by including exposure variables in the special function 

expos. A simple example is 
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arhat( stroke ” expos(hbp) + age) 

which tells the program to calculate the estimated attributable risk of the exposure variable hbp on 

the outcome variable stroke, adjusting for the confounding variable age. 

What follows are more detailed explanations of this and numerous other features of arhat in the 

context of several examples. 

By convention, we will use > as the S prompt, and + as the S continuation-of-a-line prompt, so 

that any text following a > or a + is typed by the user. Any other text is output from the issued 

S command. A detailed help section pertaining to arhat is given in appendix B. 

5.1. Dichotomous exposures with no confounders 

5.1.1. An unmatched case-control design 

These are the data from Whisnant, et al 1996 (see section 2.3.3) concerning cerebral infarction (CI) 

and high blood pressure (HBP) treated as an unmatched design. 

CI CI 

As seen earlier (section 2.3.3) 

HBP 938 763 

HBP 384 559 

,, 1322 , 1322 , 

o^R = (938*559)/(763* 384) z 1.79 z e5s2 , A^R M .313 , SE (2) = .037. 

The following are the S commands for analyzing these data with the arhat program we have 

developed. The syntax of the arhat command mimics that of the glm command for generalized linear 

models, most specifically for logistic regression. As wrth glm one needs to specify a formula, but with 

arhat at least one of the rndependent variables must be speczfied as an exposure (risk factor) varzable. 

This is done using the special function expos. 

In the followmg example a dichotomous risk factor, high blood pressure (hbp), is analyzed in an 

unmatched case-control design. The variable cases indicates whether the subject had a cerebral 

infarction (CI) (cases = 1) or not (cases = 0) and hbp is a categorical variable (i.e. factor) with 

levels HBP-0 and HBP-I that indicate whether the subject had high blood pressure (hbp = HBP-1) or 

not (hbp = HBP-0). hbp is considered the exposure variable and is a categorical data type. 

Further, we assume that a data frame called chapter. dat exists in which the relevant variables, in 

this example cases and hbp, and possibly other variables reside. 
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> exa@el <- arhat(cases I expos(hbp) , data=chapter.dat) 

Next is a brief printout of the results from fitting this model in which we simply ask for the estimated 

attributable risk. We explain how to get the SE for A^R in this example later. 

> example1 

Call : 

arhat (formula = cases - expos(hbp) , data = chapter .dat) 

Estimate of AR = 0.313 . 

Coefficients: 

(Intercept) 

-0.3755052 0.5819971 

The Coefficients are the estimated logistic regression parameters; b = 0.5819971. 

In this case, chapter.dat, is a data frame with 2644 rows, the first and last of which look like 

> chapter.dat[c(1,2644),1 

hbp dm ihd cases match.id 

1 HBP-0 DM-0 IHD-0 0 1 

2644 HBP-1 DM-1 IHD-1 1 1322 

Note that this data frame contains lists (variables) named hbp, dm, ihd, cases and match. id. The 

original table describing the relationship between hbp and cases is given by 

> table(chapter.dat$hbp,chapter.dat$cases) 

0 1 

HBP-0 559 384 

HBP-1 763 938 

The logistic regression coefficients are given by 

> examplel$coef 

Coefficients: 
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(Intercept) hbp 

-0.3755052 0.5819971 

and the table of relative risks is given by 

> table (examplel$rel .risk) 

1 1.7896 

943 1701 

This indicates that the 943 individuals with low blood (HBP-0) pressure have a relative risk of 1 and 

the 1701 individuals with high blood pressure (HBP-1) have an estimated odds ratio of 

1.7896 = e” 581gg71 

Using the above data set, we now show how to obtain standard error estimates for A^R. The 

bootstrap, using B resamples, and jackknife estimates of standard error are obtained by including the 

following options B = B and jackknife =T. In this example we use B = 1000 resamples. 

> example1 <- arhat(cases ” expos(hbp) , data=chapter.dat , 

B = 1000 , jackknife = T) 

The simplest output from this is 

> example1 

Call : 

arhat(foxmula = cases - expos(hbp), data = chapter.dat, 

B = 1000 , jackknife = T) 

Estimate of AR = 0.313 . 

The mean of the jackknifed AR’s = 0.313 . 

The standard error of the jackknifed AR’s = 0.037 . 

The mean of the bootstrapped AR’s = 0.312 . 

The standard error of the bootstrapped AR’s = 0.036 . 

Coefficients: 

(Intercept) hbp 

-0.3755052 0.5819971 

Note that we report the mean of the jackknife and the bootstrap “samples” only for diagnostic 

purposes. They should not be used as estimates of E. 
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A host of other options are detailed in appendix B. These include options for calculation of jackknife, 

percentile, bias-corrected and accelerated bias-corrected bootstrap confidence intervals (Efron and 

Tibshirani 1992), as well as diagnostic information concerning both the bootstrap and the jackknife 

resamples. 

The confidence intervals are obtained simply with the summary command in S. 

> smmnary(examplei) 

Call: arhat (f ormula = cases - expos(hbp), data = chapter.dat, B = 1000, 

jackknife = T) 

Estimate of AR = 0.3130583 . 

JackknIfe CI ( 0.241 , 0.385 1 

Percentile Bootstrap CI ( 0.241 , 0.380 1 

Percenti1e.t Bootstrap CI ( 0.243 , 0.383 ) 

Bias-corrected Bootstrap CI ( 0.241 , 0.380 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.239 , 0.378 ) 

Even in small-sample simulations we have seen little difference among these confidence intervals. 

Typically, the jackknife interval is quickest to calculate and we suggest its use for exploratory 

purposes. Nonetheless, final results should be calculated using each of these intervals. Substantial 

differences indicate skewness, bias, or non-linearity in the problem that ought to be investigated. For 

more on this see Efron, 1987. 

5.1.2. A pair-matched case-control design 

In this section we use arhat to obtain an estimate of attibutable risk and its standard error in a 

matched case-control design. We use the same data set as above, but we now make use of the fact 

that the 2644 subjects were matched pans of cases and controls (see section 2.3.4). The pairs were 

matched based on age and gender. In this case, it is necessary to have a variable which indicates 

which case(contro1) is matched to which control(case). In chapter. dat the variable match. id is a 

matching index. For example, since rows 1 and 1323 both have match. id = 1, these are a matched 

pair. 

> examplela <- 

+ arhat (cases - strata(match.id) + exposbbp), 
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+ data = chapter.dat , B = 1000 , jackknife =T) 

Estimate of AR = 0.331 . 

The mean of the jackknifed AR’s = 0.331 . 

The standard error of the jackknifed AR’s = 0.037 . 

The mean of the 1000 bootstrapped AR’s = 0.328 . 

The standard deviation of the 1000 bootstrapped AR’s = 0.037 . 

Note that the expression stratafmatch. id) is used in the formula of arhat to tell the function that 

a matched case-control design is to be used and how the subjects are to be matched. This is done on 

the “explanatory” side of the formula (i.e. the right side of the “) using the special function strata. 

For example, the formula cases ” expos (hbp) + stratacmatch. Id) indicates that the attributable 

risk of hbp on cases is to be estimated in a matched case-control design where match. id is the 

variable that indexes subjects to be matched. The stratacmatch. id) term must be added to the 

remaining formula (i.e. it must look like a simple linear term) though its position in the formula is 

arbitrary so that cases _ strata(match. id) + expos (hbp) would yield the same results as before. 

However, the following formula is not valid; cases ” expos(hbp) * stratacmatch. id). 

The unmatched analysis of the same data resulted in an AR estimate of 0.313 with a standard error 

of approximately 0.037, not appreciably different from an estimated AR of 0.331 with standard error 

of 0 037 obtained by this, more proper, analysis. 

5.1.3. A matched-set case-control design 

The last example in this section is from a matched-set case-control design. We revisit the study 

concerning risk factors for temporal arteritrs (Machado, et al 1989) . m which there were four controls 

matched to each case, where a case is a patient diagnosed with temporal arteritis. The risk factors 

considered in this example are whether the patient ever smoked (yes/no) and whether the patient had 

a history of angina (yes/no). We consider history of angina to be a confounding variable and the 

patient’s smoking status to be the exposure variable. In this case, the sets were matched based on age 

and gender. As in the pair-matched design, it is necessary to have a variable which indicates which 

cases and controls are matched. In arteritis .dat the variable set is a matching index. For 

example, since rows 1,2,3,4 and 5 all have set = 1, these form a matched set. 

ex.arterltis <- arhatccase ” expos(evrsmk) + angina + stratacset), data = arteritis, 

jackknife = T) 
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Call: arhatcformula = case - expos(evrsmk) + angina + strata&et), data = arteritis, 

jackknife = T, coxph = T) 

Estimate of AR = 0.235 . 

The mean of the jackknifed AR's = 0.235 . 

The standard error of the Jackknifed AR's = 0.056 . 

We reiterate that the expression strata(set> is used in the formula of arhat to tell the function that 

a matched case-control design is to be used and how the subjects are to be matched. This is done on 

the “explanatory” side of the formula (i.e. the right side of the -) using the special function strata. 

This analysis suggests that after adjusting for history of angina, and assuming we could adjust the 

risk of temporal arteritis among smokers to that of non-smokers, we could expect a 25% reduction in 

temporal arteritis incidence, with a standard error of approximately 5.6 percentage points. 

5.2. More complicated target distributions 

In the next two sections we provide examples with more general data structure, as well as 

complicated and realistic target distributions. 

The two examples come from the same study of risk factors for cerebraI rnfarctrons (i.e stroke) 

described in sections 2.3.3 and 2.3.4. In these examples we consider the following covariates for each 

patient; age at study entry (age), daastolic blood pressure (diastolic) and smoking level (smoke). 

The age of the individual is accounted for since older individuals are more likely to suffer a stroke, 

though age is a confounder and not thought of as an exposure variable in that we can not imagine 

any prevention for getting older. Consider each of the other risk factors as exposure variables. In this 

case, if both smoke and diastolic are dichotomous then the natural target exposure level is the 

absence of both risk factors. More realistically, if we describe smoking status with 5 levels, Current, 

Former, Never, Unknown, Uncertain and blood pressure by the last measured diastolic blood 

pressure, which is considered as a continuous exposure, then there is no natural target distribution for 

describing, hypothetically, the idealized distribution of the risk factors among exposed individuals. 

We describe two possible analyses. 

52.1. No one ever smokes and everyone lowers DBP by 10% 

In the first analysis we describe the use of arhat in an example in which the reference distribution is 

that “no one ever smoked” and “everyone lowers blood pressure by 10%“. We consider diastolic 
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blood pressure as a continuous exposure, smoke as a polychotomous exposure with 5 levels, 

“Never”, “Current”, “Former”, “Uncertain”, “Unknown”, and we adjust for the confounding variable 

age. 

There are several new components in this model. First, note that we have both discrete and 

continuous exposure variables. Second, note that the reference distribution is not a single 

value/category for each individual but, instead, the target exposure is determined by that individual’s 

observed exposure level. Finally, note that we obtain a multivariate estimate of AR based on two 

exposure variables. 

The reference distribution is described by 

reduce observed diastolic by 10% ; 

put everyone into the “Never” smoked category. 

In this case, we call arhat by 

> example2 <- 

+ arhat (formula = cases - age + expos(smoke) + expos(diastolic) , 

+ data = stroke.dat, B = 1000, jackknife = F, 

+ categorlcal = F, baseline = stroke.target) 

> example2 

Call : 

arhat(f ormula = cases - age + expos(smoke) + expos(diastolic) , 

data = stroke.dat, B = 1000, jackknife = F, 

categoracal = F, baseline = stroke.target) 

Estimate of AR = 0.428 . 

The mean of the 1000 bootstrapped attributable risks = 0.428 . 

The standard deviation of the 1000 bootstrapped attributable risks = 0.037 . 

Coefficients: 

(Intercept) age smokeCurrent smokeFormer smokeUncertaan smokeUnknown 

-1.925598 0.00837275 0.9876965 0.3684065 1.497466 1.019093 

dlastollc 

0.01195578 
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One new component in this invocation of arha-t is baseline = stroke. target which is itself a data 

frame containing the targeted values for each of the exposure variables from the original data i&me. 

In this example, stroke .target contains two variables smoke and diastolic. In stroke .target, 

smoke looks like the variable smoke in stroke. dat except that every individual has a value of 

“Never”. This is easily created with 

> smoke.target <- stroke.dat$smoke 

> smoke. target [smoke. target != “Never”] <- “Never” 

Similarly, in stroke .target, diastolic looks like the variable diastolic in stroke. dat except that 

each value is 90% of the observed value. This is created as follows 

> DBP.t.arget <- .9O*stroke.dat$dlastolic 

Once these variables are constructed, stroke. target (with the variables named diastolic and 

smoke) is created with a simple call to data.frame; 

> stroke.target <- data.frame(diastollc=DBP.target , smoke=smoke.target) 

Also note that the categorical = F option is passed to arhat since we are considering diastolic to 

be a continuous-valued exposure. 

Finally, in this case the estimate of AR is a M 0.43 with a standard error of about 0.038. Hence, 

an approximate 95% confidence interval for AR is (.354, .506). This suggests that if the entire 

population had never started smoking and had 10% lower blood pressure than they do currently, 

there would be between 35% and 51% fewer strokes. 

5.2.2 Current smokers quzt and higher DBP implies greater DBP reductron 

Finally, we briefly describe what is necessary for using arhat in another example. In this example the 

reference distribution is that “Current smokers quit” and “blood pressure is lowered according to 

current level”. We consider diastolic blood pressure as a continuous exposure, smoke as a 

polychotomous exposure with 5 levels, “Never”, “Current”, “Former”, YJncertain”, “Unknown”, and we 

adjust for the confounding variable age 

The reference distribution is described by 
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if diastolic > 150 , reduce diastolic by 25% ; 

if 120 < diastolic 5 150 , reduce diastolic by 15% ; 

if 100 < diastolic 5 120 , reduce diastolic by 10% ; 

if 85 < diastolic 5 100 , reduce diastolic by 5% ; 

if diastolic 5 85 , leave diastolic as is , 

suppose all “Current” smokers become “Former” smokers. 

In this case, we call arhat by 

> example3 <- 

+ arhat (cases - age + expos(smoke) + expos(diastolic) , 

+ data = stroke.dat , categorical = F , 

f baseline = stroke.target3 , B = 1000 , 

+ jackknife = T) 

> example3 

Call : 

arhat (cases _ age + expos(smoke) + expos(diastolic) , 

data = stroke.dat , categorical = F , baseline = stroke.target3 , 

B = 1000 , jackknife = T) 

Estimate of AR = 0.117 . 

The mean of the jackknifed AR’s = 0.117 . 

The standard deviation of the jackknifed AR’s = 0.02 . 

The mean of the 1000 bootstrapped attributable risks = 0.117 . 

The standard deviation of the 1000 bootstrapped attributable risks = 0.02 . 

Coefficients: 

(Intercept) age smokecurrent smokeFormer smokeUncertain smokeUnknown 

-1.925598 0.00837275 0.9876965 0.3684065 1.497466 1.019093 

diastolic 

0.01195578 

stroke. target3 is itself a data frame contaming the targeted values for each of the exposure 

variables from the original data frame. In this example, stroke. target3 contains two variables 

41 



smoke and diastolic. In stroke. target3, smoke looks like the variable smoke in stroke .dat 

except that where the original value was “Current”, the stroke. target3 value of smoke is “Former”. 

This is easily created with 

> smoke.target3 (- stroke.dat$smoke 

> smoke. target3 [smoke. target3 == “Current”] <- “Former” 

Similarly, in stroke. target3, diastolic looks hke the variable diastolic in stroke. dat except 

that where the original value was above 150 the stroke. target3 value of diastolic is reduced by 

25%, and so on. This is created as follows 

> DBP.target3 <- ifelse(stroke.dat$diastolic > 150, 

+ .75*stroke.dat$diastolic , stroke.dat$diastolic) 

> DBP.t.arget3 <- 

+ ifelse(stroke.dat$diastolic > 120 k stroke.dat$diastollc <= 150, 

+ .85*stroke.dat$diastolic , DBP.target3) 

> DBP.target3 <- 

+ lfelse(stroke.dat$diastolic > 100 & stroke.dat$diastolic <= 120, 

+ .90*stroke.dat$diastolic , DBP.target3) 

> DBP.target3 <- 

+ lfelse(stroke.dat$diastolic > 85 & stroke.dat$diastolic <= 100, 

+ .95*stroke.dat$diastolic , DBP.target3) 

Once these variables are constructed, stroke. target3 (with the variables named diastolic and 

smoke) is created with a simple call to data. f rame; 

> stroke.target3 <- data.frame(diastollc=DBP.target3 , smoke=smoke.target3) 

In this example we see that even after adjusting for age, if we could get all current smokers to quit 

and all individuals with high diastolic blood pressure to reduce their diastolic blood pressure as 

described above, a 95% confidence interval for AR implies that we would expect there to be between 

7.5% and 15.5% fewer strokes. 

Unsurprisingly, the substantively different target distributions yield substantially different estimates 

of the attributable risk for stroke, 0.43 compared with 0.12. 

In the first example one might argue that this provides a hypothetical, limiting prevalence of stroke 

as if noone ever started smoking. The second is an attempt to understand the impact on prevalence 

42 



of stroke from an impossibly successful campaign for convincing people to stop smoking and to reduce 

their blood pressure by an amount commensurate with their current hypertensive trouble. 

For our purposes, the point to be made here is that the methods described in this report allow either 

unmatched or matched study designs, general modelling procedures and flexible target exposure levels 

to be used for estimating attributable risk. 

6. Conclusion 

Benichou and Gail (1990) state that “Although the theory for inference on the attributable risk has 

been presented in considerable detail, it remains to develop easily used computer programs to 

implement these methods.” Though we have not implemented the delta-method variances presented 

by Benichou and Gail, we have developed software for drawing inference concerning attributable risk 

in a greater variety of settings with equivalent standard errors. Further, the delta-method approach 

taken by Benichou and Gail is very nearly the infinitesimal jackknife approximation for estimating 

the variance of AR . The infinitesimal jackknife is based on a slightly different linear approximation 

of the A^R, than the jackknife. Since E is nearly linear, all three methods, the jackknife, 

infinitesimal jackknife and the bootstrap give nearly equivalent standard errors. The only reason for 

implementing Benichou and Gail’s delta-method calculations would be to increase the speed of the 

calculations. In the simpler settings we found the analytic expressions to be only slightly more 

efficient computationally than the jackknife and in the more realistic settings we found these 

expressions intractable. The difficulty arises from the nearly closed-form expression for the 

asymptotic variance which involves a complicated covariance calculation, Cov (T(b), J 8 (x-b) dE’>, 

where T(b) = J e&“-b(z)) - &(2-b(z)) &i’. E ven when a straight-forward, analytic expression for this 

is obtained, the computations are non-trivial and, more importantly, this formulation does not allow 

diagnostics concerning the accuracy of the linear approximation used in its derivation. 

More generally, the methods described in this paper yield point and interval estimates of AR for 

unmatched, pair-matched and matched set case-control designs. They allow for models which include 

any number of confounders and exposures, which can be discrete or continuous, and, further, they 

allow for arbitrary reference distributions, not just a single, categorical baseline. S-plus software is 

available for carrying out these computations. 

It has been our experience based on examples reported in this article, as well as a wide variety of 

applications not reported, that the jackknife and bootstrap methods are nearly identical. In most 

cases the jackknife is preferred due to its speed. When the “nonlinearity” diagnostic is finished we 

hope to have a way of detecting those settings in which the bootstrap is preferred. Of course, before 
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reporting final results both the bootstrap and the jackknife should be calculated for diagnostic 

purposes. 

The work on issues related to AR continues. We continue to work on diagnostic tools for determining 

the validity of the bootstrap and jackknife extimates of variance, extending the notion of AR to 

survival/censored data settings, and partitioning AR so as to describe that part of the risk that is 

attributable to a particular subcategory (subset) of the exposure(s). 
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A. Application of software and comparison of results with Benichou (1991) 

For purposes of comparison, we reconsider data from case-control study reported by Tuyns, et aI 

(1977) concerning oesophageal cancer. The data have become a staple since Breslow and Day (1980) 

and were considered as a motivating and illustrative example by Benichou (1991). The data from 

table 1 of Benichou (1991) are listed in the table on the following page. Using the software and 

techniques described in this report we refit all of the models from table 3 in Benichou (1991). 

The following tables provide summaries of the 18 models fit in Benichou (1991) tables III, IV and V, 

along with the corresponding A^R, the Benichou and Gail estimate of standard error ~BG, and the 

jackknife estimate of standard error ~JK. 

-- 
lo&W AR SDBG %J, 

a+PAl .395 .042 .042 

alAg + CQS + aBAg. S + ,BAl .382 .044 .044 

alAg + a2S + cr3Ag. S + PAZ + yAL. Ag .380 .044 .044 

cqAg+a2S+a3Ag~S+~AZ+yAL~S .381 .044 .045 

alAg + a2S + a3Ag. S + pAa + yAL. S . Ag .380 .044 .045 

In these five models, alcohol consumption was considered a binary factor (0 - 79 ; 80+ g/day), and 

nine parameters were used for the main effect of age, smoking and their interaction in models 2 - 5. 

In model 5, eight parameters were used to model the interactions of alcohol consumption with 

smoking and age. 

Model 

6 

7 

8 

9 

t 

10 

11 

12 

13 

14 

15 

- 

I - 

-- 
lodW 1 AR 1 SDBG ( %JK 

a+PAl .709 .051 .051 

alAg + (~2s + aSAg. S + /YAI .719 .050 .050 

alAg + (~2s + cy3Ag. S + PAZ + ,yAL. Ag .723 .050 .050 

cqAg+a2S+ajAg.S+PAI+yAL.S .703 .054 .053 

alAg + azS + a3Ag. S + PAl + yAL. 5’. Ag .700 056 .056 

cy+fiAl .709 .051 .051 

alAg + cqS + asAg_ S + BAI .721 .050 ,050 

a1Ag + a2S + a3Ag. S + PAZ + -yAL . Ag .726 .050 .049 

alAg+a2S+a3Ag.S+PAl+-yAL.S ,703 .055 .054 

ulAg+a2S+ajAg.S+/3Al+7AL~S.Ag .701 NA .056 

In models 6 - 10, alcohol consumption was considered a binary (O-39 , 40+ g/day) factor, and nine 

parameters were used for the main effects of age, smoking and their interaction in models 7-10. In 
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model 10, eight parameters were used to model the interactions of alcohol consumption with smoking 

and age. 

In models 11 - 15, alcohol consumption was considered a polychotomus factor (O-39 ,40-79, W-119, 

120+ g/day) factor, and nine parameters were used for the main effects of age, smoking and their 

interaction in models 12-15. In model 15, twenty-four parameters were used to model the interactions 

of alcohol consumption with smoking and age. 

h- 
Model log(OR) AR SDBG 

16 a+pX .862 .046 

17 aAg+/3X .866(.867) .045 

18 aAg + @X + yAg. X .868(.872) .044 

- 
SDJK 

.043 

.043 

.041 

In models 16-18 the main effect of alcohol consumption and smoking was modelled with one 

parameter corresponding to one binary variable X with baseline defined by O-39 g/day and O-9 g/day 

of alcohol consumption and smoking, respectively. Three parameters were used to model the 

interaction between X and Ag. 

Note that the A^R values given in the previous table in parentheses are from our software and differ 

slightly from Benichou’s estimates. The arhat S-plus program duplicates all of the remaining A^R 

estimates from Benichou’s review article and even gives a reasonable estimate of variance in model 15 

where the delta method cannot provide an estimate of the standard error of A^R. 
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Alcohol Consumption Age Smoking Number Number 

k/day) (years) (g/day) of cases of controls 

o-39 25-44 o-9 0 100 

lo-29 1 36 

30+ 0 13 

45-64 O-9 1 45 

10-29 0 28 

30+ 0 4 

65+ o-9 8 107 

10-29 14 47 

30+ 5 6 

40-79 25-44 o-9 0 62 

10-29 4 44 

30+ 0 15 

45-64 o-9 6 32 

10-29 9 27 

30f 5 2 

65+ o-9 28 51 

lo-29 19 44 

30f 4 3 

M-119 25-44 O-9 0 13 

lo-29 0 9 

30+ 0 3 

45-64 o-9 3 13 

10-29 7 12 

30+ 2 2 

65+ o-9 16 16 

10-29 18 19 

30f 5 0 

120+ 25-44 o-9 2 2 

10-29 3 6 

30+ 0 2 

45-64 O-9 4 0 

1@29 5 2 

30+ 4 0 

65+ o-9 10 6 
50 
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What follows are the results from the arhat function which give the results from Benichou’s 1991 

review article No new features of the software are used, but it shows the ease with which one can fit 

and choose among various models. This is also used as an error check for the software. 

From table III in Benichou (1991) we have 

> model1 <- arhat(cases - expos(alcohol80), data = benichou, 

+ Jack = T, B = 500) 

Call: 

arhat (formula = cases - expos(alcohol80), data = benichou, 

jackknife = T, B = 500) 

Estimate of AR = 0.395 . 

The mean of the JaCkknIfed AR’s = 0.395 . 

The standard error of the jackknifed AR’s = 0.042 . 

The mean of the 500 bootstrapped AR’s = 0.396 . 

The standard deviation of the 500 bootstrapped AR>s = 0.042 . 

> summary(model1) 

Call : 

arhat(formula = cases - expos(alcohol801, data = benichou, B = 500, Jackknife 

= T) 

Estimate of AR = 0.395 . 

Jackknife CI ( 0.312 , 0.478 ) 

Percentile Bootstrap CI ( 0.310 , 0.473 > 

Percenti1e.t Bootstrap CI ( 0.312 , 0.478 > 

Bias-corrected Bootstrap CI ( 0.308 , 0.471 > 

Accelerated Bias-corrected Bootstrap CI ( 0.308 , 0.471 > 

> model2 <- arhat(cases - age*smoke + expos(alcohol80) , 

+ data = benlchou , jack = T, B = 500) 

Call : 

arhat (f ormula = cases - age * smoke + expos(alcohol80), 

data = benichou, jackknife = T, B = 600) 
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Estimate of AR = 0.382 . 

The mean of the jackknifed AR's = 0.382 . 

The standard error of the jackknifed AR's = 0.044 . 

The mean of the 500 bootstrapped AR's = 0.383 . 

The standard deviation of the 500 bootstrapped AR's = 0.045 . 

> summary(model2) 

Call: 

arhat(formula = cases - age * smoke + expos(alcohol80), data = benichou, B = 

500, Jackknife = T) 

Estimate of AR = 0.382 . 

Jackknife CI ( 0.295 , 0.469 > 

Percentile Bootstrap CI ( 0.291 , 0.468 ) 

Percenti1e.t Bootstrap CI ( 0.294 , 0.469 ) 

Bias-corrected Bootstrap CI ( 0.296 , 0.474 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.297 , 0.474 1 

> model3 <- arhatccases - age*(smoke + expos(alcohol80)) , 

+ data = benichou , Jack = T, B = 500) 

Call: 

arhatcformula = cases - age * (smoke + expos(alcohol80)) , 

data = benichou, jackknlfe = T, B = 500) 

Estimate of AR = 0.38 . 

The mean of the jackknrfed AR's = 0.38 . 

The standard error of the jackknifed AR's = 0.044 . 

The mean of the 500 bootstrapped AR's = 0.381 . 

The standard deviation of the 500 bootstrapped AR's = 0.042 . 

> summary(model3) 

Call: 

arhat(formula = cases - age * (smoke + expos(alcohol80)), data = benichou, B = 
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500, jackknife = T) 

Estimate of AR = 0.38 . 

Jackknife CI ( 0.293 , 0.467 ) 

Percentile Bootstrap CI ( 0.301 ) 0.459 > 

Percenti1e.t Bootstrap CI ( 0.297 , 0.463 ) 

Bias-corrected Bootstrap CI ( 0.297 , 0.456 > 

Accelerated Bias-corrected Bootstrap CI ( 0.297 , 0.457 > 

> model4 <- arhat(cases I smoke*(age + expos(alcohol80)) , 

+ data = benichou , jack = T, B = 500) 

Call: 

arhat(formula = cases " smoke * (age + expos(alcohol80)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.381 . 

The mean of the jackknifed AR's = 0.381 . 

The standard error of the jackknifed AR's = 0.045 . 

The mean of the 500 bootstrapped AR's = 0.381 . 

The standard deviation of the 500 bootstrapped AR's = 0.046 . 

> summary(model4) 

Call: 

arhat(formula = cases " smoke * (age + expos(alcohol80)), data = benichou, B = 

500, jackknife = T) 

Estmate of AR = 0.381 . 

Jackknife CI ( 0.294 , 0.469 ) 

Percentile Bootstrap CI ( 0.296 , 0.469 ) 

Percenti1e.t Bootstrap CI ( 0.292 , 0.471 > 

Bias-corrected Bootstrap CI ( 0.296 , 0.469 > 

Accelerated Bias-corrected Bootstrap CI ( 0.296 , 0.469 > 
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> model5 <- arhatccases - agessmoke + expos(alcohol80)*(smoke:age) , 

+ data = benichou , jack = T, B = 500) 

Call: 

arhat(formula = cases - age * smoke + expos(alcohol80) * (smoke:age), data = 

benichou, B = 500, jackknife = T) 

Estimate of AR = 0.38 . 

The mean of the jackknifed AR's = 0.38 . 

The standard error of the jackknifed AR's = 0.045 . 

The mean of the 500 bootstrapped AR's = 0.379 . 

The standard deviation of the 500 bootstrapped AR's = 0.044 . 

> summary(model5) 

Call: 

arhat(formula = cases - age * smoke + expos(alcohol80) * (smoke:age), data = 

benichou, B = 500, jackknife = T) 

Estimate of AR = 0.38 . 

Jackknife CI ( 0.292 , 0.467 1 

Percentile Bootstrap CI ( 0.284 , 0.467 ) 

Percenti1e.t Bootstrap CI ( 0.292 , 0.467 ) 

Bias-corrected Bootstrap CI ( 0.281 , 0.457 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.282 , 0.457 ) 

From table IV in Benichou (1991) we have 

> model6 <- arhatccases " expos(alcohol40), data = benichou, jack = T, B = 500) 

Call: 

arhatcformula = cases - expos(alcohol40), data = benichou, B = 500, jackknife 

= T) 

Estimate of AR = 0.709 . 

The mean of the jackknifed AR's = 0.709 . 

The standard error of the Jackknifed AR's = 0.051 . 

The mean of the 500 bootstrapped AR's = 0.710 . 
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The standard deviation of the 500 bootstrapped AR's = 0.051 . 

> summary(model6) 

Call: 

arhat(formula = cases - expos(alcohol40). data = benichou, B = 500, Jackknife 

= T) 

Estimate of AR = 0.709 . 

Jackknife CI ( 0.609 , 0.809 > 

Percentile Bootstrap CI ( 0.602 , 0.804 ) 

Percenti1e.t Bootstrap CI ( 0.608 , 0.809 > 

Bias-corrected Bootstrap CI ( 0.601 , 0.798 > 

Accelerated Bias-corrected Bootstrap CI ( 0.583 , 0.781 ) 

> model7 <- arhat(cases _ age*smoke + expos(alcohol40) , 

+ data = benichou , jack = T, B = 500) 

Call: 

arhat(formula = cases " age * smoke + expos(alcohol401, data = benichou, B = 

500, jackknlfe = T) 

Estimate of AR = 0.719 . 

The mean of the jackknifed AR's = 0.719 . 

The standard error of the jackknifed AR's = 0.05 . 

The mean of the 500 bootstrapped AR's = 0.718 . 

The standard deviation of the 500 bootstrapped AR's = 0.052 . 

> summary(model7) 

Call: 

arhat(formula = cases " age * smoke + expos(alcohol40), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.719 . 

Jackknife CI ( 0.621 , 0.818 ) 
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Percentile Bootstrap CI ( 0.608 , 0.810 > 

Percenti1e.t Bootstrap CI ( 0.618 , 0.821 ) 

Bias-corrected Bootstrap CI ( 0.605 , 0.810 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.564 , 0.795 > 

> model8 <- arhat(cases e age*(smoke + expos(alcohol40)) , 

+ data = benichou , jack = T) 

Call: 

arhat(formula = cases " age * (smoke + expos(alcohollO)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.723 . 

The mean of the jackknifed AR's = 0.723 . 

The standard error of the jackknifed AR's = 0.05 . 

The mean of the 500 bootstrapped AR's = 0.722 . 

The standard deviation of the 500 bootstrapped AR's = 0.052 . 

> summary(model8) 

Call: 

arhat(formula = cases - age * (smoke + expos(alcohol40)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.723 . 

Jackknife CI ( 0.626 , 0.821 ) 

Percentile Bootstrap CI ( 0.622 , 0.821 ) 

Percenti1e.t Bootstrap CI ( 0.621 , 0.825 > 

Bias-corrected Bootstrap CI ( 0.623 , 0.824 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.619 , 0.821 ) 

> model9 <- arhat(cases " smoke*(age + expos(alcohol40)) , 

+ data = benichou , jack = T , B = 500) 

Call: 

arhat(formula = cases - smoke * (age + expos(alcohol40)), data = benichou, B = 

500, jackknife = T) 
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Estimate of AR = 0.703 . 

The mean of the jackknifed AR's = 0.703 . 

The standard error of the jackknifed AA's = 0.053 . 

The mean of the 500 bootstrapped AR's = 0.699 . 

The standard deviation of the 500 bootstrapped AR's = 0.057 . 

> summary(model9) 

Call: 

arhat(formula = cases - smoke * (age + expos(alcohol40)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.703 . 

Jackknife CI ( 0.598 , 0.808 > 

Percentile Bootstrap CI ( 0.578 , 0.802 ) 

Percenti1e.t Bootstrap CI ( 0.592 , 0.814 ) 

Bias-corrected Bootstrap CI ( 0.576 , 0.800 > 

Accelerated Bias-corrected Bootstrap CI ( 0.576 , 0.796 1 

> model10 <- arhatccases - age*smoke + expos(alcohol40)*(smoke:age) , 

+ data = benichou , jack = T , B = 500) 

Call: 

arhat(formula = cases - age * smoke + expos(alcohol40) * (smoke:age), data = 

benichou, B = 500, jackknife = T) 

Estimate of AR = 0.7 . 

The mean of the jackknifed AR's = 0.699 . 

The standard error of the jackknifed AR's = 0.056 . 

The mean of the 500 bootstrapped AR's = -4.36 . 

The standard deviation of the 500 bootstrapped AR's = 74.1 . 

> swmnary(modell0) 

Call: 

arhat(formula = cases I age * smoke + expos(alcohol40) * (smoke:age), data = 
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benichou, B = 500, jackknife = T) 

Estimate of AR = 0.7 . 

Jackknife CI ( 0.590 , 0.809 ) 

Percentile Bootstrap CI ( 0.558 , 0.787 > 

Percenti1e.t Bootstrap CI ( -144 , 146 ) 

Bias-corrected Bootstrap CI ( 0.580 , 0.794 > 

Accelerated Bias-corrected Bootstrap CI ( 0.583 , 0.799 > 

> modelil <- arhat(cases - expos(alcoho1) , data = benichou , jack = T , B = 500) 

Call: 

arhat(formula = cases - expos(alcoho1). data = benichou, B = 500, jackknife = T) 

Estimate of AR = 0.709 . 

The mean of the jackknifed AR's = 0.709 . 

The standard error of the Jackknifed AR's = 0.051 . 

The mean of the 500 bootstrapped AR's = 0.706 . 

The standard deviation of the 500 bootstrapped AR's = 0.051 . 

> summary(modell1) 

Call: 

arhat(formula = cases - expos(alcohol), data = benichou, B = 500, jackknife = T) 

Estmate of AR = 0.709 . 

Jackknife CI ( 0.609 , 0.809 ) 

Percentile Bootstrap CI ( 0.598 , 0.801 > 

Percenti1e.t Bootstrap CI ( 0.610 , 0.808 > 

Bias-corrected Bootstrap CI ( 0.626 , 0.807 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.626 , 0.807 > 

> modeli <- arhat(cases - age*smoke + expos(alcoho1) , 

+ data = benichou , jack = T , B = 500) 

Call: 
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arhat(formula = cases - age + smoke + expos(alcohol), data = benichou, B = 500, 

jackknife = T) 

Estimate of AR = 0.721 . 

The mean of the Jackknifed AR's = 0.721 . 

The standard error of the jackknifed AR's = 0.05 . 

The mean of the 500 bootstrapped AR's = 0.721 . 

The standard deviation of the 500 bootstrapped AR's = 0.047 . 

> summary(modell2) 

Call: 

arhat(formula = cases - age * smoke + expos(alcohol), data = benichou, B = 500, 

jackknife = T) 

Estimate of AR = 0.721 . 

Jackknife CI ( 0.623 , 0.819 > 

Percentile Bootstrap CI ( 0.626 , 0.804 ) 

Percenti1e.t Bootstrap CI ( 0.629 , 0.812 > 

Bias-corrected Bootstrap CI ( 0.616 , 0.798 ) 

Accelerated Bias-corrected Bootstrap CI ( 0.604 , 0.792 1 

> model13 <- arhat(cases I age*(smoke * expos(alcoho1)) , 

+ data = benichou , jack = T , B = 500) 

Call: 

arhat(formula = cases _ age * (smoke + expos(alcohol)), data = benichou, B = 

500, Jackknife = T) 

Estimate of AR = 0.726 . 

The mean of the jackknifed AR's = 0.726 . 

The standard error of the jackknifed AR's = 0.049 . 

The mean of the 500 bootstrapped AR's = 0.726 . 

The standard deviation of the 500 bootstrapped AR's = 0.053 . 

> summary(modell3) 
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Call: 

arhat(formula = cases " age * (smoke + expos(alcohol)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.726 . 

Jackknife CI ( 0.629 , 0.822 ) 

Percentile Bootstrap CI ( 0.616 , 0.827 ) 

Percenti1e.t Bootstrap CI ( 0.622 , 0.830 ) 

Bias-corrected Bootstrap CI ( 0.594 , 0.819 > 

Accelerated Bias-corrected Bootstrap CI ( 0.594 , 0.827 ) 

> model14 <- arhatccases " smoke*(age * expos(alcoho1)) , 

+ data = benichou , jack = T , B = 500) 

Call: 

arhat(formula = cases " smoke * (age + expos(alcohol)), data = benichou, B = 

500, jackknife = T) 

Estimate of AR = 0.703 . 

The mean of the Jackknifed AR's = 0.703 . 

The standard error of the jackknifed AR's = 0.054 . 

The mean of the 500 bootstrapped AR's = 0.688 . 

The standard deviation of the 500 bootstrapped AR's = 0.278 . 

> summary(modell4) 

Call: 

arhat(formula = cases _ smoke * (age + expos(alcohol)), data = benrchou, B = 

500, jackknife = T) 

Estimate of AR = 0.703 . 

Jackknife CI 

Percentile Bootstrap CI 

Percenti1e.t Bootstrap CI 

Bias-corrected Bootstrap CI 

( 0.598 , 0.808 > 

( 0.583 , 0.811 > 

( 0.158 , 1.250 ) 

( 0.588 , 0.813 1 
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Accelerated Bias-corrected Bootstrap CI ( 0.583 , 0.813 1 

> model15 <- arhatccases - age*smoke + expos(alcohol)*(smoke:age) , 
+ data = benlchou , jack = T , B = 500) 

Call: 

arhat(formula = cases - age * smoke + expos(alcoho1) * (smoke:age), data = 

benichou, B = 500, Jackknife = T) 

Estimate of AR = 0.701 . 

Tb.e mean of the jackknifed AR's = 0.701 . 

The standard error of the Jackknifed AR's = 0.056 . 

The mean of the 500 bootstrapped AR's = -17.1 . 

The standard deviation of the 500 bootstrapped AR's = 187 . 

> summary(modell5) 

Call: 

arhat(formula = cases - age * smoke + expos(alcoho1) * (smoke:age), data = 
benichou, B = 500, jackknife = T) 

Estimate of AR = 0.701 . 

Jackknife CI ( 0.591 , 0.810 1 

Percentile Bootstrap CI ( 0.517 , 0.800 ) 

Percenti1e.t Bootstrap CI ( -365 , 367 > 
Bias-corrected Bootstrap CI ( 0.536 , 0.802 > 

Accelerated Bias-corrected Bootstrap CI ( -118 , 0.800 > 

Note that in Benichou (1991), the estimate of AR for model15 is 0.701 though no standard error is 

given. 

From table Vin Benichou (1991) we have 

> model16 <- arhatccases * expos(smoke)*expos(alcohol) , 
+ data = benichou , B = 500 
+ baseline = base2 , jack = T) 

Call: 

arhatcformula = cases _ expos(smoke) * expos(smoke), data = benichou, B = 500, 
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jackknife = T, baseline = base2, categorical = F) 

Estimate of AR = 0.862 . 

The mean of the jackknifed AR's = 0.862 . 

The standard error of the jackknifed AR's = 0.043 . 

The mean of the 500 bootstrapped AR's = 0.863 . 

The standard deviation of the 500 bootstrapped AR's = 0.045 . 

> summary(modell6) 

Call: 

arhat(formula = cases - expos(smoke) * expos(alcohol), data = benichou, B = 500, 

jackknife = T, baseline = base2, categorical = F) 

Estimate of AR = 0.862 . 

Jackknife CI ( 0.776 , 0.947 > 

Percentile Bootstrap CI ( 0.759 , 0.942 ) 

Percenti1e.t Bootstrap CI ( 0.773 , 0.950 > 

Bias-corrected Bootstrap CI ( 0.749 , 0.932 > 

Accelerated Bias-corrected Bootstrap CI ( 0.743 , 0.942 > 

> model17 <- arhat(cases - age + expos(smoke)*expos(alc) , B = 500, 

+ data = benichou , baseline = base2 , jack = T) 

Call: 

arhat(formula = cases - age + expos(smoke) * expos(alcohol1, data = 

benichou, B = 500, jackknife = T, baseline = base21 

Estimate of AR = 0.867 . 

The mean of the jackknifed AR's = 0.867 . 

The standard error of the jackknifed AR's = 0.043 . 

The mean of the 500 bootstrapped AR's = 0.865 . 

The standard deviation of the 500 bootstrapped AR's = 0.043 . 

> summary(modeli7) 

Call: 
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arhatcformula = cases - age + expos(smoke) * expos(alcohol), data = 

benichou, B = 500, Jackknife = T, baseline = base21 

Estimate of AR = 0.867 . 

Jackknife CI ( 0.782 , 0.951 > 

Percentile Bootstrap CI ( 0.776 , 0.938 > 

Percenti1e.t Bootstrap CI ( 0.782 ) 0.951 ) 

Bias-corrected Bootstrap CI ( 0.776 , 0.938 > 

Accelerated Bias-corrected Bootstrap CI ( 0.734 , 0.917 > 

> model18 <- arhatccases - age*expos(smoke)*expos(alcohol) , 

+ data = benrchou , baseline = target1 , jack = T) 

Call: 

arhatcformula = cases - age * expos(smoke) * expos(alcohol), data = 

benichou, B = 500, jackknife = T, baseline = base21 

Estimate of AR = 0.872 . 

The mean of the jackknifed AR's = 0.872 . 

The standard error of the jackknifed AR's = 0.041 . 

The mean of the 500 bootstrapped AR's = 0.871 . 

The standard deviation of the 500 bootstrapped AR's = 0.039 . 

> summary(modell8) 

Call: 

arhat(formula = cases " age * expos(smoke) * expos(alcohol), data = 

benlchou, B = 500, Jackknife = T, baseline = base21 

Estimate of AR = 0.872 . 

Jackknife CI ( 0.792 , 0.951 ) 

Percentile Bootstrap CI ( 0.792 , 0.943 > 

Percentl1e.t Bootstrap CI ( 0.795 , 0.949 > 

Bias-corrected Bootstrap CI ( 0.789 , 0.942 > 

Accelerated Bias-corrected Bootstrap CI ( 0.720 , 0.916 ) 
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B. Help function for arhat 

For completeness we include a listing of the help function for arhat. This can be obtained in S, as 

usual, with 

> help(arhat) 

Calculates (semiparametric) MLE, standard errors and confidence 

intervals for attributable risk in unmatched, pair-matched or 

set-matched case-control designs, with respect to any 

reference(baseline1 distribution, for any number of exposure and 

confounder variables, either categorlcal or continuous. Also, 

calculates jackknlfe and bootstrap estimates of variance and four 

bootstrap confidence intervals (percentile-t, percentile, blas- 

corrected and accelerated bias-corrected). There are also options 

for monitoring the bootstrap iterations and other diagnostic 

information. When you are dealing with the matched set case- 

control design, you have to use the coxph method to get the 

attributable risks, estimates of variance etc. 

DESCRIPTION: 

Estimates population (etiological) attributable risk for 

unmatched, pair-matched or set-matched case-control 

designs and returns a list containing the estimated 

attributable risk, estimates of coefflclents, and their 

standard errors, from the (conditional, If necessary) 

logistic regression used for estimating the relative risk. 

USAGE: 

arhat(formula=formula(data), family=binomial(link = logit), 

data=sys.parent(), weights, subset, na.action = 

na.omit, start=NULL, control=glm.control(...), 

model=F, x=F, y=F, B=O, Jackknlfe=F, coxph=F, 

contrasts=NULL, baseline=NULL, dlagnostics=F, 

conf.level=0.95, categorical=T, . ..I 

REQUIRED ARGUMFJTS: 
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formula: a formula expression as for other regression models, 

of the form response - predictors . See the 

documentation of lm and formula for more details. 

OPTIONAL ARGUMENTS: 

family: a family object - a list of functions and expressions 

for defining the link and variance functions, initializa- 

tion and iterative weights. Families supported are gaus- 

Sian, binomial, Poisson, Gamma, inverse.gaussian and 

quasi. Functions like binomial produce a family object, 

but can be given without the parentheses. Family functions 

can take arguments, as in binomial(link=probit). 

data: an optional data frame in which to interpret the vari- 

ables occurring in the formula. 

weights: the optional weights for the fitting criterion. 

subset: expression saying which subset of the rows of the data 

should be used in the fit. This can be a logical vector 

(which is replicated to have length equal to the number of 

observations), or a numeric vector indicating which obser- 

vation numbers are to be included, or a character vector 

of the row names to be included. All observations are in- 

cluded by default. 

na.action: a function to filter missing data. This is ap- 

plied to the model.frame after any subset argument has 

been used. The default, na.omit, deletes observations 

that contain one or more missing values. Also, see 

na.fail which returns an error if there are any missing 

values. 

start: a vector of initial values on the scale of the linear 

predictor. 

control: a list of iteration and algorithmic constants. See 

glm.control for their names and default values. These can 

also be set as arguments to glm itself. 

model: if TRUE, the model.frame is returned. If this argument 

is itself a model.frame, then the formula and data argu- 
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merits are ignored, and model is used to define the model 

(default is FALSE). 

X: logical flag: if TRUE, the model.matrix is returned 

(default is FALSE). 

Y: logical flag: if TRUE, the response variable is returned 

(default is FALSE). 

B: the number of bootstrap iterations desired (default is 0, 

no bootstrap). 

categorical: logical flag: if FALSE, the covariates are not 

tabled and the estimate of the attributable risk is gotten 

by using the empirical distribution function of the 

exposure and confounder levels among the cases. If TINE, 

all confounders and exposure covariates are assumed to be 

categorical ("factor") variables and appropriate tables 

are calculated. (Default is TRUE). 

jackknife: logical flag: if TRUE, the vector of jackknife 

attributable risks is calculated. (Default is FALSE). 

coxph: logical flag: if TRUE, the coxph method will be used to 

calculate conditional logistic regression estimates of the 

parameters (Default is FALSE). In the unmatched case- 

control design, coxph = F. In the matched pair case- 

control design, coxph can be either T or F. If F, then 

conditional logistic regeression estimates are calculated 

using glm . In the matched set case-control design, coxph 

= T. If you set this argument wrong during the call, the 

function will give you warning message, and it will 

automatically try to use the apropriate method. 

contrasts: in this function we REQUIRE treatment coding, see 

page 36 of Statistical Modelling in S. 

baseline: baseline must be either BULL, or a data frame with 

variables (names attribute) which form a superset of the 

exposure variables exposure variables expressed in the 

formula, with the desired baseline value for each 

individual. The default is BULL. If categorical = F, then 

a non-BULL baseline is required. 
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diagnostics: logical variable for choosing to return a variety 

of diagnostics for monitorang the bootstrap iterations. If 

TRUE, arhat returns logistic regression coefficients and 

standard errors, deviances, relative risks and prevalences 

for *each* bootstrap sample. There is useful information 

here when the exposure is only mildly deleterious or when 

the confounder-by-exposure table contains cells with small 

counts as the estimated attributable risk can be far 

outside the range of (0,l). If FALSE, the only values 

returned are the call to the function and the bootstrap 

iterations' arhats. 

conf.level: the confidence level at which the bootstrap 

confidence intervals are calculated. 

. . . . control arguments may be given directly, see the control 

argument. 

VALUE: 

an object of class arhat is returned, which inherits 

from glm, which inherits from lm. The object returns the 

following components : 

call: the call to arhat 

ax-hat: a vector of length B+l containing the estimate of 

attributable risk based on the original data and the 

bootstrapped attributable risks, if any. 

match.action: a vector of indeces useful from pair-matched and 

set-matched designs. This vector indicates, in the 

appropriate order, which rows of the original data were 

used, ordering so that the match.id is in asccending order 

and within pairs the control precedes the case. ThlS 1s 

the order of the relative risks, residuals, etc. when a 

pair-matched or a set-matched design is fit. So, when 

plotting relative risks, one must use 

plot(example$rel.risk , exposure[match.actionl) . 

na.action: for an umatched case-control design, indicates 

which rows were omitted in the analysis. Hence, for a 
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relative risk plot from an unmatched design, one must use 

plot(example$rel.risk , exposureC!na.actionl) . 

coeffrcrents: the (conditional, if necessary) logistic 

regression coefficients corresponding to the formula 

std.errs: the standard errors of the logistrc regressron 

coefficrents 

deviance: the deviance correspondrng to the logistic regression 

model 

rel.rrsk: a vector of the relatrve risks for each individual 

used in the analysis after omitting NA's 

risk.table: if categorlcal = T, a table with the relative risk 

for each combination of the exposure and confounder levels 

bootstrap.tables: if diagnostics = T and categorical = T, the 

case-by-exposure-by-confounder tables for each bootstrap 

sample 

orrg.table: the original case-by-exposure-by-confounder table 

prevalence.table: if categorical = T, the table of prevalences 

for each exposure level *among the cases* . 

jackknife: the vector of jackknifed attributable risks, one 

for each data point, as rf that data point were omitted 

from the fit 

influences: a vector of jackknife estimates of the influence 

functionals. The i-th element is the jackknife 

approximation to the directional derivative of 

attributable risk in the direction of the r-th data pornt. 

varrance.jack: the jackknife estimate of variance of the 

estimate of attributable risk 

rank: the rank of the design matrix correspondrng to the 

formula 

residuals: the resrduals of the (conditional) logistic 

regression 

df.resid: the error degrees of freedom corresponding to the 

(conditronal) logrstic regression 

percentl1e.t: rf B > 0, the percentile-t bootstrap confidence 

interval based on the B bootstrap Iterations. 
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percentile: if B > 0, the percentile method bootstrap 

confidence interval based on the B bootstrap iterations. 

bias.corrected: if B > 0, the bias-corrected bootstrap 

confidence interval based on the B bootstrap iterations. 

acc.bias.corrected: ifB> 0, the accelerated bias-corrected 

bootstrap confidence interval based on the B bootstrap 

iterations. 

DETAILS: 

Fits the specified logistic regression model for an 

unmatched case-control, or conditional logistic regression 

for a pair-matched or a set-matched case-control design. 

Calculates the appropriate odds ratio (which, for rare 

diseases is a good approximation to the relative risk), 

prevalence of confounder-by-exposure levels among the 

diseased and a composite summary measure of all of these, 

the attributable risk. This function also calculates a 

bootstrap estimate of the variance of the estimated 

attributable risk, four different bootstrap confidence 

intervals (percentile-t, percentile, bias-coreected and 

accelerated bias-corrected), as well as the Jackknife 

estimate of variance. Bootstrap resampling is done keeping 

each indvidual's disease status and covariate information 

together. 

SEE ALSO: 

glm, print.arhat, summary.arhat, print.summary.arhat 

Background: 

Attributable risk (AR) is a relevant quantity in 

epidimiology (sometimes called etiological risk, 

population attributable risk, etc.) and has been around at 

least since, Levin (1953). AR cau be thought of as the 

public health impact of an exposure on some disease. This 

implementation most closely follows the review article by 
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Benichou (1991). 

SIDE EFFECTS: 

No known side effects. 

REFERENCES: 

Benichou, J. (1991) Methods of Adjustment for Estimating 

Attributable Risk in Case-Control Studies: A Review 

Statistics in Medicine, Vol. 10, pp. 1753-1773 

Levin, M.L. (1953) The Occurrence of Lung Cancer in Man 

Acta Unio Internationalis contra Cancrum, Vol. 9, pp. 

531-541 

EXAMPLES: 

# For the continuous exposure variable diastolic , find the 

# attributable risk for stroke (i.e. the disease) while adJusting 

# for individuals' smoking levels. baseline is defined to be 

# "reduce all diastolic blood pressures by 10%. Do the jackknife and 

# 1000 bootstrap iterations. 

arhatccases " smoke * expos(diastolic) , 

data = stroke.dat , categorical = F , 

baseline = data.frame(diastolic = .90*stroke.dat$diastolic) , 

jackknife = T , B = 1000) 

# Same as above, but now consider smoke as an exposure 

# variable and consider moving all 'Current' smokers to 

# the 'Former' category. 

smoke.base <- stroke.dat$smoke 

smoke.base [smoke.base == "Current"] <- "Former" 

stroke.base <- 
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data.frame( 

diastolic = .90*stroke.dat$diastolic , 

smoke = smoke.base) 

arhatccases - expos(smoke) * expos(diastolic) , 

data = stroke.dat , categorical = F , 

baseline = stroke.base , 

jackknife = T , B = 1000) 

# For categorical data, we fit the model that adjusts for 

# age vhrle assesing the attributable risk associated vith 

# smoking and alcohol consumption. Ask for 5000 itera- 

# tions and calculate the jackknife. 

arhatccases " age*expos(smoke)*expos(alcohol) , 

data = benichou , B = 5000 , jackknife = T) 

# This is a set-matched case-control design, ve use coxph 

# method to calculate the attributable risk and related 

# results. 

arhatccase - expos(evrsmk) + expos(hang) + stratacset), 

data = all, coxph = T) 

Estimate of attrabutable risk = 0.3063403 . 

Coefficients: 

evrsmk h=uz 

0.7630788 0.5998175 
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