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1 Brief Description

The arp.gee package makes use of identical-by-descent (IBD) data to simultaneously estimate a
trait-locus position and its genetic effects for affected relative pairs (ARPs) using generalized es-
timation equations (GEE) [1]. Two models are available for this estimation. One model allows a
different trait-locus effect for each ARP type. The other model constrains the trait-locus effects
according to the marginal effect of a single susceptibility locus. The function arp.ibd is the main
function of this package, which carries out the estimation. This function considers different start-
ing values for the trait-locus position, and chooses that position that gives the best goodness-of-fit.
Functions are provided that plot the mean IBD sharing values and the fitted values from the model,
provide a summary of the fit of a model, and that test the adequacy of the fit of the constrained
model, relative to the unconstrained model.

2 Operating System and Installation

The arp.gee version 0.1.0 package is written for both S-PLUS (version 6.2) and R (version 2.0.1)
for Unix. It is available on the Comprehensive R Archive Network (CRAN) where packages are
made available for additional systems. Installation procedures for S-PLUS and R systems will vary;
the Unix installations are explained in the README.arp.gee text file, located at the top level of
the arp.gee directory. The procedures for running analyses are the same for S-PLUS and R, as
illustrated in the instructions in this document.

3 Getting Started

The arp.gee package contains a data set with IBD data, example.share, that is used in the examples
in this document. These examples also appear in a demo file located in the demo directory and
in the help files. The user can import IBD data from genetic linkage software, either Merlin or
Genehunter. Because this takes a number of steps, these steps will be illustrated.

For users new to the S-PLUS or R environments, note the following basic concepts. In the
following examples, a user enters the indented text following the prompt ”>”, and the output
results follow. Later, when executing a function in the session, the general syntax will appear like
’myresult <- myfunction(x)’ where the results of myfunction, operating on x, are saved in myresult.
Then a user may print myresult or make use of it in a calculation.

To begin, if you have not done so, load the arp.gee package. If the arp.gee package is installed
for global use, load the library as illustrated below. If installed as a local library, specify its location
using the lib.loc parameter as shown in comments(##), specifying the path where the library was
installed.

## If local library use:
## library(arp.gee, lib.loc="/full/local/path/")
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> library(arp.gee)

3.1 IBD Data from Genetic Software Packages

To use the arp.ibd function, we first need to create a data structure that contains the IBD data. This
special data structure has a certain type of class, called ibd.share. The IBD data must be calculated
outside the S-PLUS or R session, so we assume that a file of IBD probabilities has been created
by using Genehunter or Merlin. For this example, we use results from Genehunter. First, copy all
files from the arp.gee/exec/ directory that start with ’gh.example’ to the working directory for
this session. Two of these files are LINKAGE format used as input files for Genehunter:

• gh.example.pre: the data file that includes the pedigree structures and genetic markers (pre-
makeped linkage format)

• gh.example.par: the file with penetrance, allele frequencies, and genetic map

The data for the example in this document were made using a script file, supplied as gh.example.in
within the exec directory. It contains the following lines:

photo example.out
ps off
count rec on
haplotype off
map function kosambi
load markers gh.example.par
scan pedigrees gh.example.pre
dump ibd
gh.example.ibd.out
quit

Genehunter created gh.example.ibd.out. This file name, along with the file name gh.example.pre,
are input to the function ibd.share.genehunter. This function then creates a new ibd.share data
object, which we call example.share for this illustration. This step is illustrated below.

> example.share <- ibd.share.genehunter(ibd.file = "gh.example.ibd.out",
+ pre.file = "gh.example.pre", min.pairs = 20)

The parameter min.pairs is used as the minimum count for an ARP type to become part of the
ibd.share object. The user can apply this restriction because the methods of arp.gee may not be
reliable for ARP types with small counts, particularly when attempting to estimate effects specific
to each type of ARP.

The ibd.share.genehunter function categorizes ARPs into their types. First, the IBD probabil-
ities under the null hypothsesis of no linkage (the prior IBD’s from Genehunter) are compared to
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their expected values for different types of relative pairs. However, this is not completely accurate,
so an additional function, relpair.type, is used to evaluate the types of relative pairs contained in
the gh.example.pre file. This latter function does some simple checks, and the results from this
function are compared with those from Genehunter’s priors for determining the final category for
ARP. Because these files can be large, it can take a fair amount of time for ibd.share.genehunter to
create the desired ibd.share object. So, it may be best to submit the above command as a batch
process.

If for some reason, you cannot load the example.share object using the above steps, it can be
loaded into your session using the following command.

> setupData(example.share)

3.2 The ibd.share Object

Below, we look at the names of the components in example.share.

> names(example.share)

[1] "smat" "ped" "per1" "per2" "type" "pos"

The components of example.share are defined as follows:

• smat: Matrix of estimated IBD sharing values, arranged by ARP type (rows) and chromosome
position (columns). Rows are sorted by ARP type and then pedigree (ped).

• ped: Pedigree code for all ARPs, elements correspond to rows in smat. Many relative pairs
from a pedigree may be included, but they don’t appear together in smat due to the sorting

• per1: ID code for one of the affected relatives in the pair; the codes are unique within
pedigrees

• per2: ID code for the second of the affected relatives

• type: ARP type, as a factor, of all ARPs in the order they are stored in smat

• pos: Chromosome position, same as column names of smat

3.2.1 Summary of an ibd.share Object

The summary function provides a summary of the data in an ibd.share object.

> summary(example.share)
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Counts of ARP Types

FS HS FC GP AV
206 0 112 0 26

Number of positions : 61

Number of pedigrees : 82

Dim of smat: 344 61

3.2.2 Plot an ibd.share Object

To view the mean IBD sharing for the different ARP types, use the plot command. The results
from plot are illustrated in Figure 1, showing the mean IBD sharing by chromosome position for
each ARP type. This gives a sense of the chromosome position of IBD sharing peaks.

4 Standard Use of arp.ibd

In this section we will execute arp.ibd using the default settings. We demonstrate the basic dif-
ference between the constrained and unconstrained models. Then we perform a test of the null
hypothesis that the constrained model gives an adequate fit (i.e., the marginal trait-locus effect is
the same for all ARP types).

4.1 The C Model (unconstrained)

First we estimate the trait-locus position (τ) while allowing a different trait-locus effect for each
of the different ARP types. This is referred to as the ”unconstrained model”, because later we
constrain the model so that the marginal effect of the trait-locus is the same for each of the types of
ARPs. With the unconstrained model, we make use of C-coefficients, which represent the expected
departure from random sharing at the trait-locus for the separate ARP types. The unconstrained
model is called the C model within the arp.ibd function. Below we fit the C model and the results
are saved in fit.c. We can print fit.c by entering it alone on the command line (equivalently we
could have used print(fit.c)).

> fit.c <- arp.ibd(example.share, model = "C")
> fit.c

============================================================
Parameter estimates and 95 % confidence

intervals
============================================================
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estimate lowerCI upperCI
tau 73.877492 65.200202 82.55478
C-FS 0.157499 0.029161 0.28584
C-FC 0.047851 -0.048448 0.14415
C-AV -0.053164 -0.294388 0.18806

============================================================
Lambdas transformed from estimated Cs

============================================================

lambda lowerCI upperCI
lambda-FS 1.45985 1.06193 2.3347
lambda-FC 1.27259 0.75729 1.9517
lambda-AV 0.80778 0.25883 2.2057

The first table shows estimates and confidence intervals for the C-coefficients, and tau, which
is the estimated trait-locus position (τ). When we print a C model, we also see the C-coefficients
translated to corresponding λ values, which are explained in section 4.3.

We can also see an extended summary of fit.c using the summary function.

> summary(fit.c)

============================================================
Details per starting position

============================================================

tau.init tau.est C.FS C.FC C.AV
1 31.987 73.87749 0.1574995 0.04785057 -0.05316397
2 51.685 73.87749 0.1574995 0.04785057 -0.05316398
3 76.294 73.87752 0.1574995 0.04785063 -0.05316386

gof.model
1 0.01482689
2 0.01482689
3 0.01482689

Number of pedigrees: 82
epsilon: 1
model: C
Converged after 24 N-R iterations.

============================================================
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Number of pairs for each relative pair type.
============================================================

FS FC AV
n.pairs 206 112 26

============================================================
Parameter estimates and 95 % confidence

intervals
============================================================

estimate lowerCI upperCI
tau 73.877492 65.200202 82.55478
C-FS 0.157499 0.029161 0.28584
C-FC 0.047851 -0.048448 0.14415
C-AV -0.053164 -0.294388 0.18806

============================================================
Lambdas transformed from estimated Cs

============================================================

lambda lowerCI upperCI
lambda-FS 1.45985 1.06193 2.3347
lambda-FC 1.27259 0.75729 1.9517
lambda-AV 0.80778 0.25883 2.2057

In the summary, the first table contains for each starting position of τ (tau.init), the parameter
estimates and a goodness-of-fit measure (gof.model). Next are details of the Newton-Raphson (N-
R) estimation process, then counts per ARP type in the dataset. The final portion is the same
information as in the print output.

4.2 Plot the C Model Fit

To view how the fitted values of a model compare with the mean sharing, simply plot the arp.ibd
result together with example.share as with the following command.
The plot is presented in Figure 2.

4.3 The λ Model (constrained)

Under the λ model, the C-coefficients are constrained to be a function of a single parameter λ
(lambda in the syntax). This λ represents the ratio of risk for a relative who shares one trait allele
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IBD with an affected person to the risk for a relative who shares no alleles IBD. Here we fit the
model with default parameters for the λ model, and print the result.

> fit.lambda <- arp.ibd(example.share, model = "lambda")
> print(fit.lambda)

============================================================
Parameter estimates and 95 % confidence

intervals
============================================================

estimate lowerCI upperCI
tau 78.4135 68.9707 87.856
lambda 1.3795 1.0031 1.756

Since the λ model has only a single parameter that represents the trait-locus effect for all types
of ARPs, the printed output from the λ model is just the table wit the two parameter estimates
with confidence intervals.

4.4 Plot the λ Model Fit

The plot function can be used to view the fit of a model, except this time we show the plot without
passing example.share to the plot function. The results are shown in Figure 3.

In this example, we only see the fitted lines, where the peak shows the estimated trait-locus
position. The plot would be more informative for assessing the fit of the model if we also pass
the ibd.share object, as in Figure 2. We see that the fitted peaks show the estimated trait-locus
position is about the same as for the C model. However, we can also see by the shape of the peaks
that the constrained model kept the effects for all three ARPs the same. This was not the case for
fit.c, most noticeably in the plots for type=AV.

4.5 Test the Constrained Model

We can evaluate the fit of the constrained model by contrasting it with the unconstrained model,
using a score statistic. This statistic tests whether the marginal trait-locus effect, scaled according
to ARP, is the same across all types of ARPs. To test whether the unconstrained λ’s from the
different types of ARPs are significantly different from each other, we need the ibd.share object
(example.share) and the results from fitting the constrained λ model (fit.lambda). These two objects
are passed to the function lambda.equal.arp, as illustrated below. The result is a χ2 statistic with
the given degrees of freedom and p-value.

> stat.equal <- lambda.equal.arp(example.share,
+ fit.lambda)
> unlist(stat.equal)
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stat df pval
1.0818223 2.0000000 0.5822175

5 Additional Functionality

Sometimes the estimation may not converge under the default settings. In this section we explore
some of the issues that may arise. The arp.ibd function allows the user to pass starting values for the
parameters (τ , and either the C-coefficients or a λ). The default settings in arp.ibd select reasonable
starting values, all based on IBD sharing values shown in Figure 1. However, we demonstrate, by
fitting separate models to each ARP type, that the estimation process may need to be altered to
achieve convergence.

5.1 Full-Sibs Subset

The Full-Sibs ARP type, as evident in Figure 2, appears to be best fit to the C model. Here, we fit
the model-C to the Full-Sibs alone, but first we need to create an ibd.share object for the subset of
Full-Sibs. To do this, we copy the ibd.share object (example.share), and then subset the elements
in this new object to the desired ARP type. Full-Sibs are coded as ”FS”, so we create a logical
vector, fs, having values of TRUE or FALSE according to whether an ARP is a Full-Sib or not.
The example below demonstrates how we create an ibd.share object for Full-Sibs. Then we can run
arp.ibd on the new ibd.share object.

> example.fs <- example.share
> fs <- example.share$type == "FS"
> example.fs$smat <- example.fs$smat[fs, ]
> example.fs$ped <- example.fs$ped[fs]
> example.fs$type <- example.fs$type[fs]
> save.fs <- arp.ibd(example.fs, model = "C")
> save.fs

============================================================
Parameter estimates and 95 % confidence

intervals
============================================================

estimate lowerCI upperCI
tau 72.85727 63.51817 82.19636
C-FS 0.15648 0.02834 0.28463

============================================================
Lambdas transformed from estimated Cs
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============================================================

lambda lowerCI upperCI
lambda-FS 1.4555 1.0601 2.3215

5.2 First-Cousins: Multiple Peaks

We apply the same subsetting technique for First-Cousins. For this group, we see in the middle
plot in Figure 1 that there are multiple peaks of mean IBD sharing, so arp.ibd may give more than
one estimate of a trait-locus position. Here we specify three starting values for τ by using tau.init.
Then, by using the summary function, we can compare the goodness-of-fit values from each of the
starting τ positions which converged.

> example.fc <- example.share
> fc <- example.share$type == "FC"
> example.fc$smat <- example.fc$smat[fc, ]
> example.fc$ped <- example.fc$ped[fc]
> example.fc$type <- example.fc$type[fc]
> save.fc <- arp.ibd(example.fc, model = "C", tau.init = c(30,
+ 60, 90))
> summary(save.fc)

============================================================
Details per starting position

============================================================

tau.init tau.est C.FC gof.model
1 30 39.39064 0.03696672 0.002254816
2 60 93.77981 0.07012804 0.007038550
3 90 93.77982 0.07012804 0.007038550

Number of pedigrees: 34
epsilon: 1
model: C
Converged after 23 N-R iterations.

============================================================
Number of pairs for each relative pair type.

============================================================

FC
n.pairs 112
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============================================================
Parameter estimates and 95 % confidence

intervals
============================================================

estimate lowerCI upperCI
tau 93.779818 77.167885 110.39175
C-FC 0.070128 -0.012917 0.15317

============================================================
Lambdas transformed from estimated Cs

============================================================

lambda lowerCI upperCI
lambda-FC 1.4126 0.93228 2.0266

5.3 Avuncular Pairs: Non-Convergence

Finally we apply the subsetting procedure to Avuncular Pairs (coded as ’AV’). Recall the plot
for example.share (Figure 1), where the average IBD sharing values for Avuncular Pairs showed a
low IBD-sharing region in the middle, and high sharing near the right end. The arp.ibd function
chooses default starting values where the sharing is high, and in this case, chooses a starting value
near the right end. We see below that the estimation does not converge.

> example.av <- example.share
> av <- example.share$type == "AV"
> example.av$smat <- example.av$smat[av, ]
> example.av$ped <- example.av$ped[av]
> example.av$type <- example.av$type[av]
> save.av <- arp.ibd(example.av, model = "C")
> save.av

Convergence not met

============================================================
Parameter estimates and scores

============================================================

param u.scores
1 90.231000 0.073136
2 0.014416 0.015853
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No. iterations = 1

To attempt convergence, we now specify alternative starting values for the trait-locus position
(τ) by the parameter tau.init.

> save.av.init <- arp.ibd(example.av, model = "C",
+ tau.init = c(30, 90, 60))
> save.av.init

============================================================
Parameter estimates and 95 % confidence

intervals
============================================================

estimate lowerCI upperCI
tau 51.799431 13.92347 89.67540
C-AV -0.077358 -0.34331 0.18860

============================================================
Lambdas transformed from estimated Cs

============================================================

lambda lowerCI upperCI
lambda-AV 0.73203 0.1858 2.2113

By viewing the summary.df data frame, we see that no information was kept for the estimation
when tau.init was 90, and that starting at 30 and 60 both converged to the same location, τ = 51.8.

> save.av.init$summary.df

tau.init tau.est C.AV gof.model
1 30 51.79943 -0.07735812 0.008752643
2 60 51.79939 -0.07735816 0.008752643

By viewing the fit using the plot function, we see in Figure 4 that the fit is actually for a valley,
suggesting that modeling a trait-locus position for AV pairs in this example may be misleading.
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6 License and Warranty

License:

Copyright 2003 Mayo Foundation for Medical Education and Research.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

For other licensing arrangements, please contact Daniel J. Schaid.
Daniel J. Schaid, Ph.D.
Division of Biostatistics
Harwick Building - Room 775
Mayo Clinic
200 First St., SW
Rochester, MN 55905
phone: 507-284-0639
fax: 507-284-9542
email: schaid@mayo.edu
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> plot(example.share)
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Figure 1: Mean IBD sharing by chromosome position for each ARP type
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Figure 2: Plot of a C model arp.ibd object and the mean sharing data from example.share
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Figure 3: Plot a lambda model arp.ibd object, no ibd.share data
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> plot(save.av.init, example.av)
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Figure 4: Plot arp.ibd fit for AV pairs and mean IBD sharing data from example.av
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