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� Introduction

Over the last ten years I have been using the S package as a personal tool for my investi�
gations of survival analysis� This work gained a large amount of momentum during my
joint e�orts with Patricia Grambsch and Tom Fleming on residuals for survival models

some of which is described in �
��� The set of routines based on that work has been
posted to statlib for several years under the name �survival�� and is also included as a
standard part of the S�plus package from Statistical Sciences� With the advent of the
new object�oriented methods within S
 laid out in the book �Statistical models in S� by
John Chambers and Trevor Hastie ���
 I became interested in adapting some of these
methods to the survival package�

The execution of this task has turned out to be a substantial e�ort
 but it a�orded
a chance to upgrade several of the routines with new features
 and I think the collection
has been much improved in both functionality and ease of use� Substantial opportunities
for further improvements still remain
 however�

Section � gives a very terse overview of the available commands
 without attempting
to explain the various options� Section � contains the formal statististical details for the
methods�

Section � gives detailed examples� This is the place to expend most of your reading
e�ort
 at least for early users� Sections 

 	 and � discuss three separate areas of the
package�s interaction with S in general� side e�ects
 missing values
 and con�icts with
existing S functions�

There are several good texts on survival analysis� examples are Miller ���� and
Kalb�eisch and Prentice ����� A more technical treatment of the Cox model
 including
the important extensions of time dependent�covariates and multiple events
 can be found
in Fleming and Harrington ����
 and in Andersen et al� ����

My thanks to Sin�Ho Jung
 Paul Novotny
 and particularly Peter Thall for helpful
comments on an earlier draft of this manuscript� Frank Harrell continues to provide
feedback on the methods
 along with new ideas for improvement� �If I ever �nd time to
implement all of Frank�s suggestions
 this will become an amazing survival package��

� Overview

The summary below is purposefully very terse� If you are familiar with survival analysis
and with other S modeling functions it will provide a good summary� Otherwise
 just
skim the section to get an overview of the type of computations available from this
package
 and move on to section � for a fuller description�

Surv	
 A packaging function� like I�� and C�� it doesn�t transform its argument� This
is used for the left hand side of all the formulas�
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� Surv�time� status� � right censored data

� Surv�time� s���� � right censored data
 a value of � � death

� Surv�t�� t�� status� � counting process data
 as in the current agreg�� func�
tion

� Surv�t�� ind� type��left�� � left censoring

� Methods

Math�Surv
Ops�Surv
Summary�Surv
��Surv
is�na�Surv
print�Surv

coxph	
 Cox�s proportional hazards model�

� coxph�Surv�time� status� �x� data�aml� � standard Cox model

� coxph�Surv�t�� t�� stat� � �age � surgery�	 transplant� � time depen�
dent data�

� y 
� Surv�t�� t�� stat�

coxph�y � strata�inst� 	 sex � age � treat� � Strati�ed model
 with a
separate baseline per institution
 and institution speci�c e�ects for sex�

� coxph�y � offset�x�� � x�� � force in a known term
 without estimating a
coe�cient for it�

� Options

method��breslow� the most common approximation for tied death
times

method��efron� a more accurate method for handling ties �default�
method��exact� the exact partial likelihood �conditional logistic�
subset selection
missing value actions
convergence options

� Methods

print
summary
residuals � martingale
 deviance
 score
 and Schoenfeld
predict � X ��
 risk
 expected � events
 and terms
plot
surv��t � see below
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survreg Parametric survival models�

� survreg�Surv�time� stat� � x� dist��logistic�� � Fit a log�logistic distri�
bution�

� Options

distribution � extreme value
 logistic
 or Gaussian
link � log or identity
optionally �x the scale parameter
subset selection
missing value actions
convergence options

� Methods� like coxph �but not all are completed yet�

survdi� One and k�sample versions of the Fleming�Harrington G� family� Includes the
logrank and Gehan�Wilcoxon as special cases�

� survdiff�Surv�time� status� � sex � treat� � Compare th e � sub�groups
formed by sex and treatment combinations�

� survdiff�Surv�time� status� � offset�pred�� � One�sample test

� Methods

print

survexp Predicted survival for an age and sex matched cohort of subjects
 given a
baseline matrix of known hazard rates for the population� Most often these are
US mortality tables
 but we have also used local tables for stroke rates�

� survexp�entry�dt� birth�dt� sex� � Defaults to US white
 average cohort
survival

� pred 
� survexp�entry� birth� sex� futime� type��individual�� Data to
enter into a one sample test for comparing the given group to a known pop�
ulation�

� Options

matrix of known hazards �US white and Minnesota white are in�
cluded free��

time points at which to compute a result �expected survival�
individual or cohort output

� Methods� inherits from surv�t

surv�t Fit a survival curve�






� survfit�Surv�time� status�� � Simple Kaplan�Meier

� survfit�Surv�time� status� � rx � sex� � Four groups

� fit 
� coxph�Surv�time� stat� � rx � sex�

survfit�fit� � Prediction at the mean x�s

� survfit�fit� list�rx��� sex���� � Predict elsewhere than the mean

� Options

Greenwood or Tsiatis variance estimate
subset selection
missing value actions
case weights �not the same as risk weights�
Kaplan�Meier or Fleming�Harrington estimate of survival
log
 log�log
 plain
 or no con�dence intervals

� Methods

print
summary
plot
lines
points

strata marks a variable or group of variables as strata� Similar to the base S function
interaction except� coxph notices it as special
 and there is a di�erent labeling
style�

� strata�rx�

� strata�rx� sex�

� strata�rx� na�group�T� � Make NA a separate group rather than omitting
NA�

cox�zph Computes a test of proportional hazards for the �tted Cox model�

� cox�zph�coxfit�

� Options�

transform � Optional time transform
global�T F � Include the global test

� Methods

print
plot

	



naresid
 naprint A new idea for missing values�

� A change to the base function model�frame allows a global na�action to be
speci�ed
 e�g� options�na�action��na�omit���

� The na�action routine adds an attribute na�action to the data
 with appro�
priate class
 e�g�
 class��omit� for na�omit��� Coxph and other routines add
this to their output without modi�cation�

� The print routines will call naprint��t!na�action�� The returned character
string is added to the printout� My naprint�omit returns ��� observations
deleted due to missing��

� The resid and predict routines call x
� naresid�fit
na�action� x�
 where x
is a vector or matrix� The naresid�omit routine re�inserts missing values so
that the residual matches the input data�

� Mathematical Backround

Let Yi�t�� i � �� � � � � n be the indicator that subject i is at risk and under observation at
time t� Let Ni�t� be the step function for the ith subject
 which counts the number of
�events� for that subject up to time t� The total number of deaths that have occurred
up to time t will be N�t� �

P
Ni�t�
 and the number of subjects at risk at time t will

be Y �t� �
P
Yi�t�� It will also be useful to de�ne d�t� as the number of deaths that

occur exactly at time t�

��� Survival

����� Estimation

The most common estimate of the survival distribution
 the Kaplan�Meier �KM� esti�
mate
 is a product of survival probabilities�

"SKM�t� �
Y
ti�t

Y �ti�� d�ti�

Y �ti�
�

Graphically
 the Kaplan�Meier survival curve appears as a step function with a drop at
each death� Censoring times are often marked on the plot as �#� symbols�

Another approach is to estimate $
 the cumulative hazard
 using Nelson�s estimate�

"$�t� �
nX
i��

Z t

�

dNi�s�

Y �s�
�
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The Nelson estimate is also a step function
 it starts at zero and has a step of size
d�t��Y �t� at each death� One problem with the Nelson estimate is that it is susceptible
to ties in the data� For example
 assume that � subjects die at � nearby times t�� t�� t�

with � other subjects also at risk� Then the total increment in the Nelson estimate
will be ���� # ��� # ���� However
 if time data were grouped such that the distinction
between t�
 t� and t� were lost the increment would be the lesser step ����� If there are
a large number of ties this can introduce signi�cant bias� One solution is to employ a
modi�ed Nelson estimate that always uses the larger increment
 as suggested by Nelson
��	� and Fleming and Harrington ����� This is not an issue with the Kaplan�Meier
 with
or without ties the multiplicative step will be � ���

The relationship $�t� � � logS�t�
 which holds for any continuous distribution leads
to the Fleming�Harrington �FH� ���� estimate of survival�

"SFH�t� � e�
���t� � ���

This estimate has natural connections to survival curves for a Cox model� For su�ciently
large sample sizes the FH and KM estimates will be arbitrarily close to one another

but keep in mind the fact that unless there is heavy censoring n is always small in the
right hand tail of the estimated curve�

����� Variance

Several estimates of the variance of "$ are possible� Since "$ can be treated as a sum of
independent increments
 the variance is a cumulative sum with terms of

d�t�

Y �t�	Y �t��d�t�

Greenwood

d�t�

Y
�
�t�

Aalen

d�t�	Y �t��d�t�


Y
�
�t�

Klein�

see Klein ���� for details� Using equation ��� and the simple Taylor series approximation
var log f � varf�f�
 the variance of the KM or FH estimators is

var� "S�t�� � "S��t�var�"$�t�� � ���

Klein also considers two other forms for the variance of S
 but concludes that

� For computing the variance of "$ the Aalen formula is preferred�

� For computing the variance of "S
 the Greenwood formula along with ��� is pre�
ferred�
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Con�dence intervals for "S�t� can be computed on the plain scale�

"S � ���	 se� "S� � ���

on the cumulative hazard or log survival scale�

exp�log� "S�� ���	 se�"$�� � ���

or on a log�hazard scale�

exp�� exp�log�� log� "S�� ���	 se�log "$��� � �
�

where se refers to the standard error�
Con�dence intervals based on ��� may give survival probabilities greater than � or

less than zero� Those based on ��� may sometimes be greater than �
 but those based
on �
� are always between � and �� For this reason many users prefer the log�hazard
formulation� Con�dence intervals based on the logit of S are another alternative� Link
���
 ���
 however suggests that con�dence intervals based on the cumulative hazard
scale have the best performance� This is not surprising given their relation to the
independent�increments formulation of "$�

A further re�nement to the con�dence intervals is explored in Dorey and Korn �����
When the tail of the survival curve contains much censoring and few deaths
 there will
be one or more long �at segments� In all of the procedures considered thus far
 the
con�dence intervals are constant across these intervals� Yet
 it seems reasonable that as
censored subjects are removed from the sample and the e�ective sample size decreases

that the actual reliability of the curve would also decrease� The proposed correction
retains the original upper con�dence limit �S�t� does not rise��
 and a modi�ed lower
limit which agrees with the standard limits at each death time but is based on the
e�ective n between death times�

Two methods are implemented within summary�survfit� Peto�s method assumes that
var�"$�t�� � c�Y �t�
 where Y is the number at risk and c � � � "S�t�� The Peto limit
is known to be conservative� the modi�ed Peto limit chooses c such that the variance
at each death time is equal to the usual estimate� The modi�ed estimate is equal to
the usual variance multiplied by n��Y 
 where Y is the number at risk and n� is the
number at risk at the last jump in the curve �last death time�� This is the recommended
solution� A di�erent modi�cation is explored in Dorey and Korn
 but they found it to
be anti�conservative �it is also harder to calculate��

����� Mean and median

For the Kaplan�Meier estimate
 the estimated mean survival is unde�ned if the last
observation is censored� One solution
 used here
 is to rede�ne the estimate to be zero
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beyond the last observation� This gives an estimated mean that is biased towards zero

but there are no compelling alternatives that do better� With this de�nition
 the mean
is estimated as

"� �

Z T

�

"S�t�dt

where "S is the Kaplan�Meier estimate and T is the maximum observed follow�up time
in the study� The variance of the mean is

var�"�� �

Z T

�

�Z T

t

"S�u�du

��
dN�t�

Y �t��Y �t��N�t��

where %N �
P
Ni is the total counting process and %Y �

P
Yi is the number at risk�

The sample median is de�ned as the �rst time at which "S�t� � �
� Upper and lower
con�dence intervals for the median are de�ned in terms of the con�dence intervals for
S� the upper con�dence interval is the �rst time at which the upper con�dence interval
for "S is � �
� This corresponds to drawing a horizontal line at ��
 on the graph of
the survival curve
 and using intersections of this line with the curve and its upper and
lower con�dence bands� In the very rare circumstance that the survival curve has a
horizontal portion at exactly ��
 �e�g�
 an even number of subjects and no censoring
before the median� then the average time of that horizonal segment is used� This agrees
with usual de�nition of the median for even n in uncensored data�

��� Expected Survival

����� Individual Expected Survival

The survival tables published by the Department of the Census contain � year survival
probabilities by age and sex
 optionally subgrouped as well by race and geographic
region� The entry for age �� in ��
� is the probability that a subject who turns ��
during ��
� will live to his or her ��nd birthday� The tables stored in S contain the
daily hazard rate � rather than the probability of survival p

p � exp���	
��
 � ��
for convenience� If a� s� y are subscripts into the age by sex by calendar year table of
rates
 then the cumulative hazard for a given subject is the simply the sequential sum
of �asy� number of days in state a� s� y� Looked at another way
 the patient progresses
through the rate table on a diagonal line whose starting point is �date of entry
 age at
entry
 sex�
 see Berry �	� for a nice graphical illustration�

Let �i�t� and $i�t� be the derived hazard and cumulative hazard functions
 re�
spectively
 for subject i
 starting at their time of entry to the study� Then Si�t� �
exp��$i�t�� is the subject�s expected survival function�
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Some authors use the product form S � � � Q
�� � qk� where the q are yearly

probabilities of death
 and yet others an equation similar to actuarial survival estimates�
Numerically it makes little di�erence which form is chosen
 and the S functions use the
hazard based formulation for its convenience�

����� Cohort expected survival

The expected survial curve for a cohort of n subjects is an �average� of the n individual
survival curves for the subjects� There are � main methods for combining these� for
some data sets they can give substantially di�erent results� Let Se be the expected
survival for the cohort as a whole
 and Si
 �i be the individual survival and hazard
functions� All three methods can be written as

Se�t� � exp

�
�
Z t

�

P
�i�s�wi�s�P
wi�s�

ds

�
�	�

and di�er only in the weight function wi�
A weight function of wi�t� � Si�t� corresponds to the exact method� This is the

oldest and most commonly used technique
 and is described in Ederer
 Axtel and Cutler
����� An equivalent expression for the estimate is

Se�t� � ���n�
X

Si�t�

���

The exact method corresponds to selecting a population matched control for each sub�
ject in the study
 and then computing the expected survival of this cohort assuming

complete follow�up�
The exact method is most appropriate when doing forcasting
 sample size calcula�

tions or other predictions of the �future� where censoring is not an issue�
A common use of the expected survival curve is to plot it along with the Kaplan�

Meier of the sample in order to assess the relative survival of the study group� When
used in this way
 several authors have shown that the Ederer method can be misleading
if censoring is not independent of age and sex �or whatever the matching factors are for
the referent population�� Indeed
 independence if often not the case� For example
 in
a long study it is not uncommon to allow older patients to enroll only after the initial
phase� A severe example of this is demonstrated in Verheul et al� �
	�
 concerning aortic
valve replacement over a �� year period� The proportion of patients over �� years of age
was �& in the �rst ten years
 and ��& in the second ten years� Assume that analysis of
the data took place immediately at the end of the study period� Then the Kaplan�Meier
curve for the latter years of follow�up time is guarranteed to be ��atter� than the earlier
segment
 because it is computed over a much younger population� The Ederer or exact
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curve will not re�ect this bias
 and makes the treatment look better than it is� The exact
expected survival curve forms a reference line
 in reality
 for what the Kaplan�Meier will
be when followup is complete
 rather than for what the Kaplan�Meier is now�

In Hakulinen�s method ��

 �	�
 each study subject is again paired with a �ctional
referent from the cohort population
 but this referrent is now treated as though he she
were followed in the same way as the study patients� Each referrent thus has a maximum
potential follow�up
 i�e�
 they will become censored at the analysis date� Let ci�t� is a
censoring indicator which is � during the period of potential follow�up and � thereafter�
the weight function for the Hakulinen or cohort method is wi�t� � Si�t�ci�t��

If the study subject is censored then the referrent would presumably be censored
at the same time
 but if the study subject dies the censoring time for his her matched
referrent will be the time at which the study subject would have been censored� For
observational studies or clinical trials where censoring is induced by the analysis date
this should be straightforward
 but determination of the potential follow�up could be a
problem if there are large numbers lost to follow�up� �However
 as pointed out long ago
by Berkeson
 if a large number of subjects are lost to follow�up then any conclusion is
subject to doubt� Did patients stop responding to follow�up letters at random
 because
they were cured
 or because they were at death�s door'�

In practice
 the program will be invoked using the actual follow�up time for those
patients who are censored
 and the maximum potential follow�up for those who have
died� By the maximum potential follow�up we mean the di�erence between enrollment
date and the average last contact date
 e�g�
 if patients are contacted every � months on
average and the study was closed six months ago this date would be ��
 months ago�
It may true that the �hypothetical� matched control for a case who died �� years ago
would have little actual chance of such long follow�up
 but this is not really important�
Almost all of the numerical di�erence between the Ederer and Hakulinen estimates
results from censoring those patients who were most recently entered on study� For
these recent patients
 presumably
 enough is known about the operation of the study to
give a rational estimate of potential follow�up�

The Hakulinen formula can be expressed in a product form

Se�t# s� � Se�t� �
P
pi�t� s�Si�t�ci�t�P

Si�t�ci�t�
� ���

where pi�t� s� is the conditional probability of surviving from time t to time t# s
 which
is exp�$i�t� � $i�t # s��� The formula is technically correct only over time intervals
�t� t# s� for which ci is constant for all i
 i�e�
 censoring only at the ends of the interval�

The conditional estimate is advocated by Verheul �
	�
 and was also suggested as
a computation simpli�cation of the exact method by Ederer and Heise ����� For this
estimate the weight function wi�t� is de�ned to be � while the subject is alive and at risk
and � otherwise� It is clearly related to Hakulinen�s method
 since E�wi�t�� � Si�t�ci�t��
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Most authors present the estimator in the product�limit form
Q
�� � d�t��n�t��
 where

d and n are the numerator and denominator terms within the integral of equation �	��
One disadvantage of the product�limit form is that the value of the estimate at time t
depends on the number of intervals into which the time axis has been divided
 for this
reason we use the integral form �	� directly�

One advantage of the conditional estimate
 shared with Hakulinen�s method
 is that
it remains consistent when the censoring pattern di�ers between age�sex strata� This
advantage was not noted by the Ederer and Heise
 and the �exact� calculation was
adapted as the preferred method ���
 �
�� A problem with the conditional estimator is
that it has a much larger variance than either the exact or Hakulinen estimate� In fact

the variance of these latter two can usually be assumed to be zero
 at least in comparison
to the variance of the Kaplan�Meier of the sample� Rate tables are normally based on a
very large sample size so the individual �i are very precise
 and the censoring indicators
ci are based on the the study design rather than on patient outcomes� The conditional
estimate Sc�t�
 however
 depends on the actual death times and wi is a random variable�
I am not aware of a reference where this variance has been worked out
 however�

The main argument for use of the conditional estimate
 however
 is that we often
want to make conditional statements about the survival� For instance
 in studies of
a surgical intervention such as hip replacement
 the observed and expected survival
curves often will initially diverge due to surgical mortality
 and then appear to become
parallel� It is tempting to say that survival beyond hospital discharge is �equivalent
to expected�� This is a conditional probability statement
 and it should not be made
unless a conditional estimate was used�

A hypothetical example may make this clearer� For simplicity assume no censoring�
Suppose we have studies of two diseases
 and that their age distributions at entry are
identical� Disease A kills ��& of the subjects in the �rst month
 independent of age or
sex
 and thereafter has no e�ect� Disease B also kills ��& of its subjects in the �rst
month
 but predominately a�ects the old� After the �rst month it exerts a continuing
though much smaller force of mortality
 still biased toward the older ages� With proper
choice of the age e�ect
 studies A and B will have almost identical survival curves� as the
patients in B are always younger
 on average
 than those in A� Two di�erent questions
can be asked under the guise of �expected survival��

� What is the overall e�ect of the disease' In this sense both A and B have the
same e�ect
 in that the 
 year survival probability for a diseased group is x&
below that of a matched population cohort� The Hakulinen estimate would be
preferred because of its lower variance� It estimates the curve we �would have
gotton� if the study had included a control group�

� What is the ongoing e�ect of the disease' Detection of the di�erential e�ects of
A and B after the �rst month requires the conditional estimator� We can look at
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the slopes of the curves to judge if they have become parallel�

The actual curve generated by the conditional estimator remains di�cult to inter�
pret
 however� One wag in our department has suggested calling it the �lab rat� esti�
mator
 since the control subject is removed from the calculation ��sacri�ced�� whenever
his her macthing case dies� I suggest that Hakulinen�s cohort estimate is the most
appropriate estimator� If there is a question about delayed e�ects
 as in the above ex�
ample �there would be an apparent �attening of the Kaplan�Meier curves after the �rst
month�
 then one can plot a new curve using only those patients who survived at least
one month�

Other suggestions for exploring conditional e�ects can be found in the literature
under the heading of relative survival� Hakulinen ���� for instance
 suggests dividing the
patients into disjoint age groups and computing the ratio of observed expected survival
separately within each strata� However
 this estimate can have an unacceptable variance
due to small numbers in the subgroups�

����� Approximations

The Hakulinen cohort estimate ��� is �Kaplan�Meier like� in that it is a product of
conditional probabilities and that the time axis is partitioned according to the observed
death and censoring times� Both the exact and conditional estimators can be written
in this way as well� They are unlike a KM calculation
 however
 in that the ingredients
of each conditional estimate are the n distinct individual survival probabilities at that
time point rather than just a count of the number at risk� For a large data set this
requirement for O�n� temporary variables can be a problem� An approximation is
to use longer intervals
 and allow subjects to contribute partial information to each
interval� For instance
 in ��� replace the � � weight ci�t� by

R t�s
t ci�u�du�s
 which is

the proportion of time that subject i was uncensorted during the interval �t� t # s��
If those with fractional weights form a minority of those at risk during the interval
the approximation should be reliable� �More formally
 if the sum of their weights is a
minority of the total sum of weights�� By Jensen�s inequality the approximation will
always be biased upwards
 but it is very small� For the Stanford heart transplant data
used in the examples an exact 
 year estimate using the cohort method is �������
 an
approximate cohort computation using only the half year intervals yields ��������

The Ederer estimate is unchanged under re�partioning of the time axis�

����� Testing

All of the above discussion has been geared towards a plot of Se�t� � exp��$e�t��

which attempts to capture the proportion of patients who will have died by t� When
comparing observed to expected survival for testing purposes
 an appropriate test is the
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one�sample log�rank test ���� �O � E���E
 where O is the observed number of deaths
and

E �
nX
i��

ei

�
nX
i��

Z
�i�s�Yi�s� ���

is the expected number of deaths
 given the observation time of each subject� This
follows Mantel�s concept of �exposure to death� ����
 and is the expected number of
deaths during this exposure� Notice how this di�ers from the expected number of
deaths nSe�t� in the matched cohort at time t� In particular
 E can be greater than
n� Equation ��� is referred to as the person�years estimate of the expected number of
deaths� The log�rank test is usually more powerful than one based on comparing the
observed survival at time t to Se�t�� the former is a comparison of the entire observed
curve to the expected
 and the latter is a test for di�erence at one point in time�

Tests at a particular time point
 though less powerful
 will be appropriate if some
�xed time is of particular interest
 such as 
 year survival� In this case the test should
be based on the cohort estimate� The H� of the test is �is suvival di�erent that what a
control�group�s survival would have been�� A pointwise test based on the exact estimate
may well be invalid if there is censoring� A pointwise test based on the conditional
estimate has two problems� The �rst is that an appropriate variance is di�cult to
construct� The second
 and more damming one
 is that it is unclear exactly what
alternative is being tested against�

Hartz
 Giefer and Ho�man ���� argue strongly for the pointwise tests based on a
expected survival estimate equivalent to ���
 and claim that such a test is both more
powerful and more logical than the person�years approach� Subsequent letters to the
editor ���
 ��� challenged these views
 and it appears that the person�years method is
preferred�

Berry �	� provides an excellent overview of the the person�years method� Let the ei
be the expected number of events for each subject
 treating them as an n � � Poisson
process� We have

ei �

Z �

�
Yi�s��i�s�ds

� $i�ti� �

where ti is the observed survival or censoring time for a subject� This quantity ei is the
total amount of hazard that would have been experienced by the population�matched
referrent subject
 over the time interval that subject i was actually under observation� If
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we treat ei as though it were the follow�up time
 this corrects for the backround mortality
by
 in e�ect
 mapping each subject onto a time scale where the baseline hazard is ��

Tests can now be based on a Poisson model
 using �i as the response variable
���dead
 ��censored�
 and ei as the time of observation �an offset of log ei�� The
intercept term of the model estimates the overall di�erence in hazard between the study
subjects and the expected population� An intercept�only model is equivalent to the
one sample log�rank test� Covariates in the model estimate the e�ect of a predictor on
excess mortality
 whereas an ordinary Poisson or Cox model would estimate its e�ect
on total mortality�

Andersen and V(th ��� consider both multiplicative and additive models for excess
risk� Let ��i be the actual hazard function for the individual at risk and �i be
 as before

that for his her matched control from the population� The multiplicative hazard model
is

��i �t� � ��t��i�t� �

If ��t� were constant
 then

"�� �
P
NiP
ei

is an estimate of the standard mortality ratio or SMR
 which is identical to exp�intercept�
in the Poisson model used by Berry �assuming a log link�� Their estimate over time is
based on a modi�ed Nelson hazard estimate

bB��t� �

Z t

�

P
dNi�s�P

Yi�s��i�s�
ds �

which estimates the integral of ��t�� If the SMR is constant then a plot of "B��t� versus
t should be a straight line through the origin�

For the additive hazard model

��i �t� � ��t� # �i�t�

the integral A�t� of � is estimated as log�SKM�t��Sc�t��
 the di�erence between the
Kaplan�Meier and the conditional estimator
 when plotted on log scale� Under the
hypothesis of a constant additive risk
 a plot of "A�t� versus t should approximate a line
through the origin�

��� Cox Model

Let Zij�t� be the jth covariate of the ith person �possibly time dependent�
 where i �
�� � � � � n and j � �� � � � � p� and Zi�t� be the entire covariate set for a subject
 represented
as a p� � column vector� De�ne ri�t� to be exp���Zi�t��
 i�e�
 the risk score for the ith
subject� In actual practice � will be replaced by "� and the subject weights ri by "ri�
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The Cox model assumes that the risk for subject i is

��t�Zi� � ���t�ri�t�

where �� is an unspeci�ed baseline hazard� Assuming no tied death times
 the log
partial likelihood is de�ned as

l��� �
nX
i��

Z �

�

��Yi�t�ri�t�� logf
X
j

Yj�t�rj�t�g
�� dNi�t� �

The �rst derivative is the p by � vector

U��� �
nX
i��

Z �

�
�Zi�t�� %Z��� t�� dNi�t� ����

�
nX
i��

Z �

�
�Zi�t�� %Z��� t�� dMi��� t� ����

and the p by p information matrix is

I��� �
nX
i��

Z �

�

P
j Yj�t�rj�t��Zi�t�� %Z�t���Zi�t�� %Z��� t���P

j Yj�t�rj�t�
dNi�t� � ����

where %Z is the weighted mean of those still at risk at time t

%Z��� t� �

P
Yi�t�ri�t�Zi�t�P
Yi�t�ri�t�

�

The martingale residual Mi is de�ned below�
The above notation is derived from the counting process representation
 as found

in Fleming and Harrington ����� It allows very naturally for several extensions to the
original Cox model formulation�

� multiple events per subject


� discontinuous intervals of risk � Yi may change states from � to � and back again
multiple times


� left truncation � subjects need not enter the risk set at time ��

This extension is known as the multiplicative hazards model�
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����� Computation

The S function coxph accommodates these extensions by a simple programming arti�ce�
The input data set is assumed to consist of observations or rows of data
 each of which
contains the covariate values Z
 a status indicator ��event ��censored and an optional
stratum indicator
 along with the time interval �start� stop� over which this information
applies� In the notation above
 this means that each row is treated as a separate
subject whose Yi variable is � on the interval �start� stop� and zero otherwise� Within
the program
 it means that the risk set at time t only uses the applicable rows of the
data�

The code has no speci�c �hooks� to accommodate time�dependent covariates
 time�
dependent strata
 multiple events
 or any of the other special features mentioned above�
Rather
 it is the responsibility of the user to �rst construct an appropriate data set�
The strategy
 originally motivated by sloth
 led to a �tting program that is simpler

shorter
 easier to debug
 and more e�cient than one with multiple speci�c options� A
signi�cantly more important bene�t has become apparent over time
 i�e�
 the �exibility
inherent in building a data set has allowed analyses that were not considered by the
original coder � left truncation is a case in point�

The more common way to deal with time�dependent Cox models is to have a com�
putation occur at each death time� For example
 BMDP and SAS PHREG do this�
One advantage of that procedure over this one is the ability to code continuously time�
dependent covariates� coxph only accommodates step functions� However
 I have yet to
�nd an example where this was a de�ciency� In the common case of repeated measure�
ments on each subject
 the data set for coxph is quite easy to set up
 since it and the
original measurements consist of one line of data per visit� On a small set of cases
 I
have compared these results to a �t using full linear interpolation of the covariate
 and
the regression coe�cients were essentially identical�

When only a few subjects have time�dependent variates
 this method can be much
more e�cient� In a recent study here with multiple lab tests
 the proportion of subjects
with �
�
 etc� tests was geometrically decreasing� Only � ��� patients had 
 values�
Thus most patients had only � line of data in the constructed coxph data set� Let r�t�
be the number of subjects in the risk set at death time t
 p be the number of covariates

and s�t� the number of rows in this strata �when set up for coxph�� The S calculation
has at each death time a search over s�t� terms with a sum over r�t� of them
 the BMDP
calculation has a sum over r�t� terms
 each of which requires a call to the computation
subroutine� So the total S time is O�p � p � E�r�� # O�a � E�s��
 and the total BMDP
time is O�p � p �E�r��#O�b �E�r��
 each times the number of events� If the subroutine
is at all complex �b �� a� then S wins�

The coxph function will often run much faster when there are strati�cation variables
in the model� When strata are introduced the program spends less time searching out
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whom is part of the current risk set since it need look only within the strata� without
strata it has to scan the entire data set�

If the start time is omitted
 it is assumed that start � �� In this case the algorithm
is equivalent to a standard Cox model� Computation is more rapid
 since the risk sets
can be accumulated rather than performing a separate search per death time�

����� Residuals

The Breslow �or Tsiatis or Link� estimate of the baseline hazard is

"$���� t� �

Z t

�

Pn
i�� dNi�s�Pn

i�� Yi�s�ri��� s�
�

The martingale residual at time t is

Mi�t� � Ni�t��
Z t

�
ri��� s�Yi�s�d"$���� s��

The program returns the residual at t � �� � � "�� If there are no time�dependent
covariates
 then ri�t� � ri and can be factored out of the integral
 giving cMi � Ni �
"ri"$�� "�� ti��

The deviance residual is a normalizing transform of the martingale residual

di � sign�cMi� �
q
�cMi �Ni log��Ni � cMi��Ni�

In practice
 it has not proven to be very useful�
The other two residuals are based on the score process Uij�t� for the ith subject and

the jth variable�

Uij��� t� �

Z t

�
�Zij�s�� %Zj��� s��dcMi��� s� �

The score residual is then de�ned
 for each subject and each variable �an n by p matrix�
as Uij� "����� It is the sum of the score process over time� The usual score vector U���

as in equation ����
 is the column sum of the matrix of score residuals�

The martingale and score residuals are integrals over time of some object� One
consequence of this is that they work naturally for the coxph formulation� Speci�cly

in setting up a multiplicative hazard model
 a single subject is broken up into multiple
lines of the input data
 as though he were a set of di�erent individuals observed over
disjoint times� After the coxph function is �nished
 the residual for that person is just
the sum of the residuals for these �pseudo� subjects� This property is not true for the
deviance residual
 however�

The Schoenfeld residuals �
�� are de�ned as a matrix

sij��� � Zij�ti�� %Zj��� ti� ����
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with one row per death time and one column per covariate
 where i� ti are the subject and
the time that the event occurred� Again
 this works very well with the coxph formulation

since the residuals are completely independent of how subjects are broken up into time
intervals� The Schoenfeld residuals are also related to the score process Uij � Sum the
score process up over individuals to get a total score process

P
i Lij��� t� � U��� t�� This

is just the score vector at time t
 so that at "� we must have U� "�� �� � U� "���� � ��
Because "$ is discrete
 our estimated score process will also be discrete
 having jumps at
each of the unique death times� There are two simplifying identities for these residuals�

U��� t� �
X
i

Z t

�
Zij�s�dMi��� s� �

X
i

Z t

�
�Zij�s�� %Zj��� s��dNi�s� ����

Note that dcMi�t� is zero when subject i is not in the risk set at time t� Since the
sums are the same for all t
 each increment of the processes must be the same as well�
Comparing the second of these to ����
 we see that the Schoenfeld residuals are the
increments or jumps in the total score process� There is a small nuisance with tied
death times� under the integral formulation the O � E process has a single jump at
each death time
 leading to one residual for each unique event time
 while under the
Schoenfeld representation there is one residual for each event� In practice
 the latter
formulation has been found to work better for both plots and diagnostics
 as it leads
to residuals that are approximately equivariant� For the alternative of one residual per
unique death time
 both the size and variance of the residual is proportional to the
number of events�

The last and most general residual is the entire score process Rijk where i indexes
subjects
 k indexes the event times
 and j indexes the covariate�

Rijk � �Zij�tk�� %Zj�tk���dNi�tk�� ri�tk�d"$��tk���

The score and Schoenfeld residuals are seen to be marginal sums of this array� Lin

Wei and Ying ���� suggest a global test of the proportional hazards model based on the
maximum of the array�

����� Variance of the Residuals

Plots of the martingale residuals
 and the subsequent �ts that search for an appropriate
functional form
 may bene�t from an adjustment for the variance of each residual� This
is particularly true in a counting process model where some subjects may generate many
�observations� whilst others contribute only � or �� thus the amount of information per
observation
 i�e� the expected count
 will vary markedly�

The martingale residuals are essentially an �observed � expected� number of events
for each subject
 Mi � Oi � Ei� Not surprisingly
 they are approximately independent

��



with variance of Ei
 similar to a Poisson process or the counts in a � way table� Since
the residuals must sum to zero
 they are not precisely independent�

Chen and Wang ���� derive an exact variance matrix for the residuals� Let 	 � X "�
be the vector of linear predictors for the n subjects� Then with straightforward but
tedious algebra we obtain the derivatives of the log partial likelihood l


l


	
� M � O �E


�l


	�
� V � diag�E��A �

where M is the vector of martingale residuals
 E is the vector of expected events
 and
A is de�ned below� By analogy with other maximum likelihood expressions
 we may
consider V to be the variance matrix for M 
 and Chen and Wang suggest using the
adjusted residual V ����M for diagnostic plots� A has elements

aij �

Z �

�
Yi�s�Yj�s�ri�s�rj�s�

dN�s�

�
P

k Yk�s�rk�s��
�
�

and is closely related to the Aalen estimate of the variance of "$�
 see equation ��������
Note that the ith expected value Ei can be written as

Ei �

Z �

�
Yi�s�ri�s�

dN �s�P
k Yk�s�rk�s�

�

so that the aij terms are of smaller order than E�
Since

P
Mi � �
 V is not of full rank
 and it is easy to verify that each row of V

sums to zero� However
 for even moderate sample sizes calculation of the symmetric
square root of V can take nearly forever in S
 the correction to the naive variance is
slight
 and the exact variance does not seem very useful�

����� Tied data

For untied data
 the terms in the partial likelihood look like�
r�P
i ri

��
r�P
i�� ri

�
� � � �

where r�� r�� � � � � ri are the per subject risk scores� Assume that the real data are con�
tinuous
 but the data as recorded have tied death times� For instance
 we might have
several subjects die on day � of their hospital stay
 but of course they did not all perish
at the same moment� For a simple example
 assume 
 subjects in time order
 with the
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�rst two both dying at the same recorded time� If the time data had been more precise

then the �rst two terms in the likelihood would be either�

r�
r� # r� # r� # r� # r


��
r�

r� # r� # r� # r


�
or �

r�
r� # r� # r� # r� # r


��
r�

r� # r� # r� # r


�
�

but we don�t know which� Notice that the product of the numerators remains constant

but that of the denominators does not� How do we approximate this'

The Breslow approximation is the most commonly used
 as it is the easiest to pro�
gram� It simply uses the complete sum

P
ri for both denominators� Clearly
 if the

proportion of ties is large this will de�ate the partial likelihood�
The Efron approximation uses �
r� # �
r� # r� # r� # r
 as the second denominator


based on the idea that r� and r� each have a 
�& chance of appearing in the �true�
second term� If there were � tied deaths
 then the ratios for r� to r� would be �
 � �

� �
 and � � in each of the four denominator terms
 respectively� Though it is not
widely used
 the Efron approximation is only slightly more di�cult to program than
the Breslow version� In particular
 since the downweighting is independent of w and
thus of �
 the form of the derivatives is unchanged�

There are several ways to approach an �exact� calculation� One is to use the av�
erage of the two possible denominators as the denominator for the second term� This
calculation quickly gets cumbersome if the number of tied subjects d who perish at a
given time is at all large
 since it is the average of d terms for the second denominator
�d
�

	
terms for the third
 etc� Note that if the risk scores for the tied subjects were all

equal
 then the Efron approximation agrees precisely with this exact calculation�
Another tack is to use the marginal probability that subjects � and � both expire

before subjects �
 � and 
� The form of the likelihood changes considerably in this case

and the product of terms � and � is replaced byZ �

�



�� exp

�
� r�
r� # r� # r


�� 

�� exp

�
� r�
r� # r� # r


��
e�t dt

If there are d subjects r� to rd tied some given time
 and we let s be the sum of the
remaining scores in the risk set
 the above integral expands to

��
dX

i��

s

ri # s
#
X
i��j

s

ri # rj # s
�

X
i ��j ��k

s

ri # rj # rk # s
# � � � �

which is the same amount of work as the average denominator calculation� �Though
similar
 the two expressions are not equivalent for d � ��� Some tedious algebra shows
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that if the risk scores for the tied subjects are all equal
 this equals d� times the Efron
approximation
 and thus leads to exactly the same solution for "�� This would imply
that the �rst and second �exact� methods would be close for actual data sets�

The exact logistic likelihood
 or exact partial likelihood
 comes from viewing the
data as genuinely discrete� The denominator in this case is

P
i��j rirj if there are two

subjects tied

P

i��j ��k rirjrk if there are three subjects tied
 etc� The compute time for
this case will be even larger than for the calculation above� If there are ties
 the value
can be considerably di�erent than the �rst exact method�

The SAS phreg procedure implements the second and third exact method� A small
amount of empiric checking has veri�ed that the Efron approximation is very close to the
exact marginal likelihood
 and so only the exact partial likelihood has been implemented
in the S package�

Because of the superiority of the Efron approximation
 the coxph function has de�
parted from all other Cox regression programs �that I know of� by making it the default
option rather than the Breslow approximation� Note that when there are no ties
 all
the methods reduce to the same form�

The Efron approximation also induces changes in the residuals� de�nitions� In par�
ticular
 the Cox score statistic is still

U �
nX
i��

Z �

�
�Zi�s�� %Z�s�� dNi�s� � ��
�

but the de�nition of %Z�s� has changed if there are tied deaths at time s� If there are
d deaths at s
 then there were d di�erent values of %Z used at the time point� The
Schoenfeld residuals use %%Z
 the average of these d values
 in the computation�

The martingale and score residuals require a new de�nition of "$� If there are d tied
deaths at time t
 we again assume that in the exact �but unknown� untied data there are
events and corresponding jumps in the cumulative hazard at t� �� � ��� � t� �d� Then
each of the tied subjects will in expectation experience all of the �rst hazard increment

but only �d� ���d of the second
 �d� ���d of the next
 and etc� If we equate observed
to expected hazard at each of the d deaths
 then the total increment in hazard at the
time point is the sum of the denominators of the weighted means� Returning to our
earlier example of 
 subjects of which � and � are a tied deaths�

d"$�t� �
�

r� # r� # r� # r� # r

#

�

r��� # r��� # r� # r� # r

�

For the null model where ri � � for all i
 this agrees with the suggestion of Nelson
���	�� to use ��
 # ��� rather than ��
 as the increment to the cumulative hazard�

The score residuals do not work out to as neat a formula
 though the computation
is no harder� For subject � in the example
 the residual at time � is the sum a # b of

��



the � terms�

a �

�
Z� � r�Z� # r�Z� # � � � # r
Z


r� # r� # � � �# r


��
dN�

�
� r�
r� # r� # � � �# r


�
and

b �

�
Z� � r�Z��� # r�Z��� # � � � # r
Z


r��� # r��� # � � �# r


��
dN�

�
� r���

r��� # r��� # � � � # r


�
�

This product does not neatly collapse into �Z� � %%Z� dcMi but is nevertheless fairly easy
to compute� To those who wish to check the algebra� start with the expanded �d term�
de�nition of the increment to U 
 and repeat the in�nitesimal jackknife calculations of
Cain and Lange ����

This argument carries through as well to predicted survival� There is a change in
weights but no change in the form of the equations�

The connection between residuals and the exact partial likelihood is not as precise

e�g� the score residuals will not correspond to an in�nitesimal jackknife� The exact
calculation is used only rarely
 the form of the computations will be quite di�erent
 and
it thus appears to be not worth the bother� If residuals are requested after a Cox �t
with the exact method
 the Breslow formulae are used�

����� Tests for Proportional Hazards

The key ideas of this section are taken from Grambsch and Therneau ����� Most of the
common alternatives to proportional hazards can be cast in terms of a time�varying

coe�cient model� That is
 we assume that

��t�Z� � ���t�e
���t�Z�����t�Z����� �

�If Zj is a ��� covariate
 such as treatment
 this formulation is completely general in
that it encompasses all alternatives to proportional hazards�� The proportional hazards
assumption is then a test for ��t� � �
 which is a test for zero slope in the appropriate
plot of "��t� on t�

Let i index subjects
 j index variables
 and k index the death times� Then let sk be
the Schoenfeld residual and Vk be the contribution to the information matrix at time
tk �see equation ���� De�ne the rescaled Schoenfeld residual as

s�k � "� # skV
��
k �

The main results are�

� E�s�k� � ��tk�
 so that a smoothed plot of s� versus time gives a direct estimate

of "��t��

��



� Many of the common tests for proportional hazards are linear tests for zero slope

applied to the plot of r� versus g�t� for some function g� In particular
 the Z�PH
test popularized in the SAS PHGLM procedure corresponds to g�t� � rank of
the death time� The test of Lin ��	� corresponds to g�t� � K�t�
 where K is the
Kaplan�Meier�

� Con�dence bands
 tests for individual variables
 and a global test are available

and all have the fairly standard �linear models� form�

� The estimates and tests are a�ected very little if the individual variance estimates
Vk are replaced by their global average V �

P
Vk�d � I�d� Calculations then

require only the Schoenfeld residuals and the standard Cox variance estimate I���
For the global test
 let g��t�� g��t�� � � � be the desired transformations of time for

variables �
 �
 etc
 and Gk be the diagonal matrix g��tk�� g��tk�� � � � � Then

T �
�X

Gksk

�
D��

�X
Gksk



is asymptotically 
� on p degrees of freedom
 where

D �
X

GkVkGk �
�X

GkVk

�X

Vk

�� �X

GkVk

�
�

Because the sk sum to zero
 a little algebra shows that the above expression is invariant
if Gk is replaced by Gk � cI for any constant c� Subtraction of a mean will
 however

result in less computer round�o� error�

In any rational application
 we will have g� � g� � � � � � g
 and then we can replace
each matrix Gk with a scalar g�tk� � gk in the above formulas� A further simpli�cation
occurs by using V 
 leading to

T �
hX

�gk � %g�sk
i� � dI��P

�gk � %g��

� hX
��gk � %g�sk

i
��	�

For a given covariate j
 the diagnostic plot will have yk � s�kj on the vertical axis
and gk on the horizontal� The variance matrix of the y vector is )j � �A � cJ� # cI

where A is a dxd diagonal matrix whose kth diagonal element is V ��

k�jj
 c � I��jj 
 J is a
dxd matrix of ones and I is the identity� The cI term re�ects the uncertainty in s� due
the the "� term� If only the shape of ��t� is of interest �e�g�
 is it linear or sigmoid� the
term could be dropped� If absolute values are important �e�g� ��t� � � for t � � years�
it should be retained�

For smooths that are linear operators
 such as splines or the lowess function
 the
�nal smooth is "y � Hy for some matrix H� Then "y will be asymptotically normal with

�




mean � and variance H)jH
�� Standard errors can be computed using ordinary linear

model methods� Although the covariance between residuals is roughly ���d times their
variance
 it cannot be neglected in computing standard errors for the smooth� For larger
smoothing spans
 simulations showed up to �
& in�ation in the width of the interval if
covariance was ignored�

If Vk is replaced with V 
 then )j simpli�es to I��jj ��d # ��I � J�� With the same
substitution
 the component�wise test for linear association is

tj �

P
�gk � %g�ykq

dI��jj

P
�gk � %g��

����

The cox�zph function uses ��	� as a global test of proportional hazards
 and ���� to
test individual covariates� The plot method for cox�zph uses a natural spline smoother
�lowess might be preferred
 but the necessary H matrix is not readily obtained�� con��
dence bands for the smooth are based on the full covariance matrix
 with V replacing
Vk�

Formulae aside
 reasonably accurate results can be obtained by using other methods
directly on the residuals� The return value ofcox�zph contains both the g�t� vector
and the y matrix that are appropriate for plots� These can be used as the x and y
data for a gam model with identity link and Gaussian errors� for example� The size
of the con�dence band will be conservative �too large� since
 as discussed above
 the
correlation between the data points has been ignored� This e�ect will tend to decrease
as the sample size increases
 since a smaller fraction of the data will be in any smoothing
window� Secondly
 the overall estimate of variation may be larger
 since it is estimated
using the variation of each y value from the �tted function� the Vk estimates are based
on the variation of each y from its risk set�

Though the simulations in Grambsch and Therneau ������ did not uncover any
situations where the simpler formulae based on V were less reliable
 such cases could
arise� The substitution trades a possible increase in bias for a substantial reduction
in the variance of the individual Vk� It is likely to be unwise in those cases where the
variance of the covariates
 within the risk sets
 di�ers substantially between di�erent
risk sets� Two examples come to mind� The �rst would be a strati�ed Cox model
 where
the strata represent di�erent populations� In a muli�center clinical trial for instance

inner city
 Veterans Administration and suburban hospitals often service quite disparate
populations� In this case a separate average V should be formed for each strata� A
second example is where the covariate mix changes markedly over time
 perhaps because
of aggressive censoring of certain patient types�

These cases have not been addressed directly in the software� However
 coxph�detail
will return all of the Vk matrices
 which can then be used to construct specialized tests
for such situations�

�	



Clearly
 no one scaling function g�t� will be optimal for all situations� The cox�zph

function directly supports four common choices� identity
 log
 rank
 and � � Kaplan�
Meier� By default
 it will use the last of these
 based on the following rationale� Since
the test for proportional hazards is essentially a linear regression of the scaled residual
on g�t�
 we would expect this test to be adversely e�ected if there are outliers in x� We
would also like the test to be only mildly �if at all� e�ected by the censoring pattern of
the data� The Kaplan�Meier transform appears to satisfy both of these criteria�

����� Robust Variance

Robust variance calculations are based on the sandwich estimate

V � ABA�

where A�� � I is the usual information matrix
 and B is a �correction term�� The
genesis of this formula can be found in Huber ����
 who discusses the behavior of any
solution to an estimating equation

nX
i��

��xi� "�� � � �

Of particular interest is the case of a maximum likelihood estimate based on distribution
f �so that � � 
 log f�
��
 when in fact the data are observations from distribution
g� Then
 under appropriate conditions
 "� is asymptotically normal with mean � and
covariance V � ABA�
 where

A �

�

E*���


�

���

and B is the covariance matrix for * �
P
��xi� ��� Under most situations the derivative

can be moved inside the expectation
 and A will be the inverse of the usual information
matrix� This formula was rediscovered by White �
�� �
�� �under less general conditions I
believe
 but all these papers are a bit over my head�
 and is also known in the econometric
literature as White�s method�

Under the common case of maximum likelihood estimation we have

X
� �

nX
i��


 log f�xi�


�

�
nX
i��

ui��� �

��



Then by interchanging the order of the expectation and the derivative
 A�� is the
expected value of the information matrix
 which will be estimated by the observed
information I� Since E�ui���� ��


B � var�*� � E�*��

�
nX
i��

E�u�i���ui���� #
X
i��j

E�u�i���uj���� ����

where ui��� is assumed to be a row vector� If the observations are independent
 then
the ui will also be independent and the cross terms in equation ���� above will be zero�
Then a natural estimator of B is

bB �
nX
i��

u�i�
"��ui� "��

� U �U �

where U is the matrix of score residuals
 the ith row of U equals ui� "��� The column
sums of U are the e�cient score vector *�

As a simple example consider generalized linear models� McCullagh and Nelder ����
maintain that overdispersion �is the norm in practice and nominal dispersion the excep�
tion�� To account for overdispersion they recommend in�ating the nominal covariance
matrix of the regression coe�cients A � �X �WX��� by a factor

c �
nX
i��

�yi � �i�
�

Vi
��n� p� �

where Vi is the nominal variance� Smith and Heitjan �
�� show that AB may be regarded
as a multivariate version of this variance adjustment factor
 and that c and AB may
be interpreted as the average ratio of actual variance �yi � �i�

� to nominal variance Vi�
By premultiplying by AB
 each element of the nominal variance�covariance matrix A is
adjusted di�erentially for departures from nominal dispersion�

When the observations are not independent
 the estimator B must be adjusted
accordingly� The �natural� choice �

P
ui�

� is not available of course
 since *�"�� � � by
de�nition� However
 a reasonable estimate is available when the correlation is con�ned
to subgroups� In particular
 assume that the data comes from clustered sampling with
j � �� �� � � � � k clusters
 where there may be correlation within cluster but observations
from di�erent clusters are independent� Using equation ����
 the cross�product terms
between clusters can be eliminated
 and the resulting equation rearranged as

var�*� �
kX

j��

+uj���
�+uj��� �

��



where +uj is the sum of ui over all subjects in the jth cluster� This leads to the modi�ed
sandwich estimator

V � A� +U � +U�A �

where the collapsed score matrix +U is obtained by replacement of each cluster of rows in
U by the sum of those rows� If the total number of clusters is small
 then this estimate
will be sharply biased towards zero
 and some other estimate must be considered� In
fact
 rank�V � � k
 where k is the number of clusters� Asymptotic results for the modi�ed
sandwich estimator require that the number of clusters tend to in�nity�

Application of these results to the Cox model requires an expression for the score
residuals matrix U � Equations ���� and ���� show the partial likelihood written in two
forms
 and ���� yet another� which should be used as a basis for our work' One way to
proceed is to de�ne a weighted Cox partial likelihood
 and then let

ui��� �
�

U


wi

�
w��

�

where w is the vector of weights� this approach isused in Cain and Lange ��� to de�ne a
leverage or in�uence measure for Cox regression� In particular
 they derive the leverage
matrix

L � UI�� �
where Lij is the approximate change in "� when observation i is removed from the data
set� Their estimate can be recognized as a form of the in�nitesimal jackknife
 see for
example the discussion in Efron ��	� for the linear models case� The same leverage
estimate is derived using a slightly di�erent argument by Reid and Cr,epeau ����� They
mention
 but do not persue
 the use of L�L as a variance estimate�

Speci�c applications of the sandwich and modi�ed sandwich estimators
 detailed
below
 have all re�derived this result as part of their development�

In fact the connection to the jackknife is quite general� For any model stated as an
estimating equation
 the Newton�Raphson iteration has step

-� � ���UI��� �

the column sums of the matrix L � UI��� At the solution "� the iteration�s step size is

by de�nition
 zero� Consider the following approximation to the jackknife

�� treat the information matrix I as �xed

�� remove observation i

�� beginning at the full data solution "�
 do one Newton�Raphson iteration�

��



This is equivalent to removing one row from L
 and using the new column sum as the
increment� Since the column sums of L� "�� are zero
 the increment must be -� � �Li��
That is
 the rows of L are an approximation to the jackknife
 and the sandwich estimate
of variance L�L is an approximation to the jackknife estimate of variance�

When the data are correlated
 the appropriate form of the jackknife is to leave out
an entire subject at time
 rather than one observation
 i�e�
 the grouped jackknife� To ap�
proximate this
 we leave out groups of rows from L
 leading to +L� +L as the approximation
to the jackknife�

Lin and Wei ���� show the applicability of Huber�s work to the partial likelihood

and derive the ordinary Huber sandwich estimate V � I���U �U�I�� � L�L� They also
discuss situations in which this is estimate is preferable
 including the important cases
of omitted covariates and incorrect functional form for the covariate� The relationship
of their estimate to the leverage matrix L is not noted by the authors�

Lee
 Wei and Amato ��
� consider highly strati�ed data sets which arise from inter
observation correlation� As an example they use paired eye data on visual loss due
to diabetic retinopathy
 where photocoagulation was randomly assigned to one eye of
each patient� There are n�� � ���� clusters �patients� with � observations per cluster�
Treating each pair of eyes as a cluster
 they derive the modi�ed sandwich estimate
V � +L� +L
 where +L is derived from L in the following way� L will have one row
 or
observation
 per eye� Because of possible correlation
 we want to reduce this to a
leverage matrix +L with one row per individual� The leverage �or row� for an individual
is simply the sum of the rows for each of their eyes� �A subject
 if any
 with only one eye
would retain that row of leverage data unchanged�� The resulting estimator is shown
to be much more e�cient than analysis strati�ed by cluster� A second example given
in Lee
 Wei and Amato concerns a litter�matched experiment� In this case the number
of rats litter may vary�

Wei
 Lin and Weissfeld �
�� consider multivariate survival times� An example is the
measurement of both time to progression of disease and time to death for a group of
cancer patients� The data set again contains �n observations
 time and status variables

subject id
 and covariates� It also contains an indicator variable etype to distinguish the
event type
 progression vs� survival� The suggested model is strati�ed on event type

and includes all strata�covariate interaction terms� One way to do this in S is

� fit� 
� coxph�Surv�time� status� � �rx � size � number�	strata�etype�� � � � �

� Ltilde 
� residuals�fit�� type��dfbeta�� collapse�subject�id�

� newvar 
� t�Ltilde� �	� Ltilde

The thrust of the computation is to obtain a per subject leverage matrix�
Actually
 WLW lay out the calculation in a di�erent way� Their approach is to �t

each of the two models separately� They then concatenate the coe�cient vectors
 and
build up a joint variance matrix using products of the individual leverage matrices� If

��



L� and L� are the leverage matrices from the �rst and second �t
 respectively
 then
WLW suggest the variance matrix�

L��L� L��L�

L��L� L��L�

�

However
 closer examination �and a little algebra� shows that their approach is equiva�
lent to the �rst option� Using the grouped jackknife approach
 as suggested here
 rather
than separate �ts for each event type has some practical advantages�

� It is easier to program
 particularly when the number of events per subject is
large� �See the example in section ��
��

� Other models can be encompassed
 in particular one need not include all of the
strata�covariate interaction terms�

� There need not be the same number of events for each subject� The method for
building up a joint variance matrix requires that all of the score residual matrices
be of the same dimension
 which is not the case if information on one of the failure
types was not collected for some subjects�

The main di�erence
 then
 between the techniques used in the Lee et al� and Wei
et al� papers is whether or not to stratify the analysis based on the failure type� If the
event types are distinct
 such as �survival� and �progression� this seems to be a wise
idea
 since the baseline hazard functions for the two types of event are likely to di�er�
In the case of the eye data
 there is no good reason to assume that left and right eyes �or
should it be �dominant� versus �non�dominant�'� di�er in their hazard function
 and
the risk set is structured to include both eye types� The case is less clear when there are
multiple sequential events per subject
 but the events ��failures�� are all of the same
type� Examples include repeated infections in patients with an immune disorder �see
the example of chronic granulotomous disease �CGD� discussed in �����
 repeated fatal
or non�fatal infarctions in cardiac patients
 or the recurrent bladder cancer data found
in �
��� If each event may in�uence subsequent events
 e�g�
 each infarction damages the
remaining myocardium
 the consensus appears to be that strati�cation is preferable

using �rst event
 second event
 etc� as the strata� In other data sets
 such as CGD

strata may not be desired� In this case the data set should be set up using intervals of
risk �start
 stop�
 so that a subject is not counted twice in the same risk set� The S code
for the modi�ed sandwich estimator will be identical to that for the strati�ed case� A
situation that included both multiple failure types and multiple events subject of one
of the types could involve both strata and disjoint risk intervals in setting up the data
set�

��



����� Weighted Cox models

A Cox model that includes case weights has been considered by Binder ��� in the context
of survey data� If wi are the weights
 then the modi�ed score statistic is

U��� �
nX
i��

wiui��� � ����

The individual terms ui are still Zi�t� � %Z�t�� the weighted mean %Z is changed in
the obvious way to include both the risk weights r and the external weights w� The
information matrix can be written as I �

P
�iwivi
 where �i is the censoring variable and

vi is a weighted covariance matrix� Again
 the de�nition of vi changes in the obvious way
from equation ����� If all of the weights are integers
 then for the Breslow approximation
this reduces to ordinary case weights
 i�e�
 the solution is identical to what one would
obtain by replicating each observation wi times� With the Efron approximation or the
exact partial likelihood approximation
 of course
 replication of a subject would result
in a correction for ties� The coxph function allows general case weights� Residuals from
the �t will be such that the sum of weighted residuals ��
 and the returned values from
the coxph�detail function will be the individual terms ui and vi
 so that U and I are
weighted sums� The sandwich estimator of variance will have t�L� �	� diag�w��� �	�

L as its central term� The estimate of "� and the sandwich estimate of its variance are
unchanged if each wi is replace by cwi for any c � ��

Using weights appropriate to the survey sampling scheme
 Binder suggests use of the
modi�ed sandwich estimate I��BI�� where B � var�U� �can be estimated using design
based methods�
 though he gives no speci�cs on what these might be� His derivation of
the score residual vectors ui di�ers from the above
 but the same result is obtained
 and
shown in the last equation of his section �� In a simulation study he compares the naive

sandwich
 and modi�ed sandwich estimators
 with the latter being the most reliable�

Lin ��	� also develops a weighted Cox model
 in the context of tests for proportional
hazards� His estimates of the score and hence of "� are based on equation ����
 but
without rede�nition of %Z to include weights� It is thus not related to case weights
 but
rather to weighted log�rank statistics such as the Tarone�Ware family ����� Estimates for
this model can be obtained from S in three steps� assume that w is the weight variable�

�� Use coxph with w as weights and � log�w� as an o�set to estimate Lin�s weighted
"��

�� Fit a second cox model
 without weights or an o�set
 but with the coe�cients
constrained to equal the results of the �rst model� �Use initial values and iter����
The coxph�detail function can be applied to this second model to obtain the
individual vi estimates�

��



�� Estimate the variance of "� as ABA
 where A � �
P
wivi�

�� and B �
P
w�
i vi�

Tests for proportional hazards are more easily accomplished
 however
 using the cox�zph
function�

An exciting use of weights is presented in Pugh et al� ����
 for inference with missing
covariate data� Let �i be the probability that none of the covariates for subject i is
missing
 and pi be an indicator function which is � if any of the covariates actually is
NA
 so that E�pi� � �i� The usual strategy is to compute the Cox model �t over only
the complete cases
 i�e�
 those with p� � �� If information is not missing at random

this can lead to serious bias in the estimate of "�� A weighted analysis with weights of
pi��i will correct for this imbalance� There is an obvious connection between this idea
and survey sampling� both reweight cases from underrepresented groups�

In practice �i will be unknown
 and the authors suggest estimating it using a logistic
regression with pi as the dependent variable� The covariates for the logistic regression
may be some subset of the Cox model covariates �those without missing information�

as well as others� In an example
 the authors use a logistic model with follow�up time
and status as the predictors� Let T be the matrix of score residuals from the logistic
model
 i�e�

Tij �




�j
�pi log �i��� # ��� pi� log��� �i������

where � are the coe�cients of the �tted logistic regression� Then the estimated variance
matrix for "� is the sandwich estimator I��BI��
 where

B � U �U � �U �T ��T �T ����T �U � �

This is equivalent to �rst replacing each row of U with the residuals from a regression
of U on T 
 and then forming the product U �U � Note that if the logistic regression
is completely uninformative �"�i � constant�
 this reduces to the ordinary sandwich
estimate�

For either of the Breslow or the Efron approximations
 the extra programming to
handle weights is modest� For the Breslow method the logic behind the addition is
also straightforward
 and corresponds to the derivation given above� For tied data and
the Efron approximation
 the formula is based on extending the basic idea of the ap�
proximation
 E�f�r�� r�� � � ��� � f�E�r��� E�r��� � � �� to include the weights
 as necessary�
Returning to the simple example of section ����� above
 the second term of the partial
likelihood is either �

w�r�
w�r� # w�r� # w�r� # w
r


�
or �

w�r�
w�r� # w�r� # w�r� # w
r


�
�

��



To compute the Efron approximation
 separately replace the numerator with �
�w�r� #
w�r�� and the denominator with �
w�r� # �
w�r� #w�r� # w�r� # w
r
�

����� Estimated survival

The methods for expected survival after a Cox model parallel those for expected survival
based on a population� One can create individual survival curves or cohort survival
curves
 and the latter can be in any of the Ederer
 Hakulinen
 or conditional frameworks�

For individual survival
 recall that the estimated cumulative hazard for a subject
with covariate process x�t� is

$�t�x� �

Z t

�
e
���x�s�d"$��s�

�� �

with either the Breslow or Efron estimator of "$�� The choice of the Breslow or Efron
estimate should be consistent with the option chosen to break ties when the Cox model
was �t �this is the default action of the software�� The estimated survival function is
then "S�t�x� � exp��"$�t�x���

If the vector of coe�cients "� were treated as �xed
 then the variance of the cumu�
lative hazard would be

V �t� �

Z t

�
e�

���x�s� d %N�s�

�
P
Yi�s�e

���Zi�s���

for the Breslow estimator
 which is a natural extension of the Aalen estimate of variance
in Nelson�s hazard estimator� If Efron�s method were used
 the variance estimate will
have a slightly larger increment at each tied time�

The actual variance for the cumulative hazard must also account for the error in esti�
mation of "� Tsiatis �

� and Link ���
 ��� have derived this
 and with some rearragement
their result can be written as

Vc�t� � V �t� # d�t��I��d�t� ����

d�t� �

Z t

�
�x�s�� %Z�s��

d %N �s�P
Yi�s�e

���Zi�s�

where Vc is the variance under the Cox model
 V is the naive variance given above
 Z is
the covariate set for the �tted model
 x is the covariate vector for this curve
 and I�� is
the variance matrix for "�� The increase in variance is largest for a covariate set that is
far from the mean� The vector d�t� is also the score residual process for a hypothetical
new subject with covariates x and no events
 which is a measure of the leverage of such
an observation on the estimate of �� It is intuitive that if the covariate value�s� x has
small leverage on "�
 then the variance in "� will have small e�ect on the curve�

��



The calculations for a weighted model have the same form
 using the jumps in the
weighted cumulative hazard function

"$��t� �
nX
i��

Z t

�
wi

dNi�s�P
Yj�s�wj"rj�s�

�

Notice� In an earlier version of this document the above was incorrectly factored
to form the equation below
 which is wrong�

Vc�t� �

Z t

�
f� # �x�s�� %Z�s���I���x�s�� %Z�s��gdV �s�� �

Gail and Byar ���� have extended this result to the estimation of multiple curves

and show that if x�s� and x��s� were two separate covariate vectors
 then the covariance
of the two estimated cumulative hazards is of exactly the same form as above
 with the
obvious substitutions of x�s�#x��s� in place of �x�s�
 and d� for one of the two vectors
d� No results are given for a strati�ed Cox model� �The cross product terms could
presumably be integrated with respect to �dVk # dVk����� however
 this creates extra
complexity in the programming and has not yet been implimented��

Since the variance formula involves the covariate average over time %Z�t� for the
original study
 it cannot usually be calculated from published summaries
 e�g�
 to esimate
the expected survival of the patient in front of you based on a report in the literature�
However
 for most Cox �ts %Z�t� will vary only slightly over time
 and a reasonable
approximation could be made if the report contained both the initial averages and the
con�ndence intervals for any particular case�

This curve is applicable to a single patient
 and is the appropriate object to plot
when considering the predicted survival for some future patient who has some particular
set of covariates� Another use is to �t a strati�ed model
 for example

Surv�time� status� � age � sex � strata�treatment�

Then a plot of the pair of curves is a comparison of the treatment groups
 adjusted to
common age and sex values� This can be useful when two treatments are unbalanced
with respect to an important covariate�

It is common practice to use these curves for group survival as well� The curve for
the �average� patient
 i�e�
 the curve corresponding to a �ctional subject with mean
values for each covariate
 is then used as the predicted survival curve for the entire co�
hort� Though convenient this procedure is incorrect� What should be done follows from
exactly the same discussion as found above in the section on expected survival for a pop�
ulation matched reference� Either the Ederer
 Hakulinen
 or conditional computation
can be used�

�




One use of these cohort averages is to summarize and present the results of a study�
This issue is reviewed in Thomsen
 Keiding and Altman �
��
 albeit using very di�erent
terms� Center stage is given to the analog of the Ederer estimate
 referred to as the direct
adjusted survival curve
 a term coined earlier by Makuch ����� Using a simple example

Thomsen et� al� demonstrate that the estimate based on a single average patient will
be badly biased whenever there is large variation in the individual risk scores ��x�

A second use is for historical comparison� With the increased availability of pub�
lished regression analyses of survival with speci�c diseases it has become possible to
make historical comparisons between the observed survival in a �possibly fairly small�
study group and the survival that was to be expected from a published regression anal�
ysis� One area where this has been used is in transplantation
 where randomized studies
are logistically �and perhaps ethically� impossible
 so that the best answer available to
the question �what would have happened to these patients if they had not been trans�
planted'� will be via comparison with published pre�transplatation�therapy experience
����� In this case �i will come from the older study
 with the original Cox model covari�
ates as the matching variables� Follow�up and censoring time will come from the new
data set�

A variance estimate for the direct adjusted curve Sd is derived in Gail and Byar �����
Let

Sd � ���n�
nX
i��

Si�t�

Where Si is the individual survival curve for subject i in the new data set� This is
calculated as above
 using xi�t� for the new subject but risk sets and variance based on
the original Cox model �t� Then

var�Sd� � ���n���
X

var�Si� #
X
i��j

cov�Si� Sj���

Thomsen et al� also discuss the conditional estimate

exp

�
�
Z t

�

P
Yi�s����s�e

�
i �s�P

Yi�s�
ds

�
�

They conclude that the curve itself is �not easy to interpret� because it mixes observed
mortality
 through Yi
 with expected mortality
 through �i� However
 the di�erence in
log survival curves can be used as an estimate of excess mortality as is done in Andersen
and V(th ����

This author believes that extension of Hakulinen�s cohort method is the most ap�
propriate way to combine expected curves in the Cox model� However
 I am not aware
of any discussion of this in the literature� The failure of the Ederer method
 remember

occurs when there is signi�cant change in the enrollment criteria over the course of a
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study� This is of major concern in historical reviews that span � �� years
 as the age
pro�le often changes dramatically� For a Cox model
 this will be an issue whenever
there is similar change in the values at entry for one of the variables that was included
in the model�

To conclude this section I must comment on a common abuse of the Cox model
expected curve� This is the comparison of the expected curve for a study to the Kaplan�
Meier of the same study as a test for �goodness of �t�� This is nonsense since�

�� Some di�erence between the two can arise because of di�erent approximations

i�e�
 the S functions default to an estimate that is comparable to the Fleming�
Harrington method� This will di�er from the Kaplan�Meier in the tails
 where n
is small�

�� Some simple algebra shows that the conditional estimator is the F�H estimate of
the raw data
 independent of the value of "��

�� If the censoring pattern is not independent of risk
 then the Ederer estimate will
di�er from the K�M because of the censoring e�ect
 even if the Cox model is
completely correct�

�� For most data sets the value of %Z�t� varies only slowly with time� In this case the
individual survival curve for the average subject %Z��� will also be approximately
equal to the F�H estimator
 independent of "��


� If a data set includes time�dependent covariates
 the individual survival curve for
any �xed x can be very surprizing�

� Examples

��� Simple Cox Models

The �rst example uses data from a study of ovarian cancer ��
�� This data appears in
the SAS supplemental procedure guide for the COXREG and SURVTEST procedures�
The variables are

� futime� The number of days from enrollment until death or censoring
 whichever
came �rst�

� fustat� An indicator of death ��� or censoring ����

� age� The patient age in years �actually
 the age in days divided by �	
��
�

� residual�dz� An indicator of the extent of residual disease�
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� rx� The treatment given�

� ecog�ps� A measure of performance score or functional status
 using the Eastern
Cooperative Oncology Group�s scale� It ranges from � �fully functional� to �
�completely disabled�� Level � subjects are usually considered too ill to enter a
randomized trial such as this�

� ovarian 
� read�table��data�ovarian�� row�names�NULL�

col�names� c��futime�� �fustat�� �age��

�residual�dz�� �rx�� �ecog�ps���

A listing of the data is given below�

futime fustat age residual�dz rx ecog�ps

�� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

��� � ������� � � �

���� � ������� � � �

���� � ������� � � �

���� � ������� � � �

���� � ������� � � �

���� � ������� � � �

Here is a simple survival model for age and its result� Age is perhaps the only
important variable in this data set�

� coxph�Surv�futime� fustat�� age� ovarian�
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Call� coxph�formula � Surv�futime� fustat� � age�

data�ovarian�

coef exp�coef� se�coef� z p

age ����� ���� ������ ���� �������

Likelihood ratio test����� on � df� p��������� n� ��

For a more complicated model
 the result should probably be saved in a temporary
variable� It can then be printed multiple times
 and residuals and or predicted values
may be extracted�

� fit 
� coxph�Surv�futime� fustat�� residual�dz � rx � ecog�ps� ovarian�

� print�fit�

Call� coxph�formula � Surv�futime� fustat� � residual�dz � rx � ecog�ps�

coef exp�coef� se�coef� z p

residual�dz ����� ����� ����� ����� ������

rx ������ ����� ����� ������ ������

ecog�ps ����� ����� ����� ����� ������

Likelihood ratio test����� on � df� p����� n� ��

The print function is invoked automatically
 so in the example above the user could
have typed ��t� instead of �print��t��� A more complete printout is produced by the
summary function� This adds con�dence intervals
 Wald and score tests
 and an R�

measure based on work of Nagelkirke ��
�� This measure needs to be proven over time

but certainly is one of the easier ones to implement that I�ve seen
 and appears very well
founded� An option to the summary function can be used to get con�dence intervals at
levels other than ��
�

The strati�ed Cox model can be obtained by using a strata directive within the �t�

� fit 
� coxph�Surv�futime� fustat�� age � ecog�ps � strata�rx�� ovarian�

� summary�fit�

Call�

coxph�formula � Surv�futime� fustat� � age � ecog�ps � strata�rx��

data�ovarian�

N� ��

coef exp�coef� se�coef� z p

age ������ ����� ����� ����� �������

ecog�ps ������� ����� ����� ������ �������

exp�coef� exp��coef� lower ��� upper ���

��



age ����� ����� ����� ����

ecog�ps ����� ����� ����� ����

Rsquare� ����� �max possible� ����� �

Likelihood ratio test� ���� on � df� p��������

Efficient score test � ���� on � df� p�������

After the �t is completed residuals from the �tted model can be obtained using the
resid function� By default the martingale residuals are produced
 also available are
deviance
 score
 and Schoenfeld residuals� For any of these it is su�cient to give the
shortest unique abbreviation of the residual type� Two common transformations of the
score residuals can also be requested� dbeta and dfbetas� These are the approximate
change in the coe�cient vector if observation i is dropped
 and that change scaled by
the variance of ��

Martingale residuals are used most often in an assessment of functional form
 score
residuals play a role in assessing in�uential or leverage data points as well as computation
of robust �sandwich� variance estimators
 and the Schoenfeld residuals are useful in
assessing time trends or lack of proportionality in one of the coe�cients of the model�
Deviance residuals
 though they have an interesting theoretical justi�cation
 have not
proven very useful in practice�

� fit 
� coxph�Surv�futime� fustat� � age � residual�dz � rx � ecog�ps�

ovarian�

� mresid 
� resid�fit�

� dresid 
� resid�fit� �dev��

� sresid 
� resid�fit� �scor��

� resid�fit� �scho��

age residual�dz rx ecog�ps

�� ���������� ���������� ���������� ����������

��� ���������� ���������� ���������� ����������

��� ����������� ���������� ���������� ���������

��� ���������� ���������� ���������� ���������

��� ������������ ���������� ���������� ����������

��� ���������� ����������� ��������� ���������

��� ���������� ���������� ��������� ����������

��� ����������� ���������� ���������� ����������

��� ����������� ���������� ��������� ���������

��� ���������� ���������� ��������� ���������

��� ���������� ����������� ��������� ���������

��� ���������� ����������� ���������� ���������

The martingale and deviance residuals are each a vector of length n
 where n is the
number of subjects in the data� The score residuals form an n by p matrix
 with one

��



column per regressor variable
 and are components of the �rst derivative of the partial
likelihood� By de�nition
 the column sums of the score residual matrix will be zero at
"�� The Schoenfeld residuals have one row for each death in the data set and p columns

the time point of the death is returned as the row label of the matrix� As with other
models in S
 a factor variable may be expanded into multiple contrasts in the X matrix
�though there are none in this example�� It will then appear as multiple columns in the
score or Schoenfeld residuals as well�

Tests for proportional hazards are based on rescaled Schoenfeld residuals
 and can
be obtained with cox�zph� They are based on Grambsch and Therneau ����
 and are
discussed further in section on mathematical backround�

� temp 
� cox�zph�fit�

� print�temp�

rho chisq p

age �������� ������� ������

residual�dz �������� ������� ������

rx ������� ������� ������

ecog�ps ������� ������� ������

GLOBAL NA ������� ������

� plot�temp�

� plot�temp� var���

The plot shows time �or a monotone function of time� on the x axis and the rescaled
residuals on the y axis
 with one plot per covariate� An overlaid smooth curve is an
estimate of ��t�
 a time�dependent regression coe�cient� Under proportional hazards
we must have ��t� � �
 i�e�
 the hazard ratio does not vary with time� The standard
printout includes the correlation coe�cients � for the plots of each variable along with
tests for � � �
 and a global test of proportional hazards based on all the covariates�
�There is no applicable value of � for the global test�� The var option can be used to
create only a single plot
 in this case for the second variable in the model statement�
�residual�dz�� This is useful when one wishes to add a main title
 a horizontal line at
y � �
 or other annotation to the plot�

Predicted values are available based on either the linear predictor 	 � X � "�
 the
risk for an individual relative to the average subject within the data set r � exp�	�

the expected number of events for an individual over the time interval that they were
observed to be at risk �which is a component of the martingale residual�
 or for individual
components of the linear predictor 	�

� lp 
� predict�fit� type��lp�� se�fit�T�

� risk 
� predict�fit� type��risk��

� expt 
� predict�fit� type��expected��

� term 
� predict�fit� type��terms��

� round�risk���

��



� � � � � � � � � �� �� �� �� �� ��

����� ���� ���� ����� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� �� �� �� �� �� �� �� �� �� ��

���� ���� ���� ���� ��� ���� ���� ��� ���� ���� ����

� fit

An optional data argument to the predict function is a new data set� It allows one
to obtain predicted values for subjects who are not part of the original study� Because
it is positioned as the second argument to predict
 the examples above must explicitly
include �type �� �or a second comma�
 where this was not necessary in residual�
Another option to the predict function is to return standard errors of the predicted
values�

��� Fitted survival curves

The surv�t function is used for �tting a survival curve
 either to original data or after
a Cox model or parametric model �t�

� sf 
� survfit�Surv�futime� fustat� � rx � residual�dz� ovarian�

� summary�sf�

The above example would result in four survival curves
 indexed by the two levels of
treatment and the two levels of residual disease� The right hand side of the formula is
interpreted di�erently than it would be for an ordinary linear or Cox model� Technically

the formula should have been expressed using a . operator instead of #
 since the desired
result is for all four levels or �interactions�� We process the # symbol as though it were
an interaction
 as well as producing labels that are longer �and hopefully more readable�
than the default labels generated by the . operator�

Each of the following formulas would have produced the same output curves
 though
the �rst has di�erent labels�

Surv�futime� fustat� � interaction�rx�residual�dz�

Surv�futime� fustat� � strata�rx�residual�dz�

Another example is shown below
 for a somewhat smaller study of acute myelogenous
leukemia� the data can be found on page �� of Miller ����


� aml
� data�frame�time�c��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�� �� �� �� ��� ��� ��� ��� ��� ��� ��� ����

status� c����������������������� �������������������������

group � as�factor�c�rep��Maintained�� ����

rep��Nonmaintained�� ��� ���

��



�sf 
� survfit�Surv�time� status� � group� aml�

�sf

Call� survfit�formula�formula � Surv�time� status� � group� data�aml�

n events mean se�mean� median ����CI ����CI

group�Maintained �� � ���� ����� �� �� NA

group�Nonmaintained �� �� ���� ���� �� � NA

Similarly to other S model programs
 the print function gives a very short synopsis
and the summary function provides more complete information� For surv�t the default
print contains only n
 the total number of events
 the mean survival time and its standard
error
 median survival
 and con�dence intervals for the median� The mean is based on
a truncated estimate
 i�e�
 the survival curve is assumed to go to zero just past the last
follow�up time� It is thus an under estimate of the mean when the last observation�s�
is censored� The con�dence interval for the median is based on the con�dence intervals
for the survival curve� the lower and upper limits are the intersection of a horizontal
line at �
 with the lower and upper con�dence bands for S�t�� The con�dence interval
will change if a di�erent con�dence level or con�dence type is speci�ed in the survfit

call� If the upper con�dence band for S�t� never reaches ��

 as in the example above

then the upper con�dence limit for the median is unknown�

�summary�sf�

Call� survfit�formula�formula � Surv�time� status� � group� data�aml�

group�Maintained

time n�risk n�event survival std�err lower ��� CI upper ��� CI

� �� � ����� ������ ������ �����

�� �� � ����� ������ ������ �����

�� � � ����� ������ ������ �����

�� � � ����� ������ ������ �����

�� � � ����� ������ ������ �����

�� � � ����� ������ ������ �����

�� � � ����� ������ ������ �����

group�Nonmaintained

time n�risk n�event survival std�err lower ��� CI upper ��� CI

� �� � ������ ������ ������ �����

� �� � ������ ������ ������ �����

�� � � ������ ������ ������ �����

�� � � ������ ������ ������ �����

�� � � ������ ������ ������ �����

�� � � ������ ������ ������ �����

�� � � ������ ������ ������ �����

�� � � ������ ������ ������ �����

��



�� � � ������ NA NA NA

By default
 the summary includes one row for each time at which a death occurred

and for each of these times lists the number of subjects who are at risk just prior to
the event
 the number of events that occurred
 the survival estimate
 its standard error

and upper and lower �
& con�dence intervals calculated on the hazard scale�

Options to the surv�t routine include estimates based on the Nelson cumulative
hazard estimator instead of the Kaplan�Meier �as proposed by Fleming and Harrington�

con�dence intervals based on the log hazard scale
 and the level for the con�dence
interval� An option to the summary routine allows the listing to be printed for selected
survival times and or to include censored time points within the printout�

Survival estimates for the data set as a whole can be generated by using the null
model
 i�e� �� as the right�hand side of the formula�

� survfit�Surv�time� status� ��� aml�

It is also allowable to leave o� the ��� the same result will be obtained�
The surv�t function now supports case weights via the weight argument� One obvi�

ous use of this feature is for data sets with multiplicities of the input lines
 i�e�
 instead
of having one line of data appear three times it could appear once with a weight of three�
For instance
 if weights of two are attached to each of the �� cases in the AML data
this e�ectively doubles the data set
 the resultant survival is identical to the original

but the variance of the hazard is halved� Case weights were included as an option in
the program less for this reason
 however
 than to facilitate various manipulations that
require fractional case weights
 see for example Turnbull �
��
 who uses this in an EM
algorithm for left censored data� When survfit is used with fractional weights
 the
returned variance estimate is probably worthless�

The surv�t function also can generate predicted survival curves for a Cox model by
using the resultant �t as a �rst argument to the function�

� attach�ovarian�

� fit 
� coxph�Surv�futime� fustat�� age � ecog�ps � strata�rx��

� survfit�fit�

This will produce two survival curves
 one for each of the two rx strata� each curve
will be for a �pseudo cohort� whose age and ecog performance score are equal to the
mean values for the data set that was �t�

An important aspect of the new modeling language is the �largely undocumented�
number of side e�ects� If the last line above were executed without �rst attaching the
ovarian data frame �perhaps in a later S session� it would fail� This is because estimation
of the survival curve requires some data summaries that were not saved in the �t object�
In order to obtain them
 the data is reconstructed based on the call that produced

��



the �t object
 and this reconstruction requires essentially the same environment to
exist as was originally present� However
 if the original �t had been produced using
the data�ovarian argument to coxph
 no attachment would be necessary� More subtle
errors arise if important options di�er at the later call
 i�e�
 na�action or contrasts� A
summary of the side e�ects in survival models is found later in this document�

The original version of surv�t had an option for risk weights� This option had to do
with survival curves following a Cox model with known coe�cients
 and is now obtained
in a more obvious way� The example below shows a �t with risk weights
 i�e� exp�X ���

where X �� � �� to ����

� survfit�coxph�Surv�aml
time� aml
status� � offset�����������

This example is contrived� normally the o�set statement would contain the result
of a coxph �t
 perhaps on a di�erent set of data� I have used this feature on two
occasions in my own analyses� In each case the second data set had a small number
of patients
 and we wished to test the e�ect of variable �x� after adjusting for a set of
baseline variates known to e�ect survival� Though the data set was not large enough to
model and estimate all of the variables concurrently
 it was su�cient when the regression
coe�cients for the baseline variates were �xed at the values from an earlier
 larger study�
For instance
 if the earlier study had a variable old and a �tted regression coe�cient of
���
 the new model would have had offset���� 	old� as a term in the model�

Another use of o�sets is to model the relative mortality of a population� This is
discussed in example Andersen
 et al� ��� using diabetes in the county of Fyn� In this
model the covariates were age at onset
 sex
 and the population mortality or hazard
�phaz� which depends on age and sex and is set up as a time dependent covariate�
Then a model for absolute mortality is

Surv�start� stop� status� � age � sex

and the model for relative mortality is

Surv�start� stop� status� � age � sex � offset�log�phaz��

As a comparison of the two models
 they suggest �tting a third model

Surv�start� stop� status� � age � sex � log�phaz�

where a values of "�� � � corresponds to absolute mortality and "�� � � to a model
for the relative mortality� The �tted value of ���� suggests that the model for absolute
mortality is preferred�

Note that when a curve is requested using only the offset directive
 using the same
data set that created the coe�cients for the o�set
 the resultant survival estimate is
identical to the curve based on the model�s fit component but the variance will be

�




de�ated� The survival curve from a Cox model includes in its variance a term that
accounts for the error in "�
 and an o�set model implicitedly states that � is known
without error�

In order to get curves for a pseudo cohort other than one centered at the mean of
the covariates
 use the newdata argument to surv�t� The newdata argument is a list

data frame or matrix which contains in each row all variables found in the right�hand
side of the equation that was �t
 excluding strata terms� Multiple rows in the new data
frame will result in multiple �cohorts� of subjects
 for example�

� fit 
� coxph�Surv�futime� fustat�� age � ecog�ps � strata�rx��

ovarian�

� survfit�fit� newdata�list�age�c�������� ecog�ps�c������

This will produce two survival curves
 the �rst for an imagined cohort of subject who
were age �� with a performance score of �
 and the second for an age �� group� A
more complete example is given below� �Amendment� if the model includes a strata by
covariate interaction
 use of the newdata argument currently leads to failure
 including a
very nonintuitive error message� This is a bug
 and should be �xed in the next release��

In keeping with other S models
 the newdata argument can also be the number of
a data frame� �I don�t like this
 but it was important to be compatible�� When the
formula has only one variable on the right�hand side of the equation and the given
newdata argument is a single integer
 then the intent of the user is ambiguous� For
instance

� fit 
� coxph�y � x�

� survfit�fit� newdata���

Is the intention to have x � � or to use the variable x found in data frame number �'
To avoid this anomaly
 be explicit by writing survfit�fit� newdata�list�x����� �And
for those who are curious
 the ambiguity is
 if necessary
 resolved by the following rule�
If the number is a positive integer
 this routine assumes it is a frame number
 otherwise
the number is assumed to be the actual value for the covariate��

Here is another example from the Fleming data set� Note the use of x�T� This causes
a copy of the �nalX matrix to be saved in the fit object
 including any transformations

dummy variables that represent factors
 etc� When subsequent calculations are planned
for a �tted Cox model
 such as residuals or survival curves
 this will save signi�cant
computation time �at the expense of a larger fit object� since x does not have to be
reconstructed�

� fit 
� coxph�Surv�futime� fustat� � age � ecog�ps � strata�rx��

ovarian� x�T�

� summary�fit�

Call�
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coxph�formula � Surv�futime� fustat� � age � ecog�ps � strata�rx��

data�ovarian� x�T�

N� ��

coef exp�coef� se�coef� z p

age ������ ����� ����� ����� �������

ecog�ps ������� ����� ����� ������ �������

exp�coef� exp��coef� lower ��� upper ���

age ����� ����� ����� ����

ecog�ps ����� ����� ����� ����

Rsquare� ����� �max possible� ����� �

Likelihood ratio test� ���� on � df� p��������

Efficient score test � ���� on � df� p�������

� summary�survfit�fit��

Call� survfit�coxph�object � fit�

rx��

time n�risk n�event survival std�err lower ��� CI upper ��� CI

�� �� � ����� ������ ������ �

��� �� � ����� ������ ������ �

��� �� � ����� ������ ������ �

��� �� � ����� ������ ������ �

��� � � ����� ������ ������ �

��� � � ����� ������ ������ �

��� � � ����� ������ ������ �

rx��

time n�risk n�event survival std�err lower ��� CI upper ��� CI

��� �� � ����� ����� ����� �

��� �� � ����� ����� ����� �

��� � � ����� ����� ����� �

��� � � ����� ����� ����� �

��� � � ����� ����� ����� �

� summary�survfit�fit� list�age�c�������� ecog�ps�c��������

Call� survfit�coxph�object � fit� newdata � list�age � c���� ����

ecog�ps � c� �� ����

rx��

time n�risk n�event survival� survival�

�� �� � ����� �������

��� �� � ����� �������

��



��� �� � ����� �������

��� �� � ����� �������

��� � � ����� �������

��� � � ����� �������

��� � � ����� �������

rx��

time n�risk n�event survival� survival�

��� �� � ����� ������

��� �� � ����� ������

��� � � ����� ������

��� � � ����� ������

��� � � ����� ������

The �rst call to surv�t asks only for a single curve at the mean of the covariates�
�The value of those means is stored in the �t object as �t!means�� The second call asks
for curves for two hypothetical cohorts
 one has an age of �� and a performance score of
two
 the second is age �� with a performance score of three� The printout requires some
explanation� The printouts for the two treatment strata are listed in sequence� since
the event times are di�erent in the two strata they cannot be listed side�by�side� The
survivals for the two age . ps cohorts are listed side by side since they are computed at
the same time points�

Age is a very signi�cant variable in the model� survival of a subject age �� is
signi�cantly worse than one age ��� The standard error and con�dence intervals are
computed in the second example as they were in the �rst
 and are present in the returned
survival structure
 but since their inclusion would be too wide for the paper the printing
routine leaves them o��

The functions for predicted survival
 unfortunately
 share a basic �aw with S pre�
diction in other models� If the model equation involves any special functions such as
ns
 poly or involves factor variables
 then naive use of survfit will result in incorrect
answers� In particular
 for a factor it is important that newdata has the same number
of levels as the original data
 or contrasts will not be coded as they were originally�

� fit 
� coxph�Surv�time� status� �group� data�aml� � group is a factor

� srv 
� survfit�fit� list�group���� � Wrong answer

� srv 
� survfit�fit� list�group������ � Wrong answer

� srv 
� survfit�fit� list�group�aml
group����� � Ok

� srv 
� survfit�fit� list�group�factor��� levels�������� Ok

� srv 
� survfit�fit� list�group��Nonmaintained��� � Error message

The same problems can be revealed using lm�time�group� aml� and the predict func�
tion� Admittedly
 this is not much of a defense� For further discussion see sections �����
and 	���	 of Chambers and Hastie ����

��



��� Complex Cox Models

The more complex Cox models usually involve time�dependent data� This is handled
by using the counting process style of notation developed by Andersen and Gill ���� for
a technical reference see Fleming and Harrington ����� The example below reprises an
analysis of the Stanford heart transplant study found in Kalb�eisch and Prentice ����

section 
�
��� �The data itself is taken from Crowley and Hu ����
 as the values listed in
the appendix of Kalb�eisch and Prentice are rounded and do not reproduce the results
of their section 
�
��

The covariates in the study are

�age of acceptance in days  �	
��
� � ��
�date of acceptance in days since � Oct ��	��  �	
��

prior surgery ���yes
 ��no�


along with the time�dependent transplant variable� From the time of admission to the
study until the time of death a patient was eligible for a heart transplant� The time to
transplant depends on the next available donor heart with an appropriate tissue�type
match�

In the analysis data frame
 a transplanted patient is represented by two rows of
data� The �rst is over the time period from enrollment �time �� until the transplant

and has transplant��
 the second is over the period from transplant to death or last
follow�up and has transplant��� All other covariates are the same on the two lines�
Subjects without a transplant are represented by a single row of data� Each row of data
contains two variables start and stop which mark the time interval �start
 stop� for the
data
 as well as an indicator variable event which is � if there was a death at time stop�
Consider a subject who was transplanted at day ��
 and then followed up until day ���
His �rst row of data applies over the time interval ��
��� and his second over the interval
���
���� S code to create this data frame can be found in the Examples subdirectory of
the source code�

Here is the code to �t the six models found in Kalb�eisch and Prentice� Note the
use of the options statement
 which forces the interaction terms to be coded in terms of
dummy variables� see the S documentation for contr�sum� �The S default contr�helmert
tries to create orthogonal contrasts
 which rarely makes sense except in balanced anova
designs � but that is just my opinion�� Since the data set contains tied death times

we must use the same approximation as K/P in order to match their coe�cients�

� options�contrasts�c��contr�treatment�� �contr�poly���

� sfit�� � coxph�Surv�start� stop� event�� �age � surgery�	transplant�

data�jasa�� method��breslow��

� sfit�� � coxph�Surv�start� stop� event�� year	transplant�

data�jasa�� method��breslow��

��



� sfit�� � coxph�Surv�start� stop� event�� �age � year�	transplant�

data�jasa�� method��breslow��

� sfit�� � coxph�Surv�start� stop� event�� �year � surgery�	transplant�

data�jasa�� method��breslow��

� sfit�� � coxph�Surv�start� stop� event�� �age �surgery�	transplant �year�

data�jasa�� method��breslow��

� sfit�� � coxph�Surv�start� stop� event�� age	transplant � surgery � year�

data�jasa�� method��breslow��

� summary�sfit���

Call�

coxph�formula � Surv�start� stop� event� � �age � surgery� 	 transplant�

N� ���

coef exp�coef� se�coef� z p

age ������ ����� ������ ����� �����

surgery ������� ����� ������ ������ �����

transplant ������ ����� ������ ����� �����

age�transplant ������ ����� ������ ����� �����

surgery�transplant ������� ����� ������ ������ �����

exp�coef� exp��coef� lower ��� upper ���

age ����� ����� ����� ����

surgery ����� ����� ����� ����

transplant ����� ����� ����� ����

age�transplant ����� ����� ����� ����

surgery�transplant ����� ����� ����� ����

Rsquare� ���� �max possible� ����� �

Likelihood ratio test� ���� on � df� p�������

Efficient score test � �� on � df� p�������

� sfit��

Call� coxph�formula � Surv�start� stop� event� � year 	 transplant�

coef exp�coef� se�coef� z p

year ������ ����� ����� ������ ������

transplant ������ ����� ����� ������ ������

year�transplant ����� ����� ����� ����� ������

Likelihood ratio test����� on � df� p������ n� ���

One line of the above printout may generate confusion� N � ���� This is the number
of observations in the data set
 not the number of subjects� There are actually ���
patients
 of which 	� had a transplant and are thus represented using � rows of data�


�



When there are time dependent covariates
 the predicted survival curve can present
something of a dilemma� The usual call�s result is for a pseudo cohort whose covariates
do not change�

�fit� 
� survfit�sfit��� c�year��� transplant��� �

�fit� 
� survfit�sfit��� c�year��� transplant��� �

The second curve
 �t�
 represents a cohort of patients whose transplant variable is
always �
 even on day �
 i�e�
 patients who had no waiting time for a transplant� There
were none of these in the study
 so just what does it represent' Time dependent covari�
ates that represent repeated measurements on a patient
 such as a blood enzyme level

are particularly problematic� Since the model depended on these covariates
 a proper
predicted survival requires speci�cation of the �future covariate history� for the patient
in question� Because of this
 it is all too easy to create predicted survival curves for
�patients� that never would or perhaps never could exist� See the discussion of internal
and external covariates in section 
�� of Kalb�eisch and Prentice for a more complete
exposition on these issues�

It is possible to obtain the projected survival for some particular pattern of change
in the time dependent covariates� This requires a data frame with multiple lines
 along
with the �ag individual�T to signal the surv�t function that only one curve is desired�
The example below gives the curve for a cohort aged 
�
 with prior surgery and a
transplant at 	 months� That is
 over the time interval ��
�
� the covariate set is �
�

�
 ��
 and over the time interval ��

 �� it is �
�
 �
 ��� �The example uses days instead
of years
 however�� In order to specify the time points both y and X variables must be
present in the supplied data frame
 though the value for event will be ignored�

� data 
� data�frame�start�c�������� stop�c������	����� event�c������

age�c�������� surgery�c������ transplant�c������

� survfit�sfit��� data� individual�T�

Another useful extension is time dependent strata� The following examples come
from a study of liver transplantation� As in the heart transplant study
 there is a
variable waiting time for any patient� One question of interest is the e�cacy of liver
transplant
 another is the utility of a particular risk score developed at the Mayo Clinic�
The variables for a given patient are�

� �tstart
 tstop
 status�� the time interval
 open on the left and closed on the right�
Status is � if the subject died at time tstop� All times are in days since enrollment
in the study�

� base�rsk� The risk score at study entry� This covariate was de�ned by the �Mayo
model� analysis
 on an independent data set� The actual de�nition involves 

variables� ����.log�bilirubin� # ����.age # � � � �
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� trisk� time�dependent risk score� The latest value we have for the risk score �most
patients are evaluated about once a year��

� transplant� time�dependent transplant status�

� tx�time� For transplanted patients
 the number of days from enrollment to trans�
plant�

There are �� patients
 who generate approximately 	�� observations in the con�
structed data frame� The number of observations for a given patient depends on the
number of determinations of his her risk score
 and on whether they were transplanted�

� attach�timedep�

� options�contrasts�c��contr�treatment�� �contr�poly���

� yy 
� Surv�tstart� tstop� status�

� tfit� 
� coxph�yy � base�rsk� subset��trplant�����

� tfit� 
� coxph�yy � offset�base�rsk� � trplant�

� tfit� 
� coxph�yy � trisk� subset��trplant�����

� tfit� 
� coxph�yy � trisk 	strata�trplant��

The �rst �t is a validity test of the Mayo model
 it uses the baseline risk and only the
time points before transplant� The �tted coe�cient was ����
 which is almost too good
an agreement� The second �t is a test of the e�cacy of transplant
 after adjustment for
the baseline risk� Given the �t of the �rst model
 along with the fact that this data set
is much smaller than the one used to develop the risk score
 it seemed reasonable to not
re��t the risk variable�

Fit � tests the question of whether the most recent score has the same utility as the
baseline score� The �tted coe�cient was ���
 which validates the �medically obvious�
assertion that recent lab data is more predictive than older values�

Fit � uses both the pre and post transplant data� A separate coe�cient for trisk is
�t to the pre and post experience
 as well as a separate baseline hazard� The question
is� adjusting for the e�ect of transplant
 is the risk score�s predictive ability the same
in the pre and post�tx groups'

With a time dependent strata such as that in �t � above
 there is a question of
alignment� The Cox model�s inference depends on the comparison of each subject with
the other subjects in his strata who were �at risk� at the time of his death� Say that
a particular patient has a transplant on day ��� and then dies on day ���� Should
the risk group for his death be all transplanted patients who were alive ��� days after
enrollment in the study
 or all those alive ��� days after their transplant' If we believe
the latter
 and it does seem more plausible this particular disease and intervention

then a patient�s time clock should restart at � after a transplant� Another argument is
that the �baseline hazard� for a given subject is more dependent on their recent major
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surgery than on the time since enrollment� A third
 self serving reason for realignment
at the transplant date is that it will increase the power of the model
 since it tends to
maximize the average number of subjects in a risk set� The re�aligned model is �t by

� yyy 
� Surv�tstart� tstop� status�

origin�ifelse�trplant���� tx�time� ���

� coxph�yyy � trisk	strata�trplant� �

In SAS or BMDP
 it is possible to mimic time dependent strata by breaking a subject
into two new subjects� Because each subject�s time interval implicitly starts at � in
these packages
 there is e�ectively a realignment of the data�

��� Di�erences in survival

There is a single function survdiff to test for di�erences between � or more survival
curves� It implements the G� family of Fleming and Harrington ����� A single parameter
� controls the weights given to di�erent survival times
 � � � yields the log�rank test
and � � � the Peto�Wilcoxon� Other values give a test that is intermediate to these
two� The default value is � � ��

The interpretation of the formula is the same as for survfit
 i�e�
 variables on the
right hand side of the equation jointly break the patients into groups�

� survdiff�Surv�time� status�� group� aml�

N Observed Expected �O�E����E

Maintained �� � ������ �����

Nonmaintained �� �� ����� �����

Chisq� ��� on � degrees of freedom� p� �������

For one�sample tests see the section on expected survival�

��� Competing Risks

This running example is taken from the paper by Wei
 Lin and Weissfeld �WLW� �
���
They use a data set on time to recurrence of bladder cancer� a copy of the data may be
obtained from statlib� A portion of the data is shown below�

Recurrence Time

Treatment Follow�up Initial Initial ����������������

group time number size � � � �

� � � �

� � � �
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� � � �

� � � �

� �� � �

� �� � � �

� �� � �

� �� � �

� �� � � �

� �� � � �� ��

� �� � �

� �� � � �� ��

� �� � � � �� ��

� �� � � � � ��

� �

� �

� �

Code for reading in this data can be found in the Examples directory� After reading
it in
 we have created the following data set

� bladder�������

id rx size number start stop event enum

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

�� � � � � � � � �

�� � � � � � � � �

�� � � � � � � � �

�� � � � � � �� � �

�� � � � � �� �� � �

�� � � � � �� �� � �

�� � � � � �� �� � �

�� � � � � � � � �

�� � � � � � �� � �

�� � � � � �� �� � �

�� � � � � �� �� � �

� �

� �

� �
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Notice that this data set has exactly � observations for each subject� A second data
set
 bladder�
 has had all of the rows with start��stop removed
 and also has a �fth
observation for some subjects �those with follow�up after the fourth recurrence��

The model explored in WLW is easily �t by the following commands� The key
addition to the model is cluster�id�
 which asserts that subjects with the same value
of the variable id may be correlated� In order to compare the results directly to WLW

we wish to look at a di�erent set of contrasts than the S default� These are created �by
hand�

� options�contrasts��contr�treatment��

� wfit 
� coxph�Surv�stop� event�� �rx � size � number�	 strata�enum� �

cluster�id�� bladder� method��breslow��

� rx 
� c��������� � the coefficients for the treatment effect

� cmat 
� diag��� cmat���� 
� � � a contrast matrix

� cmat �	� wfit
coef�rx� � the coefs in WLW �table ��

��� ���������� ���������� ���������� ����������

� wvar 
� cmat �	� wfit
var�rx�rx� �	� t�cmat� � var matrix �eqn ����

� sqrt�diag�wvar��

��� ��������� ��������� ��������� ���������

The same coe�cients can also be obtained
 as WLW do
 by performing four separate
�ts
 and then combining the results�

� fit� 
� coxph�Surv�stop� event� � rx � size � number� bladder�

subset��enum���� method��breslow��

� fit� 
� coxph�Surv�stop� event� � rx � size � number� bladder�

subset��enum���� method��breslow��

� fit� 
� coxph�Surv�stop� event� � rx � size � number� bladder�

subset��enum���� method��breslow��

� fit� 
� coxph�Surv�stop� event� � rx � size � number� bladder�

subset��enum���� method��breslow��

� sc� 
� resid�fit�� type��score��

� sc� 
� resid�fit�� type��score��

� sc� 
� resid�fit�� type��score��

� sc� 
� resid�fit�� type��score��

� t�� 
� fit�
var �	� t�sc�� �	� sc� �	� fit�
var

� t�� 
� fit�
var �	� t�sc�� �	� sc� �	� fit�
var

�

�

�







� t�� 
� fit�
var �	� t�sc�� �	� sc� �	� fit�
var

� wvar�all 
� cbind�rbind� t��� t��� t��� t����

rbind�t�t���� t��� t��� t����

rbind�t�t���� t�t���� t��� t����

rbind�t�t���� t�t���� t�t���� t����

� wvar 
� wvar�all�c����������� c�����������

The �rst of the individual �ts is based on time from the start of the study until the
�rst event
 for all patients� the second is based on time from the start of the study until
the second event
 again for all patients
 and etc� �In order to match results with WLW
I have chosen the Breslow approximation above
 but with the large number of ties this
approximation may be ill advised�� The two approaches give exactly the same answer�

A major advantage of the compressed form
 beyond the need for less typing
 is that
it allows us to easily �t submodels that are not available using separate coxph calls for
each strata� In particular
 the model

Surv�stop� event� � rx � �size � number�	strata�enum� �cluster�id��

di�ers only in that there is no treatment by strata interaction
 and gives an average
treatment coe�cient of ��	�
 which is near to the weighted average of the marginal �ts
�based on the diagonal of  Cowvar� suggested in WLW�

The authors also give the results for two suggestions proposed by Prentice et al �����
For time to �rst event these are the same as above� For the second event they use only
patients who experienced at least one event
 and use either the time from start of study
�method a� or the time since the occurrence of the last event� The code for these is
quite easy�

� fit�pa 
� coxph�Surv�stop� event� � rx � size � number� bladder��

subset��enum�����

� fit�pb 
� coxph�Surv�stop�start� event� � rx � size � number� bladder��

subset��enum�����

Lastly
 the authors also make use of an Andersen�Gill model in the comparison� This
model has the advantage that it uses all of the data directly
 but because of correlation it
may again underestimate the variance of the relevant coe�cients� A method to address
this is given in a paper by Lee
 Wei and Amato ��
�� it is essentially the same method
found in the WLW paper�

� afit 
� coxph�Surv�start� stop� event� � rx � size � number � cluster�id��

data�bladder��

� sqrt�diag�afit
var��

��� ���������� ���������� ����������

� sqrt�diag�afit
naive�var��

��� ���������� ���������� ����������


	



The naive estimate of standard error is ���
 the correct estimate of ��� is intermediate
between the naive estimate and the linear combination estimate� �Since this model
does not include strata by covariate interactions
 I would not expect an exact match��
Further discussion on these estimators can be found in section ����	�

��� Expected Survival

Expected survival is closely related to a standard method in epidemiology called person

years
 which consists of counting the total amount of follow�up time contributed by
the subjects within any of several strata� Person�years analysis is accomplished within
S by the pyears function� The main complication of this function
 as opposed to a
straightforward use of tapply
 is that a subject may contribute to several di�erent cells
of the output array during his follow�up� For instance
 if the desired output table were
treatment group . age in years
 a subject with � years of observation would contribute
to 
 di�erent cells of the table �� cells if he entered the study exactly on his birthdate��
The following counts up years of observation for the Stanford heart patients by age
group and surgical status�

age 
� jasa
accept�dt � jasa
birth�dt

ptable 
� pyears�futime � tcut�age� c����������������� � surgery� jasa�

The tcut function has the same arguments as cut
 but indicates as well that the
category is time based� If cut had been used in the formula above
 the �nal table would
be based only on each subject�s age at entry� With tcut
 a subject who entered at
age 
��
 and had � years of follow up would contribute ��
 years to the 
��	� category
and ��
 years to the 	���� category� A consequence of this is that the age and fu�time
variables must be in the same units for the calculation to proceed correctly
 in this case
both should be in years given the cutpoints that were chosen� The surgery variable is
treated as a factor
 exactly as it would be in surv�fit�

The output of pyears is a list of arrays containing the total amount of time con�
tributed to each cell and the number of subjects who contributed some fraction of time
to each cell� If the response variable is a Surv object
 then the output will also contain
an array with the observed number of events for each cell� If a rate table is supplied

the output will contain an array with the expected number of events in each cell� These
can be used to compute observed and expected rates
 along with con�dence intervals�

A rate table argument is optional for person�years
 but is required to compute ex�
pected survival� Rate tables are included with the package for the US population and
for Minnesota
 Florida
 and Arizona �states where Mayo has a clinic�� The addition
of rate tables for other areas is a tedious but straightforward exercise� US and state
rate tables contain the expected hazard rate for a subject
 strati�ed by age
 sex
 calen�
dar year
 and optionally by race� �User created rate tables have no restrictions on the
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number or names of the strati�cations� see the documentation for survexp�uswhite for
details�� When using a rate table
 it is important that all time variables be in the same
units as were used for the table � for the US tables this is hazard day
 so time must
be in days�

fit 
� survexp�futime � surgery � ratetable�age�age� sex��Male��

year�accept�dt�� data�jasa� ratetable�survexp�us�

The formula contains an observation time futime
 a grouping variable surgery which
will cause the output to contain � curves
 and a special function ratetable� The pur�
pose of this function is to match the data frame�s variables to the proper dimensions
of the ratetable� Argument order is unimportant
 the necessary key words �age�
 �sex�

and �year� are contained in the dimid attribute of the actual ratetable survexp�us� The
jasa data set does not contain a sex variable
 so we have defaulted the value to �Male��
Default values such as this must either be an integer subscript or match one of the dim�
names� The above example produces a cohort survival curve
 which is almost always
plotted along with the observed �Kaplan�Meier� survival of the data for visual compari�
son� There are � di�erent methods for calculating the cohort curve
 which are discussed
in more detail in section ������ They are the conditional method shown above
 which
uses the actual death or censoring time
 the method of Hakulinen
 which instead uses
the potential follow�up time of each subject
 and the uncensored population method of
Ederer
 Axtel and Cutler
 which requires no response variable�

Formal tests of observed versus expected survival are usually based not on the cohort
curve directly but on the individual expected survival probabilities for each subject�
These probabilities are always based on the actual death censoring time�

surv�prob 
� survexp�futime � ratetable�age�age� sex��Male��

year�accept�dt�� data�jasa� cohort�F�

newtime 
� �log�surv�prob� �the cumulative hazard for each subject

test 
� glm�fustat � offset�log�newtime��� family�poisson�

When cohort�F the survexp function returns a vector of survival probabilities
 one per
subject� The negative log of the survival probability can be treated as an �adjusted
time� for the subject for the purposes of modeling� The one�sample log�rank test for
equivalence of the observed survival to that of the referent population is then the test
for intercept�� in the Poisson regression model shown� A test for treatment di�erence

adjusted for any age�sex di�erences between the two arms
 would be obtained by adding
a treatment variable to the model�

User created rate tables can also be used� Table � shows yearly death rates per
���
��� subjects based on their smoking status �	��� A stored raw data set contains
this data
 with the �Never smoked� data replicated where the lower table shows blanks
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followed by the same data for females� A rate table is created using the following S
code�

temp 
� matrix�scan��data�smoke��� ncol��� byrow�T��������

smoke�rate 
� c�rep�temp�������� rep�temp�������� temp�������

attributes�smoke�rate� 
� list�

dim�c������������

dimnames�list�c����������������������������������������������������������

c�������� �������

c��Male���Female���

c��
��� ������ ������ ������� �������� ��������

c��Never�� �Current�� �Former����

dimid�c��age�� �amount�� �sex�� �duration�� �status���

factor�c������������

cutpoints�list�c�����������������������NULL� NULL�

c����������������NULL��

class��ratetable�

�

is�ratetable�smoke�rate�

The smoking data cross�classi�es subjects by 
 characteristics� age group
 sex
 status
�never
 current or former smoker�
 the number of cigarettes consumed per day
 and
 for
the prior smokers
 the duration of abstinence� In our S implementation
 a ratetable is
an array with � extra attributes of which one is the class� In order to cast the above
data into a single array
 the rates for never and current smokers needed to be replicated
across all 	 levels of the duration
 we do this in �rst creating the smoke�rate vector�
The vector of rates is then saddled with a list of descriptive attributes� The dim and
dimnames are as they would be for an array
 and give its shape and printing labels

respectively� Dimid is the list of keywords that will be recognized by the ratetable

function
 when this table is later used within the survexp or pyears function� For the
US total table
 for instance
 the keywords are �age�
 �sex�
 and �year�� These keywords
must be in the same order as the array dimensions� The factor attribute identi�es each
dimension as �xed or mobile in time� For a subject with �
 years of follow�up
 for
instance
 the sex category remains �xed over this �
 years
 but the age and duration
of abstinence continue to change� more than � of the age groups will be referenced to
calculate his her total hazard� For each dimension that is not a factor
 the starting
value for each of the rows of the array must be speci�ed so that the routine can change
rows at the appropriate time
 this is speci�ed by the cutpoints� The cutpoints are null
for a factor dimension�

Because these attributes must be self�consistent
 it is wise to carefully check them
for any user created rate table� The is�ratetable function does this automatically�

As a contrived example
 we can apply this table to the Stanford data
 assuming that
all of the subjects were current heavy smokers �after all
 they have heart disease�� The
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max follow�up for any subject in the Stanford data set was April � �����

ptime 
� mdy�date�������� � jasa
entry�dt �max potential fu

ptime 
� ifelse�jasa
fustat���� ptime� jasa
futime� � ������

exp� 
� survexp�ptime � ratetable�age��age��age��������� status��Current��

amount��� duration��� sex��Male���

data�jasa� ratetable�smoke�rate� conditional�F� scale���

This example does illustrate some points� For any factor variable
 the ratetable function
allows use of either a character name or the actual column number� Since I have chosen
the current smoker category
 duration is unimportant
 and any value could have been
speci�ed� The most important point is to note that age has been rescaled� This table
contains rates per year
 whereas the US tables contained rates per day� It is crucial that
all of the time variables �age
 duration
 etc� be scaled to the same units
 or the results
may not be even remotely correct� The US rate tables were created using days as the
basic unit since year of entry will normally be a julian date� for the smoking data years
seemed more natural�

An optional portion of a rate table
 not illustrated in the example above
 is a summary

attribute� This is a user written function which will be passed a matrix and can return
a character string� The matrix will have one column per dimension of the ratetable
 in
the order of the dimid attribute
 and will have already been processed for illegal values�
To see an example of a summary function
 type attr�survexp�us� �summary�� at the S
prompt� In this summary function the returned character string lists the range of ages
and calendar years in the input
 along with the number of males and females� This
string is included in the output of survexp
 and will be listed as part of the printed
output� This printout is the only good way of catching errors in the time units� for
instance
 if the string contained �age ranges from ��� to ��	 years�
 it is a reasonable
guess that age was given in years when it should have been stated in days�

As an aside
 many entries in the smoke�rate table are based on small samples� In
particular
 the data for females who are former smokers contains � zeros� Before serious
use these data should be smoothed� As a trivial example�

newrate 
� smoke�rate

temp 
� newrate� ����� ���

fit 
� gam�temp � s�row�temp�� � s�col�temp���

newrate��������� 
� predict�fit�

A realistic e�ort would begin and end with graphical assessment
 and likely make use
of the individual sample sizes as well� The raw rates data
 but not the sample sizes
 has
been included in the Examples directory�
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� Parametric Regression

��� Usage

The survreg function implements the class of parametric accelerated failure time models�
Assume that the survival time y satis�es log�y� � X �� # �W 
 for W from some given
distribution� Then if $w�t� is the cumulative hazard function for W 
 the cumulative
hazard function for subject i is $w�exp��	i���t�
 that is
 the time scale for the subject
is accelerated by a constant factor� A good description of the models is found in chapter
� of Kalb�eisch and Prentice �����

The following �ts a Weibull model to the lung cancer data set included in S�Plus�

� fit 
� survreg�Surv�time� status� � age � sex � ph�karno� data�lung�

dist��weibull��

� fit

Call�

survreg�formula � Surv�time� status� � age � sex � ph�karno� data � lung� dist

� �weibull��

Coefficients�

�Intercept� age sex ph�karno

�������� ������������ ��������� �����������

Scale� ���������

Loglik�model�� ������� Loglik�intercept only�� �������

Chisq� ����� on � degrees of freedom� p� �������

n���� �� observations deleted due to missing�

The code for the routines has undergone substantial revision between releases � and

 of the code� Calls to the older version are not compatable with all of the changes

users can use the survreg�old function if desired
 which retains the old argument style
�but uses the newer maximization code�� Major additions included penalzed models

strata
 user speci�ed distributions
 and more stable maximization code�

��� Strata

In a Cox model the strata statement is used to allow separate baseline hazards for
subgroups of the data
 while retaining common coe�cients for the other covariates across
groups� For parametric models
 the statement allows for a separate scale parameter for
each subgroup
 but again keeping the other coe�cients common across groups� For
instance
 assume that separate �baseline� hazards were desired for males and females
in the lung cancer data set� If we think of the intercept and scale as the baseline shape

then an appropriate model is
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� sfit 
� survreg�Surv�time� status� � sex � age � ph�karno � strata�sex��

data�lung�

� sfit

Coefficients�

�Intercept� sex age ph�karno

�������� ��������� ������������ ����������

Scale�

sex�� sex��

��������� ���������

Loglik�model�� ������� Loglik�intercept only�� �������

Chisq� ����� on � degrees of freedom� p� �������

The intercept only model used for the likelihood ratio test has � degrees of freedom

corresponding to the intercept and two scales
 as compared to the 	 degrees of freedom
for the full model�

This is quite di�erent from the e�ect of the strata statement in censorReg� there it
acts as a �by� statement and causes a totally separate model to be �t to each gender�
The same �t �but not as nice a printout� can be obtained from survreg by adding an
explicit interaction to the formula�

Surv�time�status� � sex � �age � ph�karno�	strata�sex�

��� Penalized models

Let the linear predictor for a survreg model be 	 � X�#Z�
 and consider maximizing
the penalized log�likelihood

PLL � LL�y��� ��� p��� �� �

where � and � are the unconstrained e�ects
 respectively
 X and Z are the covariates
 p
is a function that penalizes certain choices for �
 and � is a vector of tuning parameters�

For instance
 ridge regression is based on the penalty p � �
P
��
j � it shrinks coe��

cients towards zero�
Penalties have been implemented in survreg in exactly the same way as in coxph


and the reader is referred to that documentation for a complete description of the
capabilities� In particular the exact same penalty functions
 e�g�
 ridge��
 pspline��

and frailty�� can be used in the formula of a parametric survival model� The values
of the tuning parameter�s� � may di�er
 however� The Cox model is closely related
to exponential regression� the baseline hazard estimate causes the other coe�cients to
behave consistent with a scale of �� For a frailty term added to a Weibull model with
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estimated scale of c
 a tuning parameter of c� appears to be similar to a value of � in a
Cox �t� See for instance Louis and xxx�

More work on understanding these models is clearly in order�

��� Specifying a distribution

The �tting routine is quite general
 and can accept any distribution that spans the real
line for W 
 and any monotone transformation of y� The standard set of distributions is
contained in a list survreg�distributions� Elements of the list are of two types� Basic
elements are a description of a distribution� Here is the entry for the logistic family�

logistic � list�

name � �Logistic��

variance � function�parm� pi�����

init � function�x� weights� ���� f
mean 
� sum�x	weights�� sum�weights�

var 
� sum�weights	�x�mean����� sum�weights�

c�mean� var�����

g�
deviance� function�y� scale� parms� f

status 
� y��ncol�y��

width 
� ifelse�status�����y���� � y������scale� ��

center 
� y���� � width��

temp� 
� ifelse�status���� exp�width���� �� �avoid a log��� message

temp� 
� log��temp������temp�����

best 
� ifelse�status���� �log��	scale��

ifelse�status���� temp�� ���

list�center�center� loglik�best�

g�
density � function�x� ���� f

w 
� exp�x�

cbind�w����w�� �����w�� w����w���� ���w�����w�� �w	�w��� �������w����

g�
quantile � function�p� ���� log�p����p��

�

� Name is used to label the printout�

� Variance contains the variance of the distribution� For distributions with an op�
tional parameter such as the t�distribution
 the parm argument will contain those
parameters�

� Deviance gives a function to compute the deviance residuals� More on this is
explained below in the mathematical details�
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� The density function gives the necessary quantities to �t the distribution� It should
return a matrix with columns F �x�
 � � F �x�
 f�x�
 f ��x��f�x� and f ���x��f�x�

where f � and f �� are the �rst and second derivatives of the density function
 re�
spectively�

� The quantiles function returns quantiles
 and is used for residuals�

The reason for returning both F and � � F in the density function is to avoid round
o� error when F �x� is very close to �� This is quite simple for symmetric distributions

in the Gaussian case for instance we use qnorm�x� and qnorm��x� respectively� �In the
intermediate steps of iteration very large deviates may be generated
 and a probabilty
value of zero will cause further problems��

Here is an example of the second type of entry�

exponential � list�

name � �Exponential��

dist � �extreme��

scale �� �

trans � function�y� log�y��

dtrans� function�y� ��y �

itrans� function�x� exp�x�

�

This states that an exponential �t is computed by �tting an extreme value distribution
to the log transformation of y� �The distribution pointed to must not itself be a pointer
to another�� The extreme value distribution is restricted to have a scale of �� The �rst
derivative of the transformation
 dtrans
 is used to adjust the �nal log�likelihood of the
model back to the exponential�s scale� The inverse transformation itrans is used to
create predicted values on the original scale�

The formal rules for an entry are that it must include a name
 either the �dist� com�
ponent or the set �variance�
�init�
 �deviance�
 �density� and �quantile�
 an optional
scale
 and either all or none of �trans�
 �dtrans� and �itrans��

The dist��weibull� argument to the survreg function chooses the appropriate list
from the survreg�distributions object� User de�ned distributions of either type can
be speci�ed by supplying the appropriate list object rather than a character string�
Distributions should
 in general
 be de�ned on the entire real line� If not the minimizer
used is likely to fail
 since it has no provision for range restrictions�

Currently supported distributions are

� basic

� �least� Extreme value

� Gaussian

	




� Logistic

� t�distribution

� transformations

� Exponential

� Weibull

� Log�normal ��lognormal� or �loggaussian��

� Log�logistic ��loglogistic��

��� Residuals

����� Response

The target return value is y � "y
 but what should we use for y when the observation is
not exact' We will let "y� be the MLE for the location parameter � over a data set with
only the observation of interest
 with � �xed at the solution to the problem as a whole

subject to the constraint that � be consistent with the data� That is
 for an observation
right censored at t � ��
 we constain � 	 ��
 similarly for left censoring
 and constrain
� to lie within the two endpoints of an interval censored observation� To be consistent
as the width of an interval censored observation goes to zero
 this de�nition does require
that the mode of the density lies at zero�

For exact
 left
 and right censored observations "y� � y
 so that this appears to be
an ordinary response residual� For interval censored observations from a symmetric
distribution
 "y� � the center of the censoring interval� The only unusual case
 then

is for a non�symmetric distribution such as the extreme value� As shown later in the
detailed information on distributions
 for the extreme value distribution this occurs for
"y� � yl � log�b��exp�b� � ���
 where b � yu � yl is the length of the interval�

����� Deviance

Deviance residuals are response residuals
 but transformed to the log�likelihood scale�

di � sign�ri�
q
LL�yi� "y����� LL�yi� 	i���

The de�nition for "y� used for response residuals
 however
 could lead to the square root
of a negative number for left or right censored observations
 e�g�
 if the predicted value
for a right censored observation is less than the censoring time for that observation� For
these observations we let "y� be the unconstrained maximum
 which leads to yhat� � ��
and #� for right and left censored observations
 respectively
 and a log�likelihood term
of ��

		



The advantages of these residuals for plotting and outlier detection are nicely detailed
in McCullagh and Nelder ����� However
 unlike GLM models
 deviance residuals for
interval censored data are not free of the scale parameter� This means that if there are
interval censored data values and one �ts two models A and B
 say
 that the sum of the
squared deviance residuals for model A minus the sum for model B is not equal to the
di�erence in log�likelihoods� This is one reason that the current survreg function does
not inherit from class glm� glm models use the deviance as the main summary statistic
in the printout�

����� Dfbeta

The dfbeta residuals are a matrix with one row per subject and one column per pa�
rameter� The ith row gives the approximate change in the parameter vector due to
observation i
 i�e�
 the change in "� when observation i is added to a �t based on all
observations but the ith� The dfbetas residuals scale each column of this matrix by the
standard error of the respective parameter�

����� Working

As shown in section 
�� below
 the Newton�Raphson iteration used to solve the model
can be viewed as an iteratively reweighted least squares problem with a dependent
variable of �current prediction � correction�� The working residual is the correction
term�

����� Likelihood displacement residuals

Escobar and Meeker ���� de�ne a matrix of likelihood displacement residuals for the
accelerated failure time model� The full residual information is a square matrix 0A
 with
dimension the number of pertubations considered� Three examples are developed in
detail
 all with dimension n
 the number of observations�

Case weight pertubations measure the overall e�ect on the parameter vector of
dropping a case� Let V be the variance matrix of the model
 and L the n by p matrix
with elements 
Li�
�j 
 where Li is the likelihood contribution of the ith observation�
Then 0A � LV L�� The residuals function returns the diagonal values of the matrix� Note
that LV equals the dfbeta residuals�

Response pertubations correspond to a change of � � unit in one of the response
values� For a Gaussian linear model
 the equivalent computation yields the diagonal
elements of the hat matrix�

Shape pertubations measure the e�ect of a change in the log of the scale parameter
by � unit�
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The matrix residual type returns the raw values that can be used to compute these
and other LD in�uence measures� The result is an n by 	 matrix
 containing columns
for

Li

Li


	i


�Li


	�i


Li


 log���


Li


 log����

�Li


	
 log���

��� Predicted values

����� Linear predictor and response

The linear predictor is 	i � x�i
"�
 where xi is the covariate vecor for subject i and "� is

the �nal parameter estimate� The standard error of the linear predictor is x�iV xi
 where
V is the variance matrix for "��

The predicted response is identical to the linear predictor for �ts to the untrans�
formed distributions
 i�e�
 the extreme�value
 logistic and Gaussian� For transformed
distributions such as the Weibull
 for which log�y� is from an extreme value distribu�
tion
 the linear predictor is on the transformed scale and the response is the inverse
transform
 e�g� exp�	i� for the Weibull� The standard error of the transformed response
is the standard error of 	i
 times the �rst derivative of the inverse transformation�

����� Terms

Predictions of type terms are useful for examination of terms in the model that expand
into multiple dummy variables
 such as factors and p�splines� The result is a matrix
with one column for each of the terms in the model
 along with an optional matrix of
standard errors� Here is an example using psplines on the ���� Stanford data

� fit 
� survreg�Surv�time� status� � pspline�age� df��� � t�� stanford��

dist��lognormal��

� tt 
� predict�fit� type��terms�� se�fit�T�

� yy 
� cbind�tt
fit����� tt
fit���� �����	tt
se�fit�����

tt
fit���� �����	tt
se�fit�����

� matplot�stanford�
age� yy� type��l�� lty�c��������

� plot�stanford�
age� stanford�
time� log��y��

xlab��Age�� ylab��Days�� ylim�c���� �������

� matlines�stanford�
age� exp�yy� attr�tt
fit� �constant���� lty�c��������

The second plot puts the �t onto the scale of the data
 and thus is similar in scope to
�gure � in Escobar and Meeker ����� Their plot is for a quadratic �t to age
 and without
T
 mismatch score in the model�

	�



����� Quantiles

If predicted quantiles are desired
 then the set of probability values p must also be
given to the predict function� A matrix of n rows and p columns is returned
 whose
ij element is the pjth quantile of the predicted survival distribution
 based on the
covariates of subject i� This can be written as X� # zq� where zq is the qth quantile of
the parent distribution� The variance of the quantile estimate is then cV c� where V is
the variance matrix of ��� �� and c � �X� zq��

In computing con�dence bands for the quantiles
 it may be preferable to add stan�
dard errors on the untransformed scale� For instance
 consider the motor reliability data
of Kalb�eisch and Prentice ����

� fit 
� survreg�Surv�time� status� � temp� data�motors�

� q� 
� predict�fit� data�frame�temp������ type��quantile��

p�c���� ��� ���� se�fit�T�

� ci� 
� cbind�q�
fit� q�
fit � ����	q�
se�fit� q�
fit � ����	q�
se�fit�

� dimnames�ci�� 
� list�c���� ��� ���� c��Estimate�� �Lower ci�� �Upper ci���

� round�ci��

Estimate Lower ci Upper ci

��� ����� ���� �����

��� ����� ����� �����

��� ����� ����� �����

� q� 
� predict�fit� data�frame�temp������ type��uquantile��

p�c���� ��� ���� se�fit�T�

� ci� 
� cbind�q�
fit� q�
fit � ����	q�
se�fit� q�
fit � ����	q�
se�fit�

� ci� 
� exp�ci�� �convert from log scale to original y

� dimnames�ci�� 
� list�c���� ��� ���� c��Estimate�� �Lower ci�� �Upper ci���

� round�ci��

Estimate Lower ci Upper ci

��� ����� ����� �����

��� ����� ����� �����

��� ����� ����� �����

Using the �default� Weibull model
 the data is �t on the log�y� scale� The con�dence
bands obtained by the second method are asymmetric and may be more reasonable�
They are also guarranteed to be � ��

This example reproduces �gure � of Escobar and Meeker �����

� plot�stanford�
age� stanford�
time� log��y��

xlab��Age�� ylab��Days�� ylim�c����� ������ xlim�c�������

� fit 
� survreg�Surv�time� status� � age � age��� stanford��

dist��lognormal��

� qq 
� predict�fit� newdata�list�age������� type��quantile��

p�c���� ��� ����

	�



� matlines������ qq� lty�c��������

Note that the percentile bands on this �gure are really quite a di�erent object than
the con�dence bands on the spline �t� The latter re�ect the uncertainty of the �tted
estimate and are related to the standard error� The quantile bands re�ect the predicted
distribution of a subject at each given age �assuming no error in the quadratic estimate
of the mean�
 and are related to the standard deviation of the population�

��� Fitting the model

With some care
 parametric survival can be written so as to �t into the iteratively
reweighted least squares formulation used in Generalized Linear Models of McCullagh
and Nelder ����� A detailed description of this setup for general maximum likelihood
computation is found in Green �����

Let y be the data vector �possibly transformed�
 and xi be the vector of covariates
for the ith observation� Assume that

zi � yi � x�i�

�

 f

for some distribution f 
 where y may be censored�
Then the likelihood for y is

l �

� Y
exact

f�zi���

���Y
right

Z �

zi

f�u�du

�A��Y
left

Z zi

��
f�u�du

�A� Y
interval

Z zu
i

zl
i

f�u�du

�
�

where �exact�
 �right�
 �left�
 and �interval� refer to uncensored
 right censored
 left
censored
 and interval censored observations
 respectively
 and zli
 z

u
i are the lower

and upper endpoints
 respectively
 for an interval censored observation� Then the log
likelihood is de�ned as

LL �
X
exact

g��zi�� log��� #
X
right

g��zi� #
X
left

g��zi� #
X

interval

g��zi� z
�
i � � ����

where g� � log�f�
 g� � log��� F �
 etc�
Derivatives of the LL with respect to the regression parameters are�
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where 	 � X �� is the vector of linear predictors�
Ignore for a moment the derivatives with respect to � �or treat it as �xed�� The

Newton�Raphson step de�nes an update �

�XTDX�� � XTU�

where D is the diagonal matrix formed from �g��
 and U is the vector g�� The current
estimate � satis�es X� � 	
 so that the new estimate � # � will have

�XTDX��� # �� � XTD	 #XTU

� �XTD��	 #D��U�

Thus if we treat � as �xed
 iteration is equivalent to IRLS with weights of �g�� and
adjusted dependent variable of 	 � g��g��� At the solution to the iteration we might
expect that "	 � y� and a weighted regression with y replacing 	 gives
 in general
 good
starting estimates for the iteration� �For an interval censored observation we use the
center of the interval as �y��� Note that if all of the observations are uncensored
 then
this reduces to using the linear regression of y on X as a starting estimate� y � 	 so
z � �
 thus g� � � and g�� � a constant �all of the supported densities have a mode at
zero��

This clever starting estimate is introduced in Generalized Linear Models �McCullagh
and Nelder �����
 and works extremely well in that context� convergence often occurs in
��� iterations� It does not work quite so well here
 since a �good� �t to a right censored
observation might have 	 �� y� Secondly
 the other coe�cients are not independent of
�
 and � often appears to be the most touchy variable in the iteration�

Most often
 the routines will be used with log�y�
 which corresponds to the set of
accelerated failure time models� The transform can be applied implicitly or explicitly�
the following two �ts give identical coe�cients�

� fit� 
� survreg�Surv�futime� fustat�� age � rx� fleming� dist��weibull��

� fit� 
� survreg�Surv�log�futime�� fustat� � age � rx� data�fleming�

dist��extreme��

The log�likelihoods for the two �ts di�er by a constant
 i�e�
 the sum of d log�y��dy for
the uncensored observations
 and certain predicted values and residuals will be on the
y versus log�y� scale�

��	 Derivatives

This section is very similar to the appendix of Escobar and Meeker ����
 di�ering only
in our use of log��� rather than � as the natural parameter� Let f and F denote the

��



density and distribution functions
 respectively
 of the distributions� Using ���� as the
de�nition of g�� � � � � g� we have
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�
zuf�zu�� zlf�zl�
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�
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�
z�f ���z� # zf ��z�
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�
� �
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 log ��

�


�g�

�log ���

�

�
�zu��f ��zu�� �zl��f ��zl�

F �zu�� F �zl�

�
� 
g��
 log ��� # 
g��
 log ��


�g�

	
 log �

�
zf ���z�

�f�z�
� 
g��
	�� # 
g��
 log ��


�g�

	
 log �

�
zuf ��zu�� zlf ��zl�

��F �zu�� F �zl��
� 
g��
	�� # 
g��
 log ��

To obtain the derivatives for g�
 set the upper endpoint zu to � in the equations for
g�� To obtain the equations for g�
 left censored data
 set the lower endpoint to ���

After much experimentation
 a further decision was made to do the internal iteration
in terms of log���� This avoids the boundary condition at zero
 and also helped the
iteration speed considerably for some test cases� The changes to the code were not too
great� By the chain rule
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At the solution 
LL�
� � �
 so the variance matrix for � is a simple scale change of
the returned matrix for log����

��
 Distributions

����� Gaussian

Everyone�s favorite distribution� The continual calls to * may make it slow on censored
data
 however� Because there is no closed form for *
 only the equations for g� simplify
from the general form given in section � above�

� � � � �� � �

F �z� � *�z�

f�z� � exp��z�����
p
��

f ��z� � �zf�z�
f ���z� � �z� � ��f�z�

For uncensored data
 the standard glm results are clear by substituting g� � �z�� into
equations ��
� The �rst derivative vector is equal to X �r where r � �z�� is a scaled
residual
 the update step I��U is independent of the estimate of �
 and the maximum
likelihood estimate of n�� is the sum of squared residuals� None of these hold so neatly
for right censored data�

����� Extreme value

If y is Weibull then log�y� is distributed according to the �least� extreme value distri�
bution� As stated above
 �ts on the latter scale are numerically preferable because it
removes the range restriction on y� A Weibull distribution with the scale restricted to
� gives an exponential model�

� � �� � �
��� � � � � �� � ���	

F �z� � �� exp��w�
f�z� � we�w

f ��z� � ��� w�f�z�

f ���z� � �w� � �w # ��f�z�

where w � exp�z��
The mode of the distribution is at f��� � ��e
 so for an exact observation the

deviance term has "y � y� For interval censored data where the interval is of length

��



b � zu�zl
 it turns out that we cover the most mass if the interval has a lower endpoint
of a � log�b��exp�b�� ����
 and the resulting log�likelihood is

log�e�e
a � e�e

a�b

��

Proving this is left as an exercise for the reader�

����� Logistic

This distribution is very close to the Gaussian except in the extreme tails
 but it is easier
to compute� However
 some data sets may contain survival times close to zero
 leading
to di�erences in �t between the lognormal and log�logistic choices� �In such cases the
rationality of a Gaussian �t may also be in question�� Again let w � exp�z��

� � �� �� � ����

F �z� � w��� # w�

f�z� � w��� # w��

f ��z� � f�z� �� � w���� # w�

f ���z� � f�z� �w� � �w # ����� #w��

The distribution is symmetric about �
 so for an exact observation the contribution
to the deviance term is � log���� For an interval censored observation with span �b the
contribution is

log �F �b�� F ��b�� � log

�
eb � �

eb # �

�
�

����� Other distributions

Some other population hazards can be �t into this location�scale framework
 others do
not�

Distribution Hazard

Weibull p���t�p��

Extreme value �����e�t�����

Rayleigh a# bt
Gompertz bct

Makeham a# bct

We can see that an extreme value distribution on t� � log�t� is equvalent to a Weibull
hazard on t
 with p� � � ����

��



The Makeham hazard seems to �t human mortality experience beyond infancy quite
well
 where a is a constant mortality which is independent of the health of the subject
�accidents
 homicide
 etc� and the second term models the Gompertz assumption that
�the average exhaustion of a man�s power to avoid death is such that at the end of
equal in�nitely small itervals of time he has lost equal portions of his remaining power
to oppose destruction which he had at the commencement of these intervals�� For older
ages a is a neglible portion of the death rate and the Gompertz model holds�

Clearly

� TheWiebull distribution with p � � �� � �
� is the same as a Rayleigh distribution
with a � �� It is not
 however
 the most general form of a Rayleigh�

� The extreme value and Gompertz distributions have the same hazard function

with � � �� log�c�
 and exp��	��� � b�

It would appear that the Gompertz can be �t with an identity link function combined
with the extreme value distribution� However
 this ignores a boundary restriction� If
f�x� 	� �� is the extreme value distribution with paramters 	 and �
 then the de�nition
of the Gompertz densitiy is

g�x� 	� �� � � x � �
g�x� 	� �� � cf�x� 	� �� x �� �

where c � exp�exp��	���� is the necessary constant so that g integrates to �� If 	�� is
far from �
 then the correction term will be minimal and survreg should give a reasonable
�t to Gompertz data� If not
 the distribution can not be made to easily conform to the
general �tting scheme of the program�

The Makeham distribution falls into the gamma family �equation ��� of Kalb�eisch
and Prentice
 Survival Analysis�
 but with the same range restriction problem�

� Side E�ects

The basic problem is that it is ine�cient to return everything one might ever need from
a model �t� Depending on the routine
 the returned result might be larger than the
original data� In a Cox model
 for instance
 the standard errors for a predicted survival
curve depend on the di�erence between the chosen values of the covariates and the
weighted means of the covariates at each time point
 i�e�
 the mean at time t over all of
the subjects still at risk at t weighted by their �tted risk score� This is essentially the
same size as the X matrix�

The routines for a Kaplan�Meier survival
 di�erences in survival
 and for expected
survival return all necessary information
 and have no side e�ects�

�




��� Cox model

Several of the downstream results require the y or survival data of the Cox model �most
often just the status variable�� Others require the right hand side variables and or the
strata information as well� By default
 the coxph function saves y in its result
 but not
the X matrix� Optionally
 one can specify that coxph save the X matrix �including the
strata variables�
 or even the entire model frame� The predict
 residuals
 and surv�t
methods only reconstruct what they have to
 so the side e�ects depend on what is saved�

If either X or y must be recreated
 the program is forced to recreate both� This is
due to missing values � if only y were recreated
 it might include extra observations that
were omitted in the original �t due to missing values in X� BEWARE
 if X is recreated
and the current settings for either the na�action or contrasts options are di�erent than
they were when the model �rst was run
 then the new matrix may be di�erent than the
old� Resulting answers will be nonsense
 and there will be no warning� The same is true
if the original �t did not include a data� argument and the list of attached data frames
is not identical to the original environment
 though in this case there is some possibility
of an error message due to unmatched variable names�

The predict function has four types� linear predictor
 risk
 expected number of
events
 and terms� By default it does not compute the standard errors of the predictions�
A data frame may be included to get predictions for a new subject� The following objects
may need to be computed�

� Without a new data frame

� type��terms�� X

� type��lp� with standard errors� X

� type��risk� with standard errors� X

� type��expected�� y

� With a new data frame

� type��expected�� y

The residuals function has four types� Martingale residuals have no side e�ects

deviance residuals require y
 and score and Schoenfeld residuals require both y and X�

Fitted survival curves for a Cox model always require y� If standard errors are
desired �the default� or if there were strata in the �t then X is required as well�

��� Parametric survival models

The matrix type of residual requires y� if it is not present the routine fails with an error
message� At present this is the only side e�ect
 though if and when a surv�t method is
created for the parametric models there may be more�

�	



� Missing values

The handling of missing values has always been a �aw in S
 a particularly odious one to
those who
 like me
 deal with medical data� �The original survival functions broke from
the S mold by automatically deleting missing values from the input data set�� The latest
version of S has begun to address this issue via the na�action function� Though this is
an admirable start
 I feel that more needs to be done to get a �complete� solution�

For the survival routines
 missing values impact in � areas �

� Global choice of a default missing value strategy�

� Possible data reduction in passing from the data frame to the model matrix�

� A report of the e�ects �if any� of the action
 included in the standard printout for
the model�

� Possible data expansion or other modi�cation in computing the residuals or pre�
dicted values�

By the last of these I mean that the following S code should work independent of the
current na�action�

� fit 
� coxph� Surv�tt� ss� � x� � x��

� plot�x�� resid�fit��

That is
 the residual from a model is the same shape as the input data
 independent
of reductions that may have occurred in the intervening X matrix� Other actions in
this last step are possible� For instance
 if the na�action had imputed numbers for the
missing values
 the predicted value for such observations should perhaps be set to NA
or otherwise marked as unreliable�

Of the four e�ects
 the second is dealt with by the na�action extension to base
S� The �rst
 the ability to choose a global action
 is accomplished with a change to
model�frame�default� If neither the particular function call nor the data frame contained
an explicit na�action
 the routine now checks for an na�action option� To make na�omit
the global default
 type

� options�na�action��na�omit��

Because model�frame�default is called by all of the S modeling functions
 this action
will apply to all of them
 not just survival�

In order to implement the third and fourth e�ects
 it was necessary to pass na�action
information as part of the returned model �t� This in turn requires the na�action routine
to store something in the model frame that is passed to the �tting function� Because
the de�nition of what �should be done� to label the printout or to modify the residuals

��



depends on the na�action chosen
 the �tting
 print
 residual
 and predict routines do not
try to manipulate the passed information directly
 but use it as an argument to naprint

and naresid methods� This allows the actions taken to be extremely general
 and more
importantly
 they are easily modi�ed by the user�

Speci�cally

�� The na�action routine optionally adds an attribute named na�action to the data
frame� The class of the attribute object should be the name of the na action
 but
the contents or form of the object is unrestricted and depends on the particular
na�action�

�� The �tting routine adds this attribute to its output
 as a component named
na�action�

�� The print routines for coxph
 surv�t
 and etc� each contain a call to the naprint
method
 with the passed na�action object as its argument� This method is assumed
to return a character string appropriate for inclusion in the printout�

�� The residual and predicted value routines each pass their �nal result through a
call to the naresid method
 whose arguments are the na�action object and the
vector or matrix of results�

The package includes a modi�ed version of na�omit along with the methods naprint�omit
and naresid�omit�

The default naprint method returns a null string
 and the default naresid method
returns its second argument
 this mimics the unmodi�ed S� This allows the survival
routines to work with �standard� S na�action functions� The standard modeling func�
tions such as lm ignore any attributes on the data frame
 and work �as usual� with the
modi�ed na�omit function�
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