

Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: A distinct clinicopathologic subtype

Shunsuke Koga,¹ Naomi Kouri,² Ronald L. Walton,¹ Mark T.W. Ebbert,¹ Keith A. Josephs,³ Irene Litvan,⁴ Neill Graff-Radford,⁵ J. Eric Ahlskog,³ Ryan J. Uitti,⁵ Jay A. van Gerpen,⁵ Bradley F. Boeve,³ Adam Parks,⁶ Owen A. Ross,¹ and Dennis W. Dickson¹ 1) Department of Neuroscience and 5) Neurology, Mayo Clinic, Jacksonville, FL; 2) Department of Pathology, Boston Children's Hospital, Boston, MA; 3) Department of Neurology, Mayo Clinic, Rochester, MN; 4) UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, La Jolla, CA; 6) Department of Neuropsychology, University of Kansas Medical Center, Kansas City, KS

Background & Aim

Corticobasal degeneration (CBD) shows various clinical phenotypes, such as corticobasal syndrome (CBS), progressive supranuclear palsy (PSP) syndrome, frontal behavioral-spatial syndrome, and non-fluent aphasia.¹ Several studies have demonstrated that the severity and distribution of tau pathology may contribute to the different clinical phenotypes;^{2,3} however, the clinicopathologic correlation of CBD is not fully understood. We hypothesized that concomitant pathology other than tau, such as TDP-43, may also affect clinical phenotypes of CBD. The objective of this study was to examine whether TDP-43 contributes to clinicopathological heterogeneity of CBD.

Materials & Methods

Case selection and diagnosis: Between 1998 and 2017, 211 cases in the Mayo Clinic brain bank have been given a neuropathologic diagnosis of CBD. Of those, 187 cases with available paraffin-embedded tissue were included in this study.

Screening of TDP-43 pathology: We screened TDP-43 pathology using sections as shown below and the pilot study. The sections were immunostained with anti-phospho-TDP43 antibody (pS409/410, mouse monoclonal, 1:5000, Cosmo Bio) using a DAKO Autostainer. All slides were reviewed simultaneously by two observers (D.W.D., S.K.) who agreed on the presence of TDP-43 immunoreactivity, defined as neuronal cytoplasmic inclusions (NCIs), glial cytoplasmic inclusions (GCIs), dystrophic neurites, neuronal intranuclear inclusions, spheroids, or perivascular inclusions in any region. The severity of TDP-43 pathology was graded semi-quantitatively on a four-point scale.

Screening regions were selected based on a pilot study (N = 26).

Cluster analysis: Hierarchical cluster analysis using Euclidean distance and average linkage clustering was performed on patients and regionspecific variables reflecting the severity of TDP-43 pathology.

Genetic analysis: For genotyping, genomic DNA was extracted from cerebellum of frozen brain tissue using standard procedures. Genotyping for GRN (SNP rs5848 C/T SNPs, T minor allele), TMEM106B (rs3173615 C/G SNPs, G minor allele), and MAPT H1/H2 (SNP rs1052553 A/G, A = H1, G = H2) was assessed with TaqMan SNP genotyping assays.

Results: TDP-43 screening

Fig. 1: TDP-43 pathology showed various morphology: NCIs, GCIs, dystrophic neurites, neuronal intranuclear inclusions, spheroids, and perivascular inclusions. Double-labeling immunofluorescence staining revealed that TDP-43 aggregates were observed in astrocytic plaques and pretangles (right column).

Vulnerable regions			
Brainstem			
Midbrain tegmentum	36%		
Substantia nigra	28%		
Pontine tegmentum	29%		
Inferior olivary nucleus	s 23%		
Subcortical nuclei			
Subthalamic nucleus	31%		
Hypothalamus	27%		
Thalamus	23%		

Pilot study

Table 1: Nine sections are screened for TDP-43 immunohistochemistry using most recent 26 CBD cases. The result suggest that the sections of midbrain, subthalamic nucleus, amygdala & basal forebrain, and pons have most frequently have TDP-43 pathology.

10 µm

Less vulnerable reg	gions
Limbic structures	
Amygdala	19%
Hippocampus	16%
Neocortices	
Superior frontal gyrus	19%
Motor cortex	13%
Cerebellum Cerebellar white matte	er 7%

Results: Cluster analysis

Fig. 2: Hierarchical cluster analysis suggested potentially three distinct clusters (i.e. limited, intermediate, and severe). We combined intermediate and severe into a single group; thus, we divided TDP-43 positive CBD cases into TDP-limited (N = 44) and TDP-severe (N = 40) groups. Concomitant pathologies (Alzheimer's disease [AD], argyrophilic grain disease [AGD], and hippocampal sclerosis [HpScl]) and clinical diagnosis of each case is also shown as annotation labels.

Clinical features	TDP-negative N = 103	TDP-limited N = 44	TDP-severe N = 40	P value	Table betwe
Sex, %male	52%	48%	38%	0.284	TDP-I
Age, years	69 ± 8	70 ± 7	72 ± 9	0.226	of TD
Disease duration, years	6 ± 3	7 ± 2	7 ± 4	0.396	
Clinical diagnosis of CBS	47%	39%	10%	<0.001	with C
Clinical diagnosis of PSP syndrome	30%	32%	80%	<0.001	diagn
Downward gaze palsy	34%	35%	85%	<0.001	by the
Asymmetrical parkinsonism	74%	69%	65%	0.766	prese
					chara

Explanatory variables	Odds ratio	95% CI	P value
Age at death, years	1.02	0.97-1.08	0.385
Sex (0 = female, 1 = male)	1.04	0.44-2.46	0.928
Disease duration, years	0.88	0.73-1.06	0.181
TDP-43, midbrain tectum	9.77	1.75-54.7	0.010
TDP-43, midbrain tegmentum	0.79	0.31-2.02	0.618
Tau, oculomotor complex	1.51	1.09-2.08	0.012
Tau, midbrain tectum	0.79	0.59-1.06	0.120

	TDP-negative N = 103	TDP-limited N = 44	TDP-severe N = 40	P value Overall
TMEM106B, Minor	12%	15%	11%	0.861
GRN, Minor	6%	7%	14%	0.420
MAPT, H1/H1	91%	89%	65%	0.002

2: Clinical features are compared en the three groups: TDP-negative. imited, and TDP-severe CBD. Only 10% P-severe CBD was clinically diagnosed BS. Instead, 79% of them were osed with PSPS. This can be explained fact that 85% of TDP-severe CBD nted with downward gaze palsy, a characteristic feature of PSP.

Table 3: A multivariate logistic regression model shows that TDP-43 pathology in the midbrain tectum is strongly associated with the downward gaze palsy.

Table 4: The frequencies of TMEM106B minor allele and GRN minor allele were not different, suggesting these variant may not associate with TDP-43 pathology in CBD. MAPT H1/H1 haplotype was significantly lower in TDP-43 severe CBD than other CBD

Discussion

- It is well known that TDP-43 pathology is frequently observed in Alzheimer's disease or hippocampal sclerosis. As shown in Fig. 2, however, the concomitant Alzheimer's disease or hippocampal sclerosis did not affect the TDP-43 pathology in CBD (the frequency of these pathologies was not different between the groups).
- TDP-severe CBD cases present frequently with PSP syndrome, but it is still unclear that TDP-43 pathology cause characteristic features of PSP.
- TDP-43 pathology is rare in PSP; thus, the TDP-43 may be useful to distinguish CBD and PSP.
- The results of the genetic analysis suggest that the mechanism of TDP-43 pathology may differ from that of frontotemporal lobar degeneration with TDP-43, in which *TMEM106B* and *GRN* are the risk modifier for TDP-43 pathology.

Summary

- TDP-43 pathology is frequent (45%) in CBD, mainly in the brainstem and subcortical nuclei.
- TDP-severe CBD were commonly diagnosed as PSP syndrome because of the downward gaze palsy.
- The severity of TDP-43 pathology in the midbrain tectum was strongly associated with the presence of downward gaze palsy.
- MAPT H1 frequency is significantly low in TDPsevere CBD compared with other CBD.
- TMEM106B and GRN variants may not be a risk factor for TDP-43 pathology in CBD.

References

- Armstrong MJ, et al. (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496-503
- Kouri N, et al. (2011) Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain 134:3264-3275...
- Yoshida M (2014) Astrocytic inclusions in progressive supranuclear palsy and corticobasal degeneration. Neuropathology 34:555-570.
- Koga S, et al. (2017) Distribution and characteristics of transactive response DNA binding protein 43 kDa pathology in progressive supranuclear palsy. Mov Disord 32:246-255.