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1 Introduction

A very general mechanism for penalized regression has been added to the coxph
function in S-Plus. A user written S-Plus function can be supplied that gives addi-
tional term(s) to the partial-likelihood, along with the first and second derivatives
of those terms. The variance and degrees of freedom for the extended model are
then computed as outlined in Gray [9]. Several other arguments control optional
aspects of the iteration. This setup allows for general shrinkage methods including
ridge regression, the lasso, smoothing splines, and other techniques.

There is an interesting connection between penalized regression and random
effects or frailty models. It happens that the gamma frailty model can be repre-
sented exactly as a penalized regression, and a Gaussian frailty can be represented
approximately. Thus we can fit these models as well using the generalized program.

2 Shrinkage Estimation

2.1 Mathematical Basis

Consider a Cox model with both constrained and unconstrained effects
Ai(t) = Ao (t)eXiPTZiw

where X and Z are the covariates and 3, w are the unconstrained and constrained
coefficients, respectively. The problem is solved by maximizing a penalized partial
likelihood

PPL = PL(B3,w;data) — f(w;8)

over both 3 and w. Here PL is the usual Cox partial likelihood, treating w as “just

another parameter”, and f is some constraint function which gives large values to



“bad” values of w. For the moment assume that 6, a vector of tuning parameters,
is known and constant.
Following Gray [9], let Z be the usual Cox model information matrix, and

H:I_<0 0)
Ofll

be the second derivative matrix for the penalized likelihood PPL. His suggested
estimate of the variance is
V=H'TH! (1)

Let ¢ be a column vector of constants, and (8, w") be the combined vector of p+q pa-
rameters. Then for a general test of hypothesis z = (8',w')c = 0 Gray recommends
the Wald test z'(¢'"H 'c)~'z. Because of the shrinkage, this is not necessarily a
chi-square statistic. Let e be the eigenvalues of the matrix (¢/H ~1c)™! (¢'V¢); then
under Hy the Wald test is distributed as as Y e;X? where the X are iid Gaus-
sian random variables. Let k& = > e;. When the e; are all 0 or 1, the case for
non-penalized models, then the mean and variance of the test statistic are k£ and 2k
respectively, and the distribution is chi-square on k degrees of freedom. In penalized
models e; < 1 and the variance is Y 2e? < 2k; so the distribution of the statistic is
more compact than a standard chi-square test based on k degrees of freedom and
the test will be conservative.

The generalized degrees of freedom for the test statistic can be written as
df = trace[(c' H 'c) ! (c'Ve)]

so computation of eigenvalues is not stricly necessary. For a particular term in the
model this becomes trace((H ~'[i,i])~'V[i,i]) where [ ] are S-Plus style subscripts
and ¢ indexes the columns corresponding to the term.

An alternate variance estimator is to use H ~! directly, the inverse of the second
derivative matrix of the full log likelihood, which is the variance used in the Wald
statistic. It has an interpretation as a posterior variance in a Bayes setting. It
also tends to be larger than V' and thus more conservative. Wahba [26] showed it
had good frequentist coverage properties for pointwise intervals for the smoothing
spline curve fit to noisy data. In the context of smoothing, Hastie and Tibshirani
[11] (page 60) compare confidence intervals based on the analog of V' with those
based on the analog of H and show that H has a component of bias built into it.
They further suggest that with small degreees of freedom for the smoother, the two
are likely to be very similar but differ more as there are more degrees of freeedom.
In Statistical Models in S [3] ,chapter 7 where they discuss the implementation of
GAM, they indicate (p 303-4) that in computing standard errors for the smooth



they actually use the analog of H rather than V. Here they justify it on the grounds
of computational simplicity.

The S-Plus function returns both var2=H 'TH~! and var=H~!. The chi-
square tests are based on var. Simulation experiments (see appendix xxx) suggest
that this is the more reliable choice for tests.

2.2 S-Plus functions

Penalized likelihoods for the Cox model have been implemented in S-Plus in a
very general way. The iteration depends on two user defined functions, a control
function ‘cfun’ and a penalty function ‘pfun’. If there are multiple penalized terms,
e.g., smoothing splines on two distinct variables, then each term has it’s own pair of
functions, but for the moment assume only a single penalized term. The algorithm

is

1. On the initial call (with iteration=0) the control function cfun returns an

initial value for 6.

2. The penalized likelihood is solved, for fixed 6, using a Newton-Rhapson itera-
tion. Repeated calls to the penalty function pfun are used to obtain necessary

values of f and its first and second derivatives.

3. The control function cfun is called to obtain both the next value for € and
a flag indicating whether iteration is complete. If iteration is not complete,

return to step 2.

The algorithm thus consists of an outer and an inner loop, and the returned
value of iter is a vector of length 2 giving the number of outer and inner iterations,
respectively. There are at least three distinct types of outer loop: € fixed, in which
the control function does nothing; calibration problems, where the parameter is
fixed by the user but is on a different scale from the internal #; and actual iteration,
such as the use of generalized cross-validation (GCV) to choose an ‘optimal’ 6. The
variance formula used by the routine assumes a fixed value of 6, and so is not correct
for the third case. Nevertheless, it seems to be fairly accurate in several instances.
For many of the problems considered here, the program is fast enough that more
reliable variance estimates could be obtained via resampling techniques such as the
bootstrap.

We will start with a simple example. Let f(w,0) = (0/2) Zw?, a penalty
function which will tend to shrink the coefficients w; towards zero. The penalty
and control functions are quite simple in this case:



pfun.ridge <- function(coef,theta) {
list(penalty= sum(coef~2)*theta/2,
first = theta*coef,
second = rep(theta, length(coef)),
flag=F)

}

cfun.ridge <- function(parms, ...) list(theta=parms$theta, done=T)

This psuedo ridge-regression function is simplistic: no provision has been made for
factor (classification) variables and there is no scaling of the penalty with respect
to the scale of the covariates. We will improve on these aspects later. A third
“packaging” function ridge is also needed, which passes through the data, adding
attributes that identify the above as the penalty and control functions. Details of
the packaging function are discussed in appendix C.

The penalty function is called with the coefficients for the term, e.g., those
corresponding to age and ecog.ps in the example below, along with the tuning
parmeter(s) 6. It needs to return the value of the penalty and its first and second
derivatives. For some penalty functions and values of € the penalty may be infinite,
in which case the flag argument should be set to True. (We will see this in a later
example.) In this example f” is diagonal, and so pfun returns only a vector of
second derivatives. In other cases, such as smoothing splines, pfun will need to
return a second derivative matrix.

Here is an example of using the ridge functions. The data set is from Edmunson
et. al [6], and gives the survival time of 26 women with advanced ovarian carcinoma,
randomized to two treatments. Important covariates are the patient’s age and
performance score. The latter is a measure of physical debilitation with 0=normal
and 4=bedridden. The value of § = 1 used for the shrinkage parameter was chosen
arbitrarily.

> £fit0 <- coxph(Surv(futime, fustat) ~ rx + age + ecog.ps, data=ovarian)
> fitl <- coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=1),

data=ovarian)

> £it0
coef exp(coef) se(coef) z P
rx -0.815 0.443 0.6342 -1.28 0.2000
age 0.147 1.1568 0.0463 3.17 0.0015
ecog.ps 0.103 1.109 0.6064 0.17 0.8600
> fitl



coef se(coef) se2 Chisq DF P

rx -0.8124 0.6333 0.6327 1.65 1 0.2000

ridge(age) 0.1468 0.0461 0.0461 10.11 1 0.0015
ridge(ecog.ps) 0.0756 0.5177 0.4429 0.02 1 0.8800

Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1.0 1.7
Likelihood ratio test=15.9 omn 2.73 df, p=0.000875 n= 26

The likelihood ratio test that is printed is twice the difference in the PL between
the null model (8 = w = 0) and the final fitted model. The p-value is based
on comparing this to a chisquare distribution with 2.73 degrees of freedom. As
mentioned earlier this comparison is somewhat conservative (p too large). The
eigenvalues for the problem, eigen(solve(fiti$var, fiti$var2)), are 1, 0.9156 and
0.8486. The respective quantiles of this weighted sum of squared normals and the

chi-square distribution qchisq(q, 2.73) are

| 80% 90% 95%  99%
Actual sum | 4.183 5580 7.027 10.248
X313 4264 5818 7.337 10.789

from which we see that the actual distribution is somewhat more compact than the
Chi-square approximation.

The shrinkage has had a much smaller effect on age than on the ecog score.
Although the unpenalized coefficients for the two covariates are of about the same
magnitude (£it0), the standard error for ecog score is much larger. The impact on
overall fit (Cox PL) of shrinking the age coefficient will thus be larger than that for
ecog score; the age coefficient is “harder to change”.

One improvement to the function would be to scale the penalty for each variable
by its variance, so that the function will be invariant to the units of the data; the
above fit would change if age were given in days, for instance. This is taken up in
appendix C.

2.3 Spline fits

We now explore a more complicated example, which is to fit a general spline term.
The method we will use is P-splines [7]. Start by spanning the range of z with
a b-spline basis, such that the basis functions are evenly spaced and identical in
shape. This differs from the traditional b-spline basis for smoothing splines, which
has an asymmetric basis function (knot) for each data point. An example fit for 11
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Figure 1: A representative set of weighted p-splines

‘terms’ is shown in figure 1; the heights of the basis functions are the coefficients,
and the sum of the basis functions is the fit.

Several authors have noted that for moderate degrees of freedom, a smaller num-
ber of basis functions give a fit which is nearly identical to the standard smoothing
spline. Gray [9] suggests that there is little advantage to using more than 10-20
knots and uses 10 knots for his 3 degree of freedom simulations and examples.
Hastie [10] uses a more sophisticated eigenvector approach to find a nearly optimal
approximating set of basis functions; for several examples with 4-5 degrees of free-
dom his basis set has 7-8 terms. The functions below use round(2.5%df) terms by
default but the user can adjust this parameter.

P-splines have several attractive properties, one of which was the key reason
for their inclusion here. Because of the symmetry of the basis functions, the usual
spline penalty 6 [[f"(z)]?dz is very close to the the sum of second differences of
the coefficients @xsum( (diff (diff (coef)))”2), and this last is very easy to program.
Let T be the matrix of second differences, e.g., for 6 coefficients 7" is

o O O =
O =
|
= N
|
[NCR
= O
_ o O O



Then

with P = T'T the p-spline penalty is f(w,6) = 6w’ Pw. The first derivative

of the penalty is 20 Pw and the second derivative is 20 P. This extends easily to a

penalty based on third differences. Other properties of note are

The penalty does not depend on the values of the data x, other than for
establishing the range of the spline basis.

If the coefficients are a linear series, then the fitted function is a line. Thus
a linear trend test on the coefficients is a test for the significance of a linear
model. This makes it relatively easy to testt for the significance of non-

linearity.

Since there are a small number of terms, ordinary methods of estimation can
be used, i.e., the program can compute and return the variance matrix of ﬁ
Contrast this to the classical smoothing spline basis, which has a term (knot)
for each unique z value. For a large sample size storage of the n by n matrix

H becomes infeasable.

Pat - should we just delete the following example. It no longer seems important
to the flow?
The following function creates the spline basis suggested by Eilers et. al. [7],

and draws the figure 1. It makes use of the internal S-Plus function spline.des.

pspl <- function(x, df, degree, nterm=round(2.5%df)) {

lower <- min(x, na.rm=T)

upper <- max(x, na.rm=T)

if (nterm < 3) stop("Too few basis functions")

dx <- (upper-lower)/nterm

knots <- seq(lower - degree*dx, upper + degree*dx, by=dx)

spline.des(knots, x, degree+l)$design

}

xx <- 0:100
yy <- pspl(xx, degree=3, nterm=38)

coef <- ¢(10,12,15,13,14,18,19,20,20,13,9)/20
yy <- cbind(yy %*% coef, yy %*% diag(coef))

matplot (xx, yy, type=’1l’, col=1)

The S-Plus function to impliment P-spline fits, pspline, has 3 optional param-

eters:

The degree of the spline, with cubic splines as the default.



e The desired degrees of freedom for the fit. Optionally, the user can specify 6
directly.

e The number of basis functions or terms.

The actual penalty used by the function is [#/(1 — 0)]w’'Pw The first term was
changed for user convenience: 8 = 1 now corresponds exactly to the straight line

model (an infinite penalty for curvature).

2.4 Example
Consider the ovarian data included with S-Plus, and fit 3 models.

> fitl <- coxph(Surv(futime, fustat) ~ rx + age, ovarian)

> fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2),
data=ovarian)

> fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4),

data=ovarian)

> fitl

coef exp(coef) se(coef) z P
rx -0.804 0.448 0.6320 -1.27 0.2000
age 0.147 1.159 0.0461 3.19 0.0014

Likelihood ratio test=15.9 omn 2 df, p=0.000355 n= 26

> fit2
coef se(coef)  se2 Chisq DF P
rx -0.589 0.699 0.679 0.71 1 0.400
age2 0.790 1.379 0.620 0.33 1 0.570
age3 1.539 2.143 1.210 0.52 1 0.470
age4 2.206 2.401 1.630 0.84 1 0.360
ageb 3.066 2.406 1.808 1.62 1 0.200
age6 4.463 2.394 1.863 3.48 1 0.062
age7 5.990 2.479 1.983 5.84 1 0.016
age8 7.475 2.911 2.275 6.59 1 0.010

Iterations: 2 outer, 7 Newton-Raphson
Degrees of freedom for terms= 0.9 1.9
Likelihood ratio test=17 on 2.87 df, p=6e-04 n= 26

> fit2$history[[1]]
$theta: 0.44688



$done: T
$thetas: 0.000000 1.000000 0.600000 0.484520
$dfs: 5.000000 1.000000 1.734267 1.929305

The printout for the simple Cox model shows an increase in the log-hazard for
death of .147 per year of age, with an overall chi-square for the model of 15.9. The
p-spline basis functions sum to a constant, so the first one of them is deleted to
remove the singularity. The actual values of the coefficients are not very useful,
other than that one can see an overall linear trend. The spline fit with 2 degrees
of freedom has not improved this significantly; the likelihood based test for non-
linearity would be a chisquare of 17 — 15.9 = 1.1 on ‘0.87" degrees of freedom.
We have explicitly printed out the history component of the final model, which
contains the last return value(s) of the control function for the problem. In the case
of cfun.ps, the elements are theta, a flag indicating that iteration was completed,
and the list of successive € values tried by the routine in it’s attempt to achieve a fit
with the requested degrees of freedom. The routine assumes, without computation,
that a penalty of 1 will give a linear fit (1 df), while a penalty of 0 gives a fit with
5 df. There is no good theoretical reason for the value of “5” (number of basis
functions - degree of the spline), but it seems to work well as a generator of the
initial guess of # = 0.6. Using these starting guesses, it took one more iteration to
find the value of § = .48 leading to 1.93 df, which is within the default tolerance of
0.1 df used by the pspline function. The values of # that were attempted required 4
and 3 Newton-Raphson steps, respectively, leading to 2 outer and 7 inner iterations.
The nezt value of 6 that would have been used in iteration was .44688; however,
it was not attempted because the routine considered 1.93 sufficiently close to the
target value of 2 degrees of freedom.

A plot of the new fit is easily obtained, and is shown in Figure 2. It was produced
by the code below. The addition of confidence bands would be straightforward using
the se.fit argument of predict. The picture verifies what we had seen in the tests,
that there is not an important non-linear component to the age effect in this data
set.

> xx <- ovarian$age
> yy <- cbind(predict(fitl, type=’terms’)[,2],
predict(fit2, type=’terms’)[,2],
predict(fit4, type=’terms’)[,2])
> temp <- order(xx)
> matplot(xx[temp], yy[temp,], type=’1’, xlab=’Age’, ylab=’Risk Score’)

The routine as distributed has a more refined printout than that shown above.
Here is the actual printed result for the 4 degree of freedom fit.
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Figure 2: Spline fits for the ovarian data
> fit4d

coef se(coef) se2 Chisq DF P

rx -0.373 0.761 0.749 0.24 1.00 0.6200

pspline(age, df = 4), linear 0.139 0.044 0.044 9.98 1.00 0.0016
pspline(age, df = 4), nonlin 2.59 2.93 0.4500

Iterations: 3 outer, 13 Newton-Raphson
Theta= 0.26
Degrees of freedom for terms= 1.0 3.9
Likelihood ratio test=19.4 on 4.9 df, p=0.00149 n= 26

There are actually 13 coefficients associated with the 4 degree of freedom spline
for age. These have been summarized in the printout as a linear and nonlinear
effect. Because of the symmetry of the p-spline basis functions, the chi-square test
for linearity is a test for zero slope in a regression of the spline coefficients on the
centers of the basis functions, using var as the known variance matrix of the coef-
ficients. The linear ‘coefficient’ that is printed is the slope of this regression. This
computation of coefficient and p-value is equivalent to the approximate backwards
elimination method of Lawless and Singhal [14], here removing all of the non-linear
terms for age. (By fitting a non-spline model ~ rx + age we find that the true

linear coefficient is .147 and chisquare for non-linearity is 3.5.; the approximation

10



was reasonably good.) If the terms being dropped are important, i.e. a significant
non-linearity, then the approximation for the linear coefficient is not as accurate.

Pat, the next paragraph needs help!

The degrees of freedom for the terms are the results of Gray’s formula. We have
applied this formula both to the penalized and to the unpenalized terms. This gives
a value of 0.9 df for the rx term, when we know that the ‘true’ df for this term is
1 since it is unpenalized. (Or is it unpenalized, since it is not uncorrelated with
the age term?) If nothing else, the devation of 0.1 can be viewed as a measure of
accuracy for the degrees of freedom computation.

Using multiple spline terms, we are able to investigate models that are similar
to the Generalized Additive Models [11] available for binary and other exponential
family data using the gam function of S-Plus. As a more interesting example, we look
at data from the multi-center post-infarction project (MPIP) [21]. This contains
data on 866 patients, gathered after hospital admission for a myocardial infarction.
The main goal of the study was to ascertain which factors, if any, were predictive of
the future clinical course of the patients. Four variables will be used in the model
of survival time:

e VED, ventricular etopic polarizations per hour, obtained from analysis of a 24
hour Holter monitor. A large number of these irregular heartbeats is indicative
of high risk for fatal arrythmia.

e New York Heart Association class, a measure of the amount of activity that
a subject is able to undertake without angina, ranging from 1 to 4.

e Presence of pulmonary rales on initial examination.

e Ejection fraction, the proportion of blood cleared from the heart on each
contraction.

VED is very skewed; it has a mean value of 19.1, a median of .45, a maximum value
of 733, and 14% of the subjects have a value of 0. The minimum non zero value
is 0.042, so we use lved = log(ved+.02) as a derived covariate. It is still a skewed
variable, but is not unmanagably so. A simple linear fit of the four variables shows
all to be highly significant.

> fitl <- coxph(Surv(futime, status) ~ lved + nyha + rales +ef, mpip)
> fitl

coef exp(coef) se(coef) z P
lved 0.1007 1.106 0.04266 2.36 1.8e-02
nyha 0.3707 1.449 0.09379 3.95 7.7e-05

rales 0.4535 1.574 0.10528 4.31 1.7e-05

11



ef -0.0265 0.974 0.00833 -3.18 1.5e-03

Likelihood ratio test=79.4 on 4 df, p=2.22e-16 n=764

(102 observations deleted due to missing)

Next, let us explore more complicated forms for the effect of the covariates. Since
rales is a binary covariate it allows no further transformation, and nyha, with four
levels, will be entered as a factor variable. The two continuous variables, 1ved and
ef, are modeled as p-splines with the default (4) degrees of freedom.

> fit2 <- coxph(Surv(futime, status) ~ pspline(lved) + factor(nyha) +
rales + pspline(ef), mpip)

>fit2
coef se(coef) se2 Chisq DF P
pspline(lved), linear 0.0982 0.04384 0.04359 5.02 1.00 0.02500
pspline(lved), nonlin 2.59 3.06 0.47000
factor(nyha)2 -0.0615 0.31835 0.31780 0.04 1.00 0.85000
factor(nyha)3 0.6971 0.31853 0.31729 4.79 1.00 0.02900
factor(nyha)4 1.0151 0.29218 0.29113 12.07 1.00 0.00051
rales 0.4204 0.10816 0.10761 15.11 1.00 0.00010
pspline(ef), linear -0.0256 0.00738 0.00737 12.03 1.00 0.00052
pspline(ef), nonlin 8.06 3.01 0.04500

Iterations: 4 outer, 11 Newton-Raphson
Penalized terms:
Theta= 0.767
Theta= 0.658
Degrees of freedom for terms= 4.1 3.0 1.0 4.0
Likelihood ratio test=92.5 on 12.04 df, p=1.69e-14 n=764

(102 observations deleted due to missing)

It would appear that NYHA classes 1 and 2 might be combined, that the non-
linear effect for VED is not significant, and that the non-linear effect of ejection
fraction is important. Plots of the two spline terms are shown in figure 3 and are

produced with the following commands.

> temp <- predict(fit2, type=’terms’, se.fit=T)

> tmat <- cbind(temp$fit[,1], temp$fit[,1] + 1.96*temp$se.fit[,1],
temp$fit[,1] - 1.96%temp$se.fit[,1])

jj <- match(sort(unique(lved)), lved)

matplot(lved[jjl, tmat[jj,], type=’1l’, lty=c(1,2,2), xaxt=’n’)

xx <- c(0, 1, 50, 100, 500)

axis (1, log(xx+.2), as.character(xx))

vV V V VvV

12
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Figure 3: Spline fits for the MPIP data

> title(xlab="VED’, ylab=’log hazard’)

> tmat <- cbind(temp$fit[,2], temp$fit[,2] + 1.96+temp$se.fit[,2],
temp$fit[,2] - 1.96*temp$se.fit[,2])
> jj <- match(sort(unique (mpip$ef)), mpip$ef)
> matplot (mpip$ef[jjl, tmat[jj,], lty=c(1,2,2),
xlab="Ejection Fraction’, ylab=’log hazard’)

Some extra work was required to label the first graph in the original VED units,
this is done with the axis command. The match function and the jj subscripts sort
the plot from left to right, otherwise the line becomes a back and forth scribble.
We see from the graph that there is an increase in risk with ejection fractions below
60%, sharply so below 20%. The rise after 70% is not significant based on the wide
confidence intervals, this agrees with the conventional wisdom of the physicians that
the instumentation is not able to reliably distinguish values above this level.

2.5 Automatic selection of the degrees of freedom

There are several methods of automatically choosing the amount of smoothing
in a spline fit including cross-validation, generalized cross validation (GCV) and
Bayesian approaches. One of the easiest in this programming context is to use the
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Akaike informaion criteria
AIC = 2[log(PL{j = initial}) — log(PL{ = final})] — 2df . (2)

Notice that this uses the ordinary partial likelihood without the penalty term, with
degrees of freedom as a correction rather than the penalty. Hurvich, Simonoff and
Tsai [12] show that in rich non-parametric regression model the AIC can under-
penalize, however, leading to models with an excess number of degrees of freedom.
They suggest a corrected AIC, which uses n(df +1)/(n — (df +2)) as the correction
term in place of df. In the case of a Cox model we replace n by the total number
of events. Practically, AIC, favors smaller models than AIC, with a bias that
grows with df, i.e, it might choose 1.9 rather than 2 df and 10 rather than 25
df. The parameter df=0 directs the pspline routine to select a control function
that maximizes AIC, with caic=T/F as an optional argument to choose either the
corrected or uncorrected form of the statistic.

For the lung cancer data either criteria chooses 1 degree of freedom for the age
effect. For the MPIP data we get the following.

> coxph(Surv(futime, status) ~ lved + factor(nyha) +

pspline(ef, df=0), data=mpip)

coef se(coef) se2 Chisq DF P

lved 0.1021 0.04173 0.04169 5.99 1.00 1.4e-02

factor(nyha)2 -0.0207 0.31674 0.31664 0.00 1.00 9.5e-01
factor(nyha)3 0.7051 0.31239 0.31216 5.09 1.00 2.4e-02
factor(nyha)4 1.0413 0.28822 0.28705 13.05 1.00 3.0e-04
pspline(ef, df=0, linear -0.0360 0.00739 0.00739 23.73 1.00 1.1e-06
pspline(ef, df=0, nonlin 6.55 1.18 1.4e-02

Iterations: 15 outer, 39 Newton-Raphson
Theta= 0.989
Degrees of freedom for terms= 1.0 3.0 2.2
Likelihood ratio test=72.1 on 6.17 df, p=1.93e-13
n=764 (102 observations deleted due to missing)

The result is shown in figure 4. The AIC¢ criterion has chosen 2.2 degrees of
freedom for the spline term, which has essentially removed the upward jump of the
right hand tail found in figure 3.

We had already concluded that lved had no non-linear effect. An attempt to use
the AIC criteria to choose the smoothness of 2 terms at once however, pspline (lvef,
df=0) + pspline(ef, df=0) islikely to be unsuccessful in general. Each term is being
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Figure 4: Spline fit with degrees of freedom chosen by AICc

controlled by a separate 1-paramteter minimizer, and unless the terms are nearly
independent (and these two cardiac tests clearly are not) simultaneous univariate
minimization is not a good strategy for finding the global maximum of a function,
even though it is quite reliable for the bivariate calibration problem that arises when

the df values are specified.

3 Frailty

In the last several years there has been significant and active research on the addition
of random effects to survival. The random effect is usually viewed as a categorical
variable which describes excess risk or frailty for an individual or family. The idea
is that individuals have different frailties, and that those who are most frail will
die earlier than the others. Aalen [1] discusses the impact of such heterogeneity
on analyses, and includes several examples along with an overview of the early
literature. He gives a good discussion of why such models are both of interest and
practical utility.

Computationally, the frailty is usually viewed as an unobserved covariate. This
has led naturally to the use of the EM algorithm as an estimation tool. However, the

algorithm is slow, the proper variance estimate is uncertain, and no implimentation

15



has appeared in any of the more widely available packages.

Assume a proportional hazards model with random effects or frailties, with

hazard function

Ai(t) = No(t)eXiPtZiv

Here 3 is a vector of p fixed effects and w a vector of ¢ random effects, where the
individual elements w; are iid realizations from some distribution W (#). The matrix
X will normally contain measured covariate values, and Z will be a design matrix
that describes how the random effects apply to individual subjects. Both X and
Z might contain time dependent effects, but we will ignore this complication for
the moment. The baseline hazard may contain other parameters &; these will also
be ignored. Note that if X contains an intercept term (which is implicit for the
proportional hazards model), we can constrain w to have mean 0.

We can treat the random effects as unobserved data and apply the EM algo-
rithm. The ‘@’ of the formal EM argument is the entire observed data (time, status,
covariates) plus the frailties, and ‘y’ is the data without the frailties. The full log-
likelihood, if we had observed w, is

Ly = Y log(W(ws6)

n
+ > dillog(No(t:)) + Xif + Ziw] — Ag(t;)eX 0+ 7

i=1

Here §; = 0 for censored observations, and 1 for events. X will be an n by p matrix
and Z will be n by q.

This way of setting up the problem is similar in notation to random effects
models in linear regression. Another notation, which is more common in the survival
literature, is to define @ = exp(Z;w) as the frailty parameter for each subject. Then

)\Z(t) = w])\o(t)exlﬂ,

subject ¢ being a member of the jth family. The imposed constraint is usually
E(w) = 1 rather than E(w) = 0.

The most popluar choice for the random distribution is the gamma frailty model,
where @ is from a Gamma distribution with variance mean 1 and variance § = o2.
The details of the EM approach for survival data and for the gamma frailty model
in general are found in appendix B. This shows that the marginal likelihood L,

after integrating out the frailty is

v T(v + Dj)
L, =Cox PL+Y wlog [ —— +1og(7f>—0.1og(y+n). 3)
’ 2]: <”+E1'> L) ’ ’
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By “Cox PL” in the above we mean the numerical value returned as the partial
likelihood by a standard Cox model program for the given values of 8 and w, w
having been entered as an offset term. This derivation only applies to the simple
frailty problem where each subject ¢ is a member of exactly 1 family j, with a
random effect per family. Then D; is the number of events in the family, and
E; = Ej/exp(w;) where Ej is the expected number of events for the family, using
the final model.

3.1 Computation

Some care must be taken with computing the log-likelihood as v goes to infinity,
in which case the frailty goes to zero and we should converge to the results of an
ordinary, non-frailty Cox model. Equation (3) converges in this particular case to
Cox PL — 3" D;. For this reason, we have added ) D; to the value of L, in the
S-Plus code, to make the results of frailty and non-frailty models appear comparable
on the printout.

The computation of the correction terms in (3) must be done with care for them
to converge to Y D; as desired. The first correction term, v log[v/(v+ Ej;)] becomes
numerically problematic on a Sun workstation for v > 10° or so. Such a value is
unlikely to occur during iteration, but if so the term could be replaced at that point
by it’s Taylor series expansion —E; /(1 + E;/v). Because the martingale residuals
D — FE sum to zero, for v = oo this converges to the sum of the events.

The more problematic terms, numerically, are

F(V + DJ)
tog ( ()

There are three possible ways to compute this; as the expression above, as the differ-

> — Dj log(l/ + D]) .

ence in log I" functions, which is an elementary function in S, or using a recurrence

formula for the I" function to show that

D4

F(l/‘f‘Dj) o

2 Tl v+D; -k
L(v) kl;Il J

On a Sun workstation the first method is unstable for v > 100, the second for
v > 107.
Finally, we can combine the log ' and logarithmic terms together giving

D
]V—FD]'—]C

o | 1L =575,7 ) - @
k=1

For large v this form will be well behaved, and clearly goes to zero in the limit.
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4 Frailty and penalized likelihoods

4.1 Derivation

There is an interesting connection between the frailty models and penalized like-
lihoods. In particular, let the penalty function for a constrained solution be the

log-gamma density
— flw;v) = v(w — ) + vlog(v) — log D(v),

with § = 1/v as the variance of the random effect and with Z defined as in the
frailty model. The first and second derivatives are v(1 — exp(w)) and —vexp(w),
respectively.

Surprisingly, for any fixed value of v the EM algorithm and this contrained
minimization have the same solution. This was discovered by accident in some
tests, but can easily be verified by rewriting the formula for L,. Combine the
definition of the PLL

q
PLL = Cox PL + Z v(w; —e*’) +vlog(v) —log['(v)
i=1
with equation 18, using equation 16 to eliminate E7. Per the prior section, we want

to maximize Ly, + D where D is the total number of events. Then

g
Ly+D = PLL+ Z[Ve“’f + D; +1logl'(v + D;) — (v + Dj)log(v + Dj)]
j=1

q
= PLL+ Y v+ D;+logT'(v+ D;) — (v+ D;)log(v + D) (5)
j=1
The second step above can be made because of a constraint: throughout the inter-
ation the solution values will satisfy E(w;) = 1. Since the correction terms involve
neither 8 nor w, we see that L, and the PLL must have the same maximum.

This connection between the two methods has several interesting consequences.

e Since penalized likelihood methods are well understood numerically, this leads
to more stable computational methods. In particular, it fits in nicely to the

new coxph function.

e Equation (5) can also be viewed as the objective function from an empirical
Bayes model, with a gamma prior on w and a hyperprior on v that is a product
of ¢ densities each of the form e”I'(z)/z”, where = v + D;. This density is
extremely long tailed.
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e There is a connection to the “degrees of freedom” for a fit.

e It suggests a heuristic approach for other frailty distributions and/or frailty
terms, e.g. nested models, for which the EM mathematics is not tenable.

An example of the last point is found in McGilchrist and Aisbet [18, 17], who
use a Gaussian density with variance 2 as the penalty function f. So

PLL = Cox PL - (1/20%) Y "w} (6)

j=1
There remains the question of how to choose the variance or “shrinkage” paramter
o. There is no exact connection to frailty models as there was with the gamma
distribution. However, the authors note the similarity of the Cox model’s Newton-
Raphson step to an interatively reweighted least-squares calculation, and using this
as a basis they propose using standard estimators from Gaussian problems. Exter-

nal to the modified Cox program, o is chosen to satisfy

¢ 2
2 _ Zuy=1%

q—r
where r is
e BLUP estimate: r=1
e ML estimate: trace[(Hsz)™']/0?
e REML estimate: trace[(H ~!)a2]/0?.

It should be possible to make this derivation more precise using a Laplace ap-
proximation, as in Breslow and Clayton [2], but the task is a little beyond me.
McGilchrist and Yau [19, 27] generalize the REML method to a more general case.
Assume that the variance of the random effect is 02 A for a known matrix A. Then
the penalty is w'A"tw/20?%, and the REML estimate satisfies

5  wATw + trace[AT (H1)a0]

g = ’
q

which is equivalent to the above formula when A is the identity matrix. (The ML
method would use (Hz2)~!.) However, in simulations they find the REML to be
less biased than the ML method.
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4.2 Sparse computation

One important computational addition has been made to the underlying code specif-
ically to support the frailty computations, represented by the sparse argument (al-
though it may be useful in other contexts as well). Assume a single frailty term of
the usual type, Z;; = 1 if subject i is a member of group j, and zero otherwise. If
we partition the Cox model’s information matrix according to the rows of X and Z

7 Ixx Ixz

Izx Izz
then the lower right corner will be a diagonally dominant matrix. (It has almost the
form of the variance matrix for a multinomial). The added penalty is also diagonal.

If sparse computation is elected, then the underlying programs retain only the
diagonal of Z .

e The savings in space can be considerable, particularly in the case of a frailty
term per subject. Assume that there were 300 subjects and 4 other variables
(age, sex, ...). Then the full matrix will have 3042 = 92416 elements, but the
sparse version retains only the left hand “slice” of 304 x 4 = 1216 elements.

e Because the score vector and likelihood are not changed, the solution point
is identical. The Newton-Raphson iteration may undergo a slight loss of ef-
ficiency so that 1-2 more iterations are required. However, because each NR
iteration requires the Cholesky decomposition of the information matrix, the
sparse problem is much faster per-iteration than the full matrix version. (We
sweep out the sparse rows first in the decompositon, which makes them par-
ticularly simple to process). The final solution may differ trivally from the
non-sparse one because of a different iteration path.

e In a small number of examples, the effect on estimates of degrees of freedom

and standard error have been slight.

e The output of the program is slightly changed. Under the assumption that the
sparse terms coefficients should not be printed by default, they are returned
as a component frail, and the usual coef and var components contain only
the non-sparse terms.

e The Schoenfeld and dfbeta residuals, both of which are a matrix with one

column per variable, are computed with the frailty treated as a fixed offset.

Whether or not sparse computation is selected, the program does one other
‘trick’ that is worth noting. We want the shrinkage term to be symmetric with
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respect to the families. However, the standard S model matrix would be formed per
the global contrast option, which leads to nfamily-1 coefficients that are not sym-
metric, e.g., for treatment style contrasts the reference group is left out. Although
this recoding would not change the predicted value of a given subject in an ordinary
Cox model, it does change both the coefficients and the prediction in a penalized
model, because of the explicit shrinkage. In order to prevent this transformation a
special “don’t do contrasts” attribute is added to the frailty term. Alternatively,
the penalty function could be made more sophisticated, with the type of contrast
passed to it as an argument.

Exactly the same issue must be considered to extend the ridge function to
categorical variables.

The computation of the degrees of freedom and variance matrices are also spe-
cialized to avoid any intermediate steps that would give an ¢ by ¢ result, where ¢
is the number of sparse coefficients and p is the number of other variables in the
problem. The details of this are shown in appendix A.

The martingale and deviance residuals are unchanged by the use of a sparse
computation. To compute the score and Schoenfeld residuals, the code treats the
final fitted values of the sparse term as fixed values, the returned matrix of residuals
does not include columns for the dummy variables that represent the frailty.

The function for predicted values has not yet been updated to accomodate sparse
terms. For those values that depend only on the linear predictor, e.g., the estimated
per-subject risk score, the current routines will work as expected. The default
baseline survival curve corresponds to a fictional subject with 0 for the random
effect and means for the other covariates. Results that depend on a new data set
are more problematical; should we allow a ’value’ to be set for the random effect,
or always force it to be zero? What should the variance of the prediction be?

4.3 Examples
4.3.1 Rat data

A data set on the effect of treatment on survival for 150 female rats, where the rats
come from 50 litters, has been used by several authors. The data set can be found
in Mantel, Bohidar and Ciminera [16]. This example concentrates on the female
litters.

The data set has 3 rats per litter, one of which recieved a potentially tumorigenic
treatment. Forty rats developed a tumor during follow-up. In order to match prior

analyses we need to use the Breslow approximation for tied times.

> rfit <- coxph(Surv(time, status) ~ rx + frailty(litter),
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data=rats, method=’breslow’)

> rfit
coef se(coef) se2 Chisq DF P
rx 0.906 0.323 0.319 7.88 1.0 0.005
frailty(litter) 16.89 13.8 0.250

Iterations: 6 outer, 19 Newton-Raphson

Variance of random effect= 0.474 EM likelihood = -181.1
Degrees of freedom for terms= 1.0 13.9
Likelihood ratio test=36.3 on 14.83 df, p=0.001 n= 150

> rfit0 <- coxph(Surv(time, status) ~ rx, rats, method=’breslow’)
> rfit0

coef exp(coef) se(coef) z P
rx 0.898 2.46 0.317 2.83 0.0047

Likelihood ratio test=7.87 on 1 df, p=0.00503 n= 150

> rfitl <- coxph(Surv(time, status) ~ rx + frailty(litter, theta=1),

data=rats, method=’breslow’)

> rfitl
coef se(coef) se2 Chisq DF P
rx 0.918 0.327 0.321 7.85 1.0 0.0051
frailty(litter, theta = 1) 27.25 22.7 0.2300

Iterations: 1 outer, 5 Newton-Raphson

Variance of random effect= 1 EM likelihood = -181.5
Degrees of freedom for terms= 1.0 22.7
Likelihood ratio test=50.7 on 23.67 df, p=0.001 n= 150

The main thing to notice about the result is how little the treatment coefficient
is changed by the inclusion of a random effect term. This is likely a consequence of
the balanced model; each litter recieved both the active and control treatments.

We see that for a fixed value of the frailty the iteration is nearly as efficient as
for a normal Cox model, which usually requires 3-4 iterations. The generalized fit
required 6 guesses to maximize the profile likelihood, and about 3 internal iterations
per v value.

The “likelihood ratio test” is always the difference in partial likelihood between
the initial and final fit, ignoring penalty terms and corrections. The default for

the initial fit is (8,w) = 0, which is a fit with no covariates or random effect. The
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degrees of freedom is computed as described earlier. The random effect has added
little.

The history component of the returned fit contains the final return values of
the control function(s). For an iterative method such as this, this shows the history
of the iteration as well as the final value for 6.

>rfit$history[[1]1]
$theta: 0.4742854

$done: T
$loglik: -181.0777

$history:
theta loglik c.loglik

[1,] 0.0000000 -181.8451 -181.8451
[2,] 1.0000000 -218.3683 -181.5458
[3,]1 0.5000000 -273.3117 -181.0788
[4,] 0.3090061 -337.7537 -181.1490
[5,] 0.4645720 -281.3849 -181.0775
[6,]1 0.4736212 -279.2127 -181.0773

The component history$history has columns that give successive values of 6,
the (maximal) penalized likelihood for that value of 6, and the corrected likelihood
L,. We see that in this example that the profile likelihood L, is very flat as a
function of #. The first element of the list, 0.4742854, is the value that would have
been used for the next iteration.

The solution using a Gaussian frailty is not much different.

> rfit2 <- coxph(Surv(time, status) ~ rx +

frailty(litter, dist=’gauss’), rats)

> rfit2
coef se(coef) se2 Chisq DF P
rx 0.913 0.323 0.319 8.01 1.0 0.0046
frailty(litter, dist=ga 15.57 11.9 0.2100

Iterations: 6 outer, 16 Newton-Raphson
Penalized terms:
Variance of random effect= 0.412
Degrees of freedom for terms= 1.0 11.9
Likelihood ratio test=35.3 omn 12.87 df, p=0.000712 n= 150
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4.4 Survival of kidney catheters

The following data set is presented in McGilchrist and Aisbett [18]. Each obser-
vation is the time to infection, at the point of insertion of the catheter, for kidney
patients using portable dialysis equipment. Catheters may be removed for reasons
other than infection in which case the observation is censored. There are 38 pa-
tients, each of which has exactly 2 observations. Variables are the subject id, age,
sex (1=male, 2=female), disease type (glomerulo nephritis, acute nephritis, poly-
cystic kidney disease, and other), and the time to infection or censoring for each
insertion.

> kfit <- coxph(Surv(time, status) ~ age + sex + disease + frailty(id), kidney)
> temp <- coxph(Surv(time, status) ~ age + sex + disease +
frailty(id, sparse=F), kidney)
>kfit
coef se(coef) se2 Chisq DF P

age 0.00318 0.0111 0.0111 0.08 1 7.8e-01

sex -1.48314 0.3582 0.3582 17.14 1 3.5e-05
diseaseGN 0.08796 0.4064 0.4064 0.05 1 8.3e-01
diseaseAN 0.35079 0.3997 0.3997 0.77 1 3.8e-01
diseasePKD -1.43111 0.6311 0.6311 5.14 1 2.3e-02
frailty(id) 0.00 0 9.5e-01

Iterations: 6 outer, 29 Newton-Raphson
Penalized terms:
Variance of random effect= 1.47e-07 EM likelihood = -179.1
Degrees of freedom for terms= 1 1 3 0
Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76

>temp
coef exp(coef) se(coef) se2 z P
age 0.00318 1.003 0.0111 0.0111 0.285 7.8e-01
sex -1.48314 0.227 0.3582 0.3582 -4.140 3.5e-05
diseaseGN 0.08796 1.092 0.4064 0.4064 0.216 8.3e-01
diseaseAN 0.35079 1.420 0.3997 0.3997 0.878 3.8e-01
diseasePKD -1.43111 0.239 0.6311 0.6311 -2.268 2.3e-02
(38 lines of other coefs)

Iterations: 6 outer, 19 Newton-Raphson
Penalized terms:
Variance of random effect= 1.47e-07 EM likelihood = -179.1

Degrees of freedom for terms= 1 1 3 0
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Figure 5: Realized gamma frailties for the kidney data

Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76

The non-sparse solution has given the same answer as the sparse algorithm
in 10 fewer iterations, but it took somewhat over 3 times as long to run. Both
programs have decided that the optimal value for a gamma frailty is essentially 0.
The “p-value” for the frailty term is almost random, both the test statistic and the
degrees of freedom are < 107°, and round off error in both the computation and
the chi-square probability function begin to dominate.

A somewhat different result ensues when the disease variable is left out of the

model, however.

> kfit2 <- coxph(Surv(time, status) ~ age + sex + frailty(id),
data=kidney)
> kfit2
coef se(coef) se2 Chisq DF P
age 0.00522 0.0119 0.0088 0.19 1.0 0.66000
sex -1.58335 0.4594 0.3515 11.88 1.0 0.00057
frailty(id) 22.97 12.9 0.04100

Iterations: 7 outer, 49 Newton-Raphson

Variance of random effect= 0.408 EM likelihood = -181.6
Degrees of freedom for terms= 0.6 0.6 12.9
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Likelihood ratio test=46.6 on 14.06 df, p=2.36e-05 n= 76

A plot of the realized frailty coefficients shows that the gamma frailty has “picked
up” a large outlier; the same subject is an influential point for the fourth disease
group. In a model with only age and gender, this subject has a martingale residual
of -7.4; the next smallest is -1.8! This subject, number 21, is a 46 year old male
(median age=45.5). There are 10 males in the study and most had early failures,
16/18 of the remaining kidneys had an infection at a median of 19 (days?), 2 were
censored at 4 and 8 days respectively. Subject 21 however had failures at 154 and
562 days, making him quite an extreme outlier.

Using the approximate Gaussian frailty method of McGilchrist [17] with REML

gives a non-zero estimate of the random effect.

> mfitl <- coxph(Surv(time, status) ~ age + sex + disease +
frailty(id, dist=’gauss’), data=kidney)
mfitl
coef se(coef) se2 Chisq DF P

age 0.00489 0.015 0.0106 0.11 1.0 0.74000
sex -1.69727 0.461 0.3617 13.56 1.0 0.00023
diseaseGN  0.17985 0.545 0.3927 0.11 1.0 0.74000
diseaseAN  0.39294 0.545 0.3982 0.52 1.0 0.47000
diseasePKD -1.13633 0.825 0.6173 1.90 1.0 0.17000
frailgy(id) 17.89 12.1 0.12000

Iterations: 8 outer, 32 Newton-Raphson
Penalized terms:
Variance of random effect= 0.493
Degrees of freedom for terms= 0.5 0.6 1.7 12.1
Likelihood ratio test=47.5 on 14.9 df, p=2.83e-05 n= 76

> mfit2 <- coxph(Surv(time, status) ~ age + sex + disease +

frailty(id, dist=’gaus’, sparse=F), kidney)

> mfit2
coef se(coef) se2 Chisq DF P
age 0.00492 0.0149 0.0108 0.11 1.0 0.74000
sex -1.70204 0.4631 0.3613 13.51 1.0 0.00024
diseaseGN 0.18173 0.5413 0.4017 0.11 1.0 0.74000
diseaseAN 0.39442 0.5428 0.4052 0.53 1.0 0.47000
diseasePKD -1.13160 0.8175 0.6298 1.92 1.0 0.17000
frailty(id, dist=’gaus 18.13 12.3 0.12000

Iterations: 6 outer, 17 Newton-Raphson
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Figure 6: REML solution for the kidney data

Penalized terms:

Variance of random effect= 0.509
Degrees of freedom for terms= 0.5 0.6 1.7 12.3
Likelihood ratio test=118 on 15.14 df, p=0 n= 76

In this case the sparse routines have some impact on the solution itself. The

REML estimate of 6 satisfies the following equation

5 > w;i+ sum(diag(var[6 : 43]))
6= 38 . (7)

Moderate changes in the estimated H matrix can have a large effect on the final
value of §. The sparse method uses a diagonal approximation to the ‘frailty’ portion
of H, and this effects the diagonal of H~!=var. The overall Wald test of 18.3 is
still not significant. The Gaussian frailty model without the disease variable also
has a single large negative frailty.

We should point out as well that these answers differ slightly from the author’s
[17] results. Their paper presents formulas that are completely valid only for untied
data, and this data set has a 5 tied pairs and one quadruple. This is certainly
not clinically significant, and in a standard Cox model would barely perturb the
answers. Unfortunately, the REML solution for ¢ is very touchy. Figure 6 shows

the left and right-hand sides of equation 7 for a range of values along with the line
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y = . (Remember that H is implicitly a function of the current #). The solution

point lies at the intersection of these curves.

4.5 CGD Data

Chronic granulotomous disease (CGD) is a heterogeneous group of uncommon in-
herited disorders characterized by recurrent pyogenic infections that usually begin
early in life and may lead to death in childhood. Interferon gamma is a princi-
pal macrophage-activating factor shown to partially correct the metabolic defect
in phagocytes, and for this reason it was hypothesised that it would reduce the
frequency of serious infections in patients with CGD. In 1986, Genentech, Inc. con-
ducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients
who received Genentech’s humanized interferon gamma (rIFN-g) or placebo three
times daily for a year. The resultant data set can be found in appendix D of Flem-
ing and Harrington [8]. The primary endpoint of the study was the time to the
first serious infection. However, data was collected on all serious infections until
loss-to-followup, which occurred before day 400 for most patients. Thirty of the 65
patients in the placebo group and 14 of the 63 patients in the rIFN-g group had
at least one serious infection. The total number of infections was 56 and 20 in the

placebo and treatment groups, respectively.

> coxph(Surv(tstart, tstop, status) ~ rx + cluster(id), cgd)
coef exp(coef) se(coef) robust se z P
rx -1.1 0.334 0.261 0.312 -3.51 0.00045

> coxph(Surv(tstart, tstop, status) ~ rx + cluster(id) + strata(enum), cgd)
coef exp(coef) se(coef) robust se z P

rx -0.86 0.423 0.28 0.292 -2.95 0.0032

> coxph(Surv(tstart, tstop, status) ~ rx +frailty(id) + strata(enum), cgd)

coef se(coef) se2 Chisq DF P
rx -0.863 0.281 0.28 9.45 1.00 0.0021
frailty(id) 0.73 0.66 0.2600

Iterations: 5 outer, 17 Newton-Raphson
Penalized terms:
Variance of random effect= 0.01 EM likelihood = -247.1
Degrees of freedom for terms= 1.0 0.7
Likelihood ratio test=10.2 on 1.66 df, p=0.00394 n= 203

> coxph(Surv(tstart, tstop, status) ~ rx +mfrail(id) +strata(enum), cgd)
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coef se(coef) se2 Chisq DF P
rx -0.983 0.312 0.281 9.9 1.0 0.0017
mfrail (id) 34.5 23.7 0.0700

Iterations: 8 outer, 36 Newton-Raphson
Penalized terms:
Variance of random effect= 0.483
Degrees of freedom for terms= 0.8 23.7
Likelihood ratio test=62.8 on 24.49 df, p=3.34e-05 n= 203

The example above shows partial results of Andersen-Gill, conditional, gamma
frailty and normal frailty models. The conditional model is known to be biased
downwards, and one question is whether the addition of a frailty term can compen-
sate.

For the gamma frailty model, the final value of § was essentially zero — the
fit is maximized at the no frailty model. For the REML normal model (sparse
computation), the value is maximized at a value of § = .483. With this value of 6,
the coeflicient is significantly increased.

A gamma model with the same degrees of freedom agrees with the above in
all important respects; it has almost an identical treatment coefficient and random
effect variance.

> coxph(Surv(tstart, tstop, status) ~ rx + frailty(id, df=23.7)

+ strata(enum), cgd)

coef se(coef) se2 Chisq DF P
rx -0.981 0.309 0.281 10.1 1.0 0.0015
frailty(id, df = 23.7) 31.2 23.7 0.1400

Iterations: 3 outer, 11 Newton-Raphson
Penalized terms:
Variance of random effect= 0.471 EM likelihood = -247.5
Degrees of freedom for terms= 0.8 23.7
Likelihood ratio test=55.1 on 24.53 df, p=0.000392 n= 203

4.6 Colon Cancer study

This data is from a study by Moertel, et. al. [20] of three regimens, placebo,
Levamisole, and Levamisole + 5-FU, in the treatment of resected colon cancer. The
data is used in Lin’s paper on marginal Cox models [15] (he uses only 2 of the arms).

For each patient we have both the time to survival and the time to progression, and

29



would like to use both concurrently in an assessment of treatment. There are 929

patients distributed as follows

N umber of events
0 1 2
Placebo | 125 35 155
Levamisole | 128 31 151
Lev+5FU | 170 26 108

As we can see, most patients have either both outcomes or neither.
The code below fits the marginal model (recommended by Lin), along with the

gamma and Gaussian frailty models.

> fitcl <- coxph(Surv(time, status) ~ rx + extent + node4 + cluster(id)

+ strata(etype), colon)

> fitcl
coef exp(coef) se(coef) robust se z P
rxLev -0.0362 0.964 0.0768 0.1056 -0.343 7.3e-01
rxLev+5FU -0.4488 0.638 0.0840 0.1168 -3.842 1.2e-04
extent 0.5155 1.674 0.0796 0.1097 4.701 2.6e-06
node4 0.8799 2.411 0.0681 0.0961 9.160 0.0e+00

Likelihood ratio test=248 on 4 df, p=0 n= 1858

> fitc2 <- coxph(Surv(time, status) ~ rx + extent + node4 + mfrail(id)
+ strata(etype), colon)
> fitc2

coef se(coef) se2 Chisq DF P
rxLev -0.0267 0.241 0.0824 0.01 1 9.1e-01
rxLev+5FU -0.7880 0.243 0.1071 10.50 1 1.2e-03
extent 1.1305 0.218 0.1068 26.81 1 2.2e-07
node4 2.1266 0.210 0.0984 102.56 1 0.0e+00
mfrail (id) 5464.64 730 0.0e+00

Iterations: 10 outer, 77 Newton-Raphson
Penalized terms:
Variance of random effect= 7.05
Degrees of freedom for terms= 0.3 0.2 0.2 729.7
Likelihood ratio test=3544 on 730.49 df, p=0 n= 1858

> fitc3 <- coxph(Surv(time, status) ~ rx + extent + node4 + frailty(id)
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+ strata(etype), colon)

> fitc3
coef se(coef) se2 Chisq DF P
rxLev 0.0438 0.305 0.140 0.02 1 8.9e-01
rxLev+5FU -0.5111 0.310 0.171 2.71 1 1.0e-01
extent 1.3382 0.251 0.137 28.38 1 1.0e-07
node4 2.3397 0.233 0.156 100.63 1 0.0e+00
frailty(id) 5956.44 867 0.0e+00

Iterations: 8 outer, 103 Newton-Raphson
Penalized terms:

Variance of random effect= 8.06 EM likelihood = -5347.4
Degrees of freedom for terms= 0.5 0.3 0.4 867.0
Likelihood ratio test=3789 on 868.25 df, p=0 n= 1858

> fitc4d <- coxph(Surv(time, status) ~ rx + extent + noded +

frailty(id, df=30) + strata(etype), colon)

> fitc4
coef se(coef) se2 Chisq DF P
rxLev -0.0374 0.0789 0.0769 0.22 1 6.4e-01
rxLev+bFU -0.4565 0.0859 0.0840 28.27 1 1.1e-07
extent 0.5289 0.0815 0.0798 42.13 1 8.5e-11
node4 0.9078 0.0701 0.0681 167.85 1 0.0e+00
frailty(id, df = 30) 58.53 30 1.4e-03

Iterations: 3 outer, 9 Newton-Raphson
Penalized terms:
Variance of random effect= 0.0337 EM likelihood = -5832.4
Degrees of freedom for terms= 1.9 1.0 0.9 30.0
Likelihood ratio test=276 on 33.8 df, p=0 n= 1858

This is the first data set where the final frailty solution is large: the variances
are 8.1 for the gamma and 6.9 for the REML gaussian models. The fitting is
also quite slow, as compared to a standard Cox model. The number of Newton-
Raphson iterations necessary for a particular value of ¢ increases markedly when 6
is larger than about 3, for this data set; the penalized information matrix is not so
clearly diagonally dominant in this case, and the sparse solution not as efficient an
approximation.

The unconstrained frailty fits are worrysome. For subjects with no events, the
realized values of w for the gamma frailty model range from -3 to -10 (median of -6),

versus a median value of .-5 for those with 2 events. With such a weight, exp(-5.5)=
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Figure 7: Density of the realized frailties, colon cancer data

.004, the model we obtain is almost equivalent to removing all of the subjects with
no events from the data set. That is, the frailty model declares them to be “risk
free”.

Figure 7 shows the densities of the realized frailties from the gamma frailty
model. There is almost no overlap in the densities of subjects with both death and
progression, and those with neither.

4.7 Further notes

In the code as actually distributed, the penalty functions are incorporated into the
wrapper, rather than being separate as shown in some of the examples. This avoids
cluttering up the S-Plus space with too many function names.

At this point the underlying C programs and the control structures of the coxph
program are very solid, and I don’t anticipate any changes. The functions to de-
scribe the penalties are quite simple, so they also shouldn’t change much. The
biggest place for algorithmic improvement appears to be in the control functions.
The heart of these are simple one-dimensional minimizers, either Brent’s method
(frailty.brent) or exponential interpolation (frailty.controldf). The starting es-
timates, bracketing rules, and step sizes in each of these has not been examined in

any systematic way, although they do work for all of the current examples.
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The important auxillary functions predict.coxph and survfit.coxph have not been
modified as yet; they will work as is for non-sparse models. However, both the
default “predicted survival curve” and the type=terms result from predict cannot
be of much use for a random effects model. Plans are to treat the sparse terms as
a fixed offset.

In conjunction with Silke Schmidt (her thesis) we have tried extending this
code to a more complicated frailty problem involving family data. This is a nested
problem with both a per-subject effect and a familial effect that has a genetic basis.
The result is that the penalty matrix for the subject random effects has a block
diagonal structure. The sparse Newton-Raphson didn’t work. (Blast! And I had
such high hopes.) Ignoring the off-diagonal information causes the algorithm to
take poor steps, sometimes in the opposite direction to the actual solution. A more
sophisticated change does appear to work, and may become part of the distributed
routines at a later date.

And last, this document is still a working draft. The authors would appreciate
any feedback on its structure or deficiencies.

A Computing degrees of freedom

Let H denote the negative Hessian (minus the matrix of second partial derivatives)
of the log penalized partial Cox likelihood. A Cholesky decomposition gives H =
U'DU, where U is upper triangular with U;; = 1 for all ¢ and D is diagonal. The
underlying code places the sparse terms first in the model, so that the Cholesky

decomposition actually has the form
I U
U= .
0 U,
with I being a ¢ by ¢ identity matrix and 0 a matrix of zeros. Then, we have

H71 — U*lDflUlfl
= TD'T

where T = U~! is upper triangular with 1’s on the diagonal, like U, and can be
partitioned analogously into I, 0, T} and T5.
Note that 7> = U, *. So:

gl I T D0 I 0
o 0 D,* T T
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D' +T,D;*'T] T\D,'T}
ToD, T ToD, ' T}

- (2 2)

A is a ¢ by g matrix, and our goal is to compute further information using only the
diagonal of A. Let V = H~'(H — P)H~!, where P is the matrix of second partial
derivatives of the penalty terms for the log of the Cox penalized log likelihood, so
H =T+ P. The lower right p by p submatrix of V' is the second estimate of variance
of the nonfrailty terms (var2 on the printout), the lower right p by p submatrix of
H~! being the first estimate of variance (var) If P is partitioned:

P P 0
0 P

where P, is a g by ¢ submatrix with the penalty terms for the frailty part of the
model and P; is a p by p submatrix with penalty terms for the rest of the model,
including any ridge or penalized splines, then we note that P, is diagonal as a
consequence of the choice of sparse computation, and that P, will be zero if there
are no other penalized terms in the model, which is a common situation when doing
frailty models.

The coxpenal.df program, which does the essential computations, is called with
arguments hmat, the ¢ + p by p matrix containing the righmost columns of U, hinv
which contains the p rightmost columns of T', fdiag containing the diagonal of D1,
along with the penalty matrices and some bookkeeping information. It returns the
lower right corners of V and H~!, the vector of degrees of freedom, and the diagonal
of the upper left corner of H—!.

The lower right corner of H! is simply Tng;lTé, a p by p matrix. Some
further efficiency could be gained, in terms of the total number of multiplications
and additions, by noting that 75 is upper triangular but this has not been persued.
The lower right of V is

Vag = Hyy' — (B'PLB + CP0).

The degrees of freedom for the sparse term is

trace [(Hi;') Vi1 ] trace[A (A — AP,A — BP,B')]
q — trace[P; A] — trace[A ' BP,B']

q — trace[P; A] — trace[B'A™'BP;].
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If P, is zero then since P is diagonal, only the diagonal of A is needed. This
simplification occurs for any penalized term, sparse or not, when it is the only
penalized term in the model and P is diagonal.

If P, is non-zero, then note that the standard formula for partitioned matrices

gives that the lower right corner of H must be
Hy =[C—B'A'B] .

We can compute the p by p matrix Hss directly from 7' and then subtract from C'
to get the matrix B’A~! B, without having to form or invert the ¢ by ¢ matrix A.

For individual terms that are part of the non-sparse portion of the matrix, we
have to use the usual formula since this may involve sub-portions of the matrix.
However, since the two quantities of interest are already computed this is not a
large issue. (Again, we assume that p is relatively small).

The S-Plus code also makes frequent use of the identity trace(x %*% y) = sum(t(x)
* y), where %#% is matrix multipltication, t() is the transpose function, and * is

elementwise multiplication.

B EM Algorithm

B.1 Derivation

Let x be the full data with density f(x;8), y the observed, or partial, data with

density g(y;0), and let

kel 8) = T2

be the conditional density of f given g. For simplicity abbreviate log[g(y;0)] as
Ly(y;0), and similarly for f and k.
The log-likelihood can be broken up according to the simple identity

loglg(y;0)] = log[f(x;0)] — {log[f(z;8) — log[g(y;0)]}
Ly(0) = Lg(6) — Li(8) (8)

Now, let ¢ be a provisional guess for the value of 6, and take the conditional
expectation of equation (8) with respect to y and ¢:

E{Ly(y;0)ly, o} E{L¢(z;0)|y, ¢} — E{Lk(z]y;0)y, ¢}

The term on the left hand side of the equation is unchanged, since the conditional

expectation of y with respect to any parameter(s) and y must be y itself. The right
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hand side defines the terms @ and H in the original paper by Dempster, Laird and
Rubin [5]. This equation is the key. In particular, the terms on the right are often
computable, where the original term on the left is not. Ly, the full data likelihood
may be easy to write down and maximize. H is not necessary to the maximization
process, but is needed for the evaluation of the likelihood itself (if desired).

The difference between 6 and ¢ is crucial. The EM algorithm consists of two
alternating update steps.

E step: Compute the algebraic form of ). This will involve replacement of x
and functions of z in Ly with their expected values given y and ¢.

M step: Maximize this new expression, now only a function of #, with respect
to 6. Let 6 be that maximizing value for Q(8, ¢). Return to the E step, replacing
¢ with 6.

The convergence of the EM rests on the following lemma: For any value of 8,
H(6,¢) < H(¢,¢), with equality occuring only if L(0) = L;(¢) a.e. The left hand
side is the expected value of a log-likelihood at parameter § when the true density
has parameter ¢, and the lemma states that the expected value of a log-likelihood is
maximized at the true parameter. I will follow the lead of other authors and state
that the proof is a “standard result due to Jensen’s inequality”.

From this we can easily show that

Ly(0) — Ly(6) = [QB, ¢) — Q(b, )] + [H (¢, ¢) — H(B,9)] > 0.

The first term on the right hand side is greater than zero by definition of é, and the
second from the lemma. The algorithm may converge arbitrarily slowly, however.
For any given component of 8, the error will eventually decrease by a multiplicative
constant.

Suppose that Ly has the expansion

Ly(z;6) = a(z) + b(z,0) + c(0)

for some functions a, b and c¢. Technically, the E step of the algorithm involves
calculation of E{a(z)|y, ¢}. However, since this term will not be used in the M step
it can be ignored during iteration. For an exponential family, e.g., Gaussian with

known variance,

b(z,0) = 0't(x)

where #(z) is the vector of sufficient statistics. This leads to the “classic” EM, which

simply replaces sufficient statistics by their expectation.
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B.2 Example

Consider a censored data example found in Cox and Oakes [4]. Let z; be the true
survival time and (y;,d;) be the observed time along with a censoring indicator.

g >y, =0

a. Assume that X is exponential. For this problem we can easily write down
the true likelihood

n

Ly =" [0ilog(6) — Oyi] .

i=1

b. Assume that the actual likelihood L, was not known, and that we want

instead to compute our solution using the EM method. The full data likelihood is
easy to state, since it does not involve censoring.

Ly = [log(6) — b;].

We also need to compute the form of Q). In this case, it is simply a replacement of
each z; with E(x;|y;, ¢). This is equal to y; for the uncensored observations. For
the censored observations, the memoryless property of the exponential distribution
means that the time remaining is also exponential, with expected value of 1/¢.
Thus

QW,0) = > [log(6) + E(ily:, i, 4)]
= > [log(6) + 6y + (1 = 6:)/9)]

The E step is thus a replacement of each censored y by its expectation given
the current value of §. The M step consists of maximizing Ly, using these replaced
data values.

c. Using the same conditional distribution argument, we see that

0 §=1
L’“:{ log(8) — (z —y) 6 =0

so that
H(05¢) = E(Lk|y76’ ¢)
= Z(l —0;)[log(0) — O(yi + 1/ — y:)]

The value of H is not needed for the iteration. Note, however, that the final
loglikelihood at 6 can be computed as Q(é, é) — H(é, é) This may be important in
other problems, where L, is difficult to write down.
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B.3 Gamma frailties and PH models
B.3.1 Preliminaries

We will make use of two densities in the derivation. Since they are used mostly in
log-likelihoods, I give the log of the density. The gamma density has formula

log[f (w;n,v)] = (v — 1) log(x) — nx + vlog(n) — —logT'(v)

(This f has nothing to do with Ly — here it’s just a dummy symbol for the dis-
tribution). Two quantities that will be needed are E(X) = v/n and E(log(X)) =
¥(v) —log(n), where ¢ is the digamma function.

Let w = exp(w) follow a gamma distribution with parameters v and 7, so that
the distribution W of w is:

log(W (w;n,v) = (vw —ne”) + vlog(n) —log['(v). (10)

The mean and variance of w are ¥ (v) — log(n) and ¢'(v), where ¥ and ¢’ are the
digamma and trigamma functions, respectively. (The distribution of w + log(n)
follows the log-gamma distribution of Kalbfleisch and Prentice [13] equation (2.3);
see there for derivation of the result).

B.3.2 General setup

Agsume a proportional hazards model with random effects or frailties, with hazard

function
Ait) = /\o(t)eXi[”Zi” . (11)

Here 3 is a vector of p fixed effects and w a vector of ¢ random effects, where the
individual elements w; are iid realizations from some distribution W (6). The matrix
X will normally contain measured covariate values, and Z will be a design matrix
that describes how the random effects apply to individual subjects. Both X and
Z might contain time dependent effects, but we will ignore this complication for
the moment. The baseline hazard may contain other parameters &; these will also
be ignored. Note that if X contains an intercept term (which is implicit for the
proportional hazards model), we can constrain w to have mean 0.

We can treat the random effects as unobserved data and apply the EM algo-
rithm. The ‘@’ of the formal EM argument is the entire observed data (time, status,
covariates) plus the frailties, and ‘y’ is the data without the frailties. The full log-

likelihood, if we had observed w, is

Ly = Z log(W(w; 9))
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n
+ > dilog(No(t:)) + Xif + Ziw] — Ag(t;)e X+ 4w (12)
i=1
Here §; = 0 for censored observations, and 1 for events. X will be an n by p matrix
and Z will be n by q.
This way of setting up the problem is similar in notation to random effects
models in linear regression. Another notation, which is more common in the survival

literature, is to define w; = exp(Z;w) as the frailty parameter for each subject. Then
)\Z(t) = wi)\g(t)eXiﬁ,

and the imposed constraint is usually E(w) = 1 rather than E(w) = 0. We will

prefer the linear models like formulation.

B.3.3 Simpler case

The above equation (12) is not particularly useful unless we can determine the
conditional distribution of w given the rest of the information. This is possible in
one particular case. We will largely follow the derivation of Neilson et. al. [22].

Let w = exp(w) follow a gamma distribution with parameters v and n. Without
loss of generality, we will assume that v = 5, i.e., that the distribution w has mean
1 and variance 1/v. (This is, in this case, algebraicly simpler than imposing the
constraint that E(w) =0.)

Furthermore, assume that the random effect consists of independent clusters of
observations, i.e., Z;; = 1 iff subject ¢ belongs to cluster j, with no subject in two
clusters. Then if we define

D]' = zn: Zzgfsz
i=1

n
i=1
we see that the likelihood (12) can be re-arranged so that the individual w; terms
separate:
q
Ly = > [(vw; —ve”’) +vlog(v) — logT(v)]
j=1
q
+ Z [Djwj — E;fe“’j]
j=1
n
+ > dillog(Ao(t:)) + Xif] . (14)
i=1

39



(Because each subject is in exactly one cluster, X;w = wj,, with j; being the cluster
to which subject ¢ belongs). Dj; is the number of events in the jth cluster, and
Ej = Ejexp(wj) is the expected number of events in the cluster based on the
covariates and the model. E* is, roughly, the expected number of events for the
cluster if their frailty were set equal to 1, but with all the frailties used to compute
the baseline hazard A.

As a function of any single wj;, the likelihood (14) is proportional to

(v+ Dj)wj — (v + Ef e’ .

Comparing this to the gamma distribution defined earlier, we see by inspection that
conditional on the data the w; are distributed as gamma variates with shape and
scale parameters of v + D; and v + E7, respectively.

Now, given a provisional guess ¢ = (3,7) and the observed data y = (¢,9), the
E step of the algorithm will involve replacing w; and exp(w;) terms in Ly by

E(wjl,y) = ¢(D;+ ) —log(E; + ) = w}
and (15)
4 D;+v ~
E(e“|¢y) = ———=e" (16)
E] +v

Since the prior variance of the random effect is 1/v, we see that as the variance
goes to infinity the estimated random effect w = exp(w) converges to D/E*, the
unconstrained estimate of excess risk in the cluster ignoring the frailty. As the
variance goes to zero, all of the frailties w become 0. The EM algorithm is then:

initialize: An obvious starting guess is 7 = 0o, 8= B, the MLE from a no-frailty
model. This is not particularly useful, however, since the frailties then remain fixed
at zero in the update formula. We have found (1,3) to be a reasonable starting
estimate.

E step: From the provisional value of B compute E; for each group, and from
this the function Q(6,¢) = E(L;|#, 3). If we then rearrange the terms (again) the
function is

q

Q = > [vlog(v) —logT'(v)

j=1
+D;(w? — @) + v(w] — ™)
+ Y Sillog(ho(t:) + Xif + Ziid] — Ao(t;)e X0+ (17)
=1

(Note again that Y-, D! = 3, 8; Z;w0).
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M step: Choose new values of v and 3 to maximize (). Notice that the last line
of the above expression, the only one to involve 3, is precisely the log-likelihood for
a full data model that has Z;w as an offset term. In fact, this is the very reason
to rearrange the equation in this way. It shows that the next iterate of ﬁ can be
obtained using a standard Cox model program. The partial likelihood returned by
the Cox program will be the value of the last line in (17) above. Maximization with
respect to v can be done using any one of a number of methods since it is a single
parameter.

In fact, the solution can be obtained using only the quantities returned by an
ordinary Cox model program. Start with the case of a fixed variance §# = 1/v. The
quantities D; and M; = D — E can be obtained by summing over the input data
and the returned martingale residuals, respectively. E* is obtained from E and the
current estimates of W, equation 16 is used to get the next estimate of @, and finally,
Zw is used as an offset in the next invocation of the Cox model. For fixed 6, this
process will often converge in 4-6 iterations.

At the end of the iteration, we will want to compute the value of the actual
log-likelihood L, = @ — H for the final parameter values. Let a(v,n) be the log
density shown in equation (10). We saw that the conditional distribution of the
unknown parameters w was a(v + Dj,n + E;). H is the expected value of this
expression itself, with respect to the density a(v + Dj,n + Ej;) (circular sounding
isn’t it). Then

7 ~
H= Z [(V + Dj)wj — (n+ E;)ewf} + (v + Dj)log(n + E}) —logI'(v + D;)
j=1

so that

v [(v+ Dj)
Li=Q—-H = CoxPL+ ) vileg| —— ] +1o <7J>
g XJ: g(l/-{—E]-) & L(v)

~D;log(v + D). (18)

By “Cox PL” in the above we mean the numerical value returned as the partial
likelihood by a standard Cox model program for the given values of 8 and w, w
having been entered as an offset term. Again, we see that this can be computed
in a standard package such as SAS, after the Cox model has been fit. For the no-
covariate case 8 = 0 this formula gives, after cancellation, equation (10) of Nielsen
et. al. [22]. (Note that for a Cox model the last term of equation 17, Y~ Ag(t;)r, is
identically equal to the number of deaths, by definition of [\)

A heuristic approximation helps us get a feel for the probable size of 6. At its
solution, the EM algorithm must satisfy # = 0, i.e., the next step of the algorithm
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is equal to the current estimate. Then

ew]_ _ Dj + 124
Eje=% +v
vei + E; = v+Dj
e“i = 14+6M; (19)

where M; = D; — Ej; is the sum of the martingale residuals for all subjects in group
j. Since e® =~ 1+ z, we see that the final values of @ are approximately # times the
martingale residuals. Now, note that an approximate estimate of “functional form”
for the group of subjects with Z = j would be A, under an unpenalized model
with Z as a factor variable [25]. This implies that the solution with § = 1 may not
be too far from that with § = oco.

B.4 Other frailties

Let L(t;0) be the Laplace transform of the frailty distribution, and L(™) be the nth
derivative of L. Let Z be restricted to the same form as in the last section, i.e., a

‘one-way anova’ layout where each subject is a member of exactly one frailty group.
Then Parner [23] has shown that the EM step (for fixed ) is

LBtV (E;6)
~ LD)(Ex0)

ed)]‘ —

For the gamma frailty this works out particularly well, since L(t;0) = (1 —6t)~1/9,
leading to formula (16).

Other distributions do not simplify as neatly. The positive stable distribution,
which has often been suggested as a candidate for the frailty, has L(t) = exp(—t?),

leading to
LV = (g
L® = e [(—t77)2 — (0 — 1)/t"~7]
L® = e [(—0t" 1) — 00 — 1)(8 — 2) /173 + 262(0 — 1)12?]

Parner derives a recursion formula for computing these derivatives, but the ratios
do not have a simple algebraic form. Does any distribution except the gamma
simplify?

Far more serious than any difficulty in extending to other distributions, however,

is the fact that this approach does not easily generalize to other types of problems.
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The entire derivation depends on the segregation of w into a separate term as in
equation 14, which in turn is only possible for these simple “one-way anova” layouts.
Crossed effects, nested effects, random coefficients for continuous variables, and
other interesting models are much more difficult.

C Writing S-Plus functions

This section describes the details of adding an arbitrary penalty function to the

S-Plus code. It can be skipped by most readers.

C.1 Ridge regression
The original control and penalty functions for the ridge regression example were:

pfun.ridge <- function(coef,theta, nevent) {
list(penalty= sum(coef~2)*theta/2,
first = theta*coef,
second = rep(theta, length(coef)),
flag=F)

}

cfun.ridge <- function(parms, ...) list(theta=parms$theta, done=T)

This psuedo ridge-regression function is simplistic: no provision has been made for
factor variables and there is no scaling of the penalty with respect to the scale of
the covariates. In order to use these functions within coxph we need to ‘package’
them in the following way:

ridge <- function(..., theta=1) {
x <= cbind(...)
class(x) <- ’coxph.penalty’
temp <- list( pfun= pfun.ridge,
cfun= cfun.ridge,
diag=T,
cparm=list (theta=theta))
attributes(x) <- c(attributes(x), temp)

X

}

fit0 <- coxph(Surv(futime, fustat) ~ rx + age + ecog.ps, data=ovarian)
fit4 <- coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=.4),

data=ovarian)
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The ridge function ‘passes through’ the data given to it, with a small number of
added attributes:

the data has class ‘coxph.penalty’. This is how the coxph routine recognizes

penalty terms.
pfun: the penalty function.

cfun: the control function. In this case the control function does nothing

except echo back the initial 8 value and signal completion.
diag: a flag indicating whether f” is a diagonal matrix.

cparm: the paramer vector for cfun.

The penalty function will be called with the coefficients for the term, e.g., those

corresponding to age and ecog.ps in the above example, along with the tuning

parmeter(s) § and the number of events in the data set. It needs to return the value

of the penalty and it’s first and second derivatives. For some penalty functions and

values of § the penalty may be infinite, in which case the flag argument should be set

to True. The iteration routines force coefficients to zero when the penalty is infinite

(which is not always the mathematically correct solution). The main function of

flag is to avoid numeric exceptions such as division by zero in the C language code.

In this example f” is diagonal, and so pfun returns only a vector of second

derivatives. This is indicated by diag=T. In other cases, such as smoothing splines,

pfun will need to return a matrix.

Here is the output of fit0 and fitl (some lines removed for clarity).

>fit0
coef exp(coef) se(coef) z P
rx -0.815 0.443 0.6342 -1.28 0.2000
age 0.147 1.1568 0.0463 3.17 0.0015
ecog.ps 0.103 1.109 0.6064 0.17 0.8600
>fitl
coef exp(coef) se(coef) se2 z
rx -0.8124 0.444 0.6327 0.6333 -1.284
ridge(age, ecog.ps, theta = 1)..1 0.1468 1.158 0.0461 0.0461 3.184
ridge(age, ecog.ps, theta = 1)..2 0.0756 1.079  0.4429 0.5177 0.171
P
rx 0.2000
ridge(age, ecog.ps, theta = 1)..1 0.0015
ridge(age, ecog.ps, theta = 1)..2 0.8600
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One improvement to our function would be better variable names, The printout is
so wide that the column for p-values has wrapped onto a new line. (In the earlier
part of the paper row labels were edited). Another improvement is to scale the
penalty for each variable by it’s variance, so that the function will be invariant to
the units of the data; the current fit would change if age were given in days, for
instance. To accomplish the scaling, we need to pass through the variances of the

terms as another argument to the penalty function.

pfun.ridge <- function(coef, theta, nevent, vars) {
list(penalty= sum(coef~2xvars) * theta/2,
first = theta*coef*vars,
second = theta*vars,
flag=F)

}

The changes to the control function are only a bit more complicated:

ridge <- function(..., theta=1) {
x <= cbind(...)
xname <- as.character(parse(text=substitute(cbind(...)))) [-1]
vars <- apply(x, 2, function(z) var(z[!is.na(z)]))
class(x) <- ’coxph.penalty’
temp <- list( pfun= pfun.ridge,
cfun= cfun.ridge,
diag= T,
cparm= list(theta=theta),
pparm= vars,

varname=paste (’ridge(’, xname, ’)’, sep=’’))

attributes(x) <- c(attributes(x), temp)

X

}

There are three basic changes: an improved variable name is returned as the varname
attribute, the variances of the columns are passed as the pparm vector, and then those
variances are used to scale the penalty function. The code to create the variable
names is somewhat tricky (the idea is borrowed from the data.frame function).
Normally, the “input” representation of a function argument x is obtained with
deparse (substitue(x)), but in this case the expression only returns “..1”. We use

“ »

one more level of indirection; is passed to cbind as the expanded list, substitute
returns the single character string “cbind(age, ecog.ps)”, and parse is used to break

this expression into its 3 parts.
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The result is both more useful and more pleasant to read.

> coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=.4),

data=ovarian)

coef exp(coef) se(coef) se2 z P

rx -0.836 0.433 0.6245 0.6250 -1.339 0.18000

ridge(age) 0.136 1.145 0.0408 0.0424 3.325 0.00089
ridge(ecog.ps) 0.106 1.112  0.5811 0.5919 0.182 0.86000

Iterations: 1 outer, 4 Newton-Raphson
Degrees of freedom for terms= 1.0 1.9
Likelihood ratio test=15.1 on 2.89 df, p=0.00154 n= 26

C.2 Psplines

As in the ridge regression example, we need to pass “extra” information to the
penalty function, in this case the penalty matrix P.

pfun.ps <- function(coef, theta, nevent, P) {
if (theta >=1) list(penalty=(1l-theta), flag=T)
else {
if (theta <=0) lambda =0
else lambda <- (nevent/length(theta))* theta[1] / (1-theta[1])
list(penalty= c(coef %*}, P %} coef) * lambda /2,
first = c(P %*)% coef) * lambda,
second = c(P*lambda),
flag=F)

}

The penalty function is quite simple. The first new feature is special handling for
# = 1, which leads to an infinite penalty and could cause an arithmetic exception
in the underlying C code if not flagged. The first and second derivatives are never
referenced by the underlying code in this case, so no values are needed. Secondly, we
added some safety checks for illegal values of the tuning parameter 6. (The control
function should, of course, never suggest such a value). Last, we have in this case
decided to scale the penalty. The partial likelihood in a Cox model is proportional
to the number of deaths, and the penalty function is roughly proportional to the
number of terms; the initial constant will make fits with the same number of degrees
of freedom, but different sample sizes or number of terms in the p-spline basis, have

similar sized 6 values. Of course the data plays a large role as well: for a fixed 6
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a truely curvilinear variable will optimize the PPL at a larger degrees of freedom
than one with a near linear relationship.

The function which appears in the user’s model statment is

pspline <- function(x, theta, df=4, nterm=2.5%df, degree=3,
eps=.1) {

if (!missing(theta)) {
if (theta <=0 || theta >=1) stop("Invalid value for theta")
}

else if (df ==0) {
method <- ’aic’
nterm <- 15 #will be ok for up to 6-8 df
if (missing(eps)) eps <- le-5
}

else {
method <- ’df’
if (df <=1) stop (’Too few degrees of freedom’)

}

xname <- deparse(substitute(x))

keepx <- !is.na(x)
rx <- range(x[keepx])
nterm <- round(nterm)
if (nterm < 3) stop("Too few basis functions")
if (df <= differ-1) stop("Too few degrees of freedom")
dx <- (rx[2] - rx[1])/nterm
knots <- c(rx[1] + dx*((-degree):(nterm-1)), rx[2]+ dx*(0:degree))
if (all(keepx)) newx <- spline.des(knots, x, degreet+l)$design
else
temp <- spline.des(knots, x[keepx], degree+1)$design
newx <- matrix(NA, length(x), ncol(temp))

newx [keepx,] <- temp

newx <- newx[,-1] #redundant coefficient

class(newx) <- ’coxph.penalty’

nvar <- 1+ ncol(newx)  #should be nterm + degree

dmat <- diag(nvar)

dmat <- apply(dmat, 2, diff, 1, 2)

P <- t(dmat) %*J dmat

P <- P[-1,-1] # rows corresponding to the 0 coef

xnames <-paste(’ps(’, xname, ’)’, 2:nvar, sep=’’)
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if (method==’fixed’) {
temp <- list(pfun=pfun.ps,
printfun=printfun.ps,
pparm=dmat,
diag =F,
cparm=list (theta=theta),
varname=xnames,
cfun = function(parms, iter, old)
list (theta=parms$theta, done=T))
}
else if (method==’df’) {
temp <- list(pfun=pfun.ps,
printfun=printfun.ps,
diag =F,
cargs=(’df’),
cparm=list(df=df, eps=eps, thetas=c(1,0),
dfs=c(1, nterm), guess=1 - df/nterm, ...),
pparm= dmat,
varname=xnames,
cfun = frailty.controldf)
}
else { # use AIC
temp <- list(pfun=pfun.ps,
printfun=printfun.ps,
pparm=dmat,
diag =F,
cargs = c(’status’, ’df’, ’plik’),
cparm=list(eps=eps, init=c(.5, .95),
lower=0, upper=1, ...),
varname=xnames,

cfun = frailty.controlaic)

attributes (newx) <- c(attributes(newx), temp)

newx

}

e The first few lines do some error checking.

e The next lines create the matrix of basis functions. This is essentially a reprise
of the pspl function shown earlier, with significant nuisance value added by
the possibility of missing values. The pspline function is called before the
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removal of missing values from the data frame by the na.omit function. Thus

it must allow for, and propogate, missings.
e The next three lines create the penalty matrix P.

e If 6 is fixed, then the control function needs only to set the initial value and
signal completion; similarly to the ridge regression example above. If the user
has set the degrees of freedom, then a calibration function is required, if AIC
then the AIC control function. In the latter 2 cases some initial values for the

functions are supplied in cparms.

e Some special control for printing has been added.

The first three arguments to the control function are always the parameter vector
given by cparms, the iteration number, and the list returned by the control function
from its last call (this allows storage of local variables without using fancy frame=0
tricks). There may be further arguments; the cargs parameter is used above to
signal that the estimated degrees of freedom for the current term, at the current
values of the fitted parameters, should be added as a fourth argument by the parent

routine when frailty.controldf is called. Allowable “extra” arguments are
e coef: The coefficients for the term
e df: The degrees of freedom for the term

x: The columns of the X matrix for this term

status: The vector of status (censoring) values

plik: The current value of the partial likelihood PL

loglik: The penalized partial likelihood PPL
e trH: trace[(H ~!)22], used for the REML Gaussian.

The last 4 of these are used by the frailty functions. (Others may be added to this
list in later versions of the program.)
Here are the first lines of the calibration function

frailty.controldf <- function(parms, iter, old, df) {
if (iter==0) {
theta <- parms$guess
theta[1l] <- (parms$nterm -parms$df)/(parms$nterm-1)
return(list (theta=theta, done=F,
thetas=parms$thetas, dfs=parms$dfs)
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done <- (iter>1 &&
(abs(df-parms$df) < parms$eps))

thetas <- c(old$thetas, old$theta)

dfs <- c(old$dfs, df)

newtheta <- newguess(thetas, dfs, parms$df)

list (theta=theta, done=done, thetas=thetas, dfs=dfs)

}

The control function has 4 steps. First, it maintains two vectors thetas and dfs
that contain the history of guesses so far. The return values of the function are the
next guess at 6, a flag, and these history lists. The final return value is included in
the coxph output as the history component in the final model object, should the
user want to examine them.

Second, at iteration 0, it returns a first guess for 6 along with initial values for
the thetas and dfs vectors based on input parameters. In the pspline function,
these were set based on the known fact that § = 0,1 correspond to nterms and 1
degree of freedom, respectively, and a linear interpolation between these two for the
first guess at a solution.

Third, if this is not iteration 0, then the function checks to see whether it has
finished iteration, by comparing df (the value resulting from this function’s last
guess at ) to the target value parms$ds.

Last, whether the fit has completed or not, the routine obtains a next guess at
#. The reason for this is that there may be multiple penalized terms in the model,
and iteration may need to continue even though this particular term has converged
successfully. If that is the case, a new guess at 6 is required by the parent routine,
and it might as well be a good one. The newguess function is a simple interpolation
method and will not be listed.

The print function is shown below:

printfun <- function(coef, var, var2, df, history, cbase)
testl <- coxph.wtest(var, coef)$test
# cbase contains the centers of the basis functions
# do a weighted regression of these on the coefs to get a slope
xmat <- cbind(1l, cbase)
xsig <- coxph.wtest(var, xmat)$solve # V X , where V = g-inverse(var)
cmat <- coxph.wtest(t(xmat)*), xsig, t(xsig))$solve[2,] #[X’VX]~-1 X’V
linear <- sum(cmat * coef)

lvarl <- c(cmat %%, var %*), cmat)
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lvar2 <- c(cmat %*% var2/*) cmat)

test2 <- linear”2 / lvarl

cmat <- rbind(c(linear, sqrt(lvarl), sqrt(lvar2),
test2, 1, 1-pchisq(test2, 1)),

c(NA, NA, NA, testl-test2, df-1,

1-pchisq(testl-test2, df-1)))

dimnames (cmat) <- list(c("linear", '"nonlin"), NULL)

theta <- history$thetas[length(history$thetas)]

list (coef=cmat, history=paste("Theta=", format(theta)))

printfun[[6]] <- knots[2:nvar] + (rx[1] - knots[1])

This function will be passed along as part of the output structure, and then
invoked by the coxph print routine at the time that a result is displayed. It is
called with the coefficients that correspond to the penalized term, along with the
appropriate portions of the H~! and V matrices, the degrees of freedom for the
term, and the history structure for the term (the last return values of the control
function).

The routine returns two peices of output: one or more lines to be inserted into
the printed table of coefficents, and an optional line of further information that is
printed just below the iteration count for the model. The first object must be a
matrix or a vector, and fit into the table. It therefore has 6 elements or columns,
which will list under the headings of “coef”, “std(coef)”, “std2”, “Chisq”, “DF”,
and “p”. Missing values will be printed as blanks.

For the second part of the printout, this function lists the final value of . Note
that this is not the value of history$theta, which contains the next value of 8 that
would have been tried, had iteration continued.

For the ‘coefficient’ printout, we have decided to print tests of the linear and
nonlinear portions of the fit. Because of the nature of our pspline basis functions,
any evenly spaced contrast vector ¢ would give the same 2 statistic and p-value for
the test of linearity. The test of non-linearity is defined as the difference between
the overall test for non-zero coefficients and the linear portion (test2 - testl). As
a coefficient for the linear test, we have printed an approximation to the fit of a
simple linear term. Consider the least-squares line through the fitted coefficients.
The base of the line is the x-coordinates of the centers of the basis functions, which
are evenly spaced over the range of x, the vector cbase above. The coefficients
are not independent, i.e., var is not diagonal, so the formula for the fitted line
is a weighted linear regression. The coxph.wtest function is similar to the S-Plus
solve function. Because it assumes that its first argument is symmetric it can use
the relatively fast Cholesky decomposition to compute the result (exactly the same
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routines as used by coxph), but more importantly, the routine does not fail for
singular matrices, rather it produces a generalized inverse solution.

The last line is more S-Plus magic. At the time the print function is invoked
the range of « will no longer be available, only the (static) function definition. This
line changes the function so that the range of z, known at the time of function

definition, becomes the default value for argument 6.

C.3 Frailty
Here is the penalty function for gamma frailties.

pfun.gfrail <- function(coef, theta, nevent) {
if (theta==0) list(recenter=0, penalty=0, flag=T)
else {
recenter <- log(mean(exp(coef)))
coef <- coef - recenter
nu <- 1/theta
list(recenter = recenter,
first=  (exp(coef) -1) *nu,
second= exp(coef) * nu,
penalty= -sum(coef) *nu,
flag=F)
}
}

The first thing you might notice is that the penalty function is missing a portion,
(v exp(v)) + vlog(v) — log(I'(v)). In line with the concerns found in section 3.1,
it is better to combine these terms with the L, corrections. The function below

computes the overall correction term along with the missing PLL term from pfun

frailty.gammacon <- function(d, nu) {
nfrail <- length(d)
maxd <- max(d)
if (nu > le7#maxd) terml <- sum(d*d)/nu #second order Taylor series

else terml <- sum(d + nu*log(nu/(nu+d)))

tbl <- table(factor(d[d>0], levels=1:maxd))
ctbl<- rev(cumsum(rev(tbl)))

dlev<- 1:maxd

term2.numerator <- nu + rep(dlev-1, ctbl)
term2.denom <- nu + rep(dlev, tblxdlev)

term2 <- sum(log(term2.numerator/term2.denom))
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terml + term2

}

Term?2 is formula 4, and the term 1 approximation is based on a Taylor series for
the logarithm.

The penalty function has one important addition over previous examples. A
frailty terms adds a set of indicator variables to the model, one indicator per ‘family’.
Since each subject has one and only one of these indicators equal to 1, the set of
coefficients «y for the indicators could be replaced by v+ ¢ for any constant ¢ without
changing the value of the Cox partial likelihood PL. The second term in the penalty
v Y [vi+c—exp(gamma; +c)] is minimized when exp(c) = mean exp(gamma). This
is true trivially for the starting estimate v = 0, and under full Newton-Raphson
iteration it remains true at each iteration (within numerical precision). We stated
earlier that the Newton-Raphson iteration preserves the identity E(w;) = 1, which
is the same statement. When using routines based on a sparse approximation this
is no longer algebraicly true. One function of the penalty routine is to recenter the
coefficient vector so that the identity does hold. Doing so significantly speeds the
convergence of the algorithm.

frailty.gamma <- function(x, sparse=T, theta, df, eps=le-5,
method=c(’em’, ’aic’, ’df’, ’fixed’, ...) {
if (sparse){
X <-as.numeric(as.factor(x))
class(x) <- "coxph.penalty"
}
else {
x <- as.factor(x)
class(x) <- c("coxph.penalty", "factor")
attr(x,’contrasts’) <- function(n,...) contr.treatment(n,F)
}
if (missing(method))
if (!missing(theta))
method <- ’fixed’
if (!missing(df))
stop("Cannot give both a df and theta argument")

else if (!missing(df)) method <- ’df’

method <- match.arg(method)
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if (method==’em’)
temp <- list(pfun=pfun,
printfun=printfun,
diag =T,
sparse= sparse,
cargs = c("x", "status", "loglik"),
cfun = frailty.controlgam,

cparm= c(list(eps=eps), ...))

else if (method==’aic’)
temp <- list(pfun=pfun,
printfun=printfun,
diag =T,
sparse= sparse,
cargs = c("x", "status", "loglik", "df", "plik"),
cparm=list(eps=eps, lower=0, init=c(.1, 1), ...),

cfun =function(opt, iter, old, x, status, loglik,...)

temp <- frailty.controlaic(opt, iter, old, status,..

if (iter >0)
#compute correction to the loglik
if (old$theta==0) correct <- 0
else
if (is.matrix(x))
x <-c(x %*% l:ncol(x))
d <- tapply(status,x,sum)

correct <- frailty.gammacon(d, 1/old$theta)

temp$c.loglik <- loglik + correct
temp
else etc...

attributes(x) <- c(attributes(x), temp)

X

}

The routine accomodates 4 options. The AIC solution uses the same control
function as for splines, but adds one more piece of information to the returned list,
namely the marginal likelihood L, for a gamma model. If sparse=F then x will be

the matrix of indicator variables, otherwise a vector containing the grouping code;
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the function to compute the correction term needs a vector containing the number
of events in each group.

The solution for method=’df’ and fixed are similar to those for splines, and are
not shown.

If method=em then the actual frailty problem is solved, using a profile likelihood
search for #. The frailty.controlgam program has only a few variations on the prior
code that has been listed. Since almost all problems seen to date have a final value
in (0,1), so 0 and 1 are used as the first two guesses for the frailty. Guesses at 2, 4,
8, ...are then tried until the solution has been bracketed. Once that has occured,

Brent’s algorithm [24] is used to perform the search for a maximizing value of 6.

D Internal calls

For certain applications, it may be more useful to call the fitting function coxpenal.fit
directly, for instance if a single penalization is to be applied across several terms
of the model. This routine solves penalized models for both right censored and
(start, stop] survival data. The arguments to the function are the same as those to
coxph.fit, with three additions: pcols, pattr and assign.

The third argument assign may be omitted, in which case the assign attribute
of the X matrix is assumed. It is simply a list which groups the columns of the X
matrix into an arbitrary collection of ‘terms’, and gives names to each term. The
df component of the returned fit has one value per term, containing the degrees of
freedom for that term.

The pcols argument is similar to assign, and must be a strict subset of it. Each
of the terms given in pcols will be penalized with a separate penalty function.

The pattr list contains most of the essential information. This list has one
element for each term identified in pcols, and that element is itself a list with the

following components:
e pfun: the penalty function
e cfun: the control function
e sparse: whether the term is to be solved using sparse methods
e diag: whether the penalty function is diagonal
e cargs, pparm, cparm: argument lists

e printfun: an optional print function
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Each of these has been described in the earlier section.

If a term is sparse, then it must correspond to a single column of the X matrix

which contains the group indices 1 — number of groups. No other contraints are

made on X. The numerical optimizer can deal with only 1 sparse term.

The return value of the function contains the same components as that for

coxph.fit, with these additions.

var2: The alternate variance estimator H 1ZH 1.

iter: The iter vector is of length 2, containing the number of outer iterations
used by the control function, and the total number of Newton-Raphson steps.

frail: If there was a sparse term, its coefficients are here rather than in the
coefficient vector.

fvar: Approximate variances for the sparse term.
df: Degrees of freedom for each term.
penalty: The value of the penalty function at the initial and final iterations.

pterms: A vector of the same length as assign, with the code O=ordinary

term, 1=penalized term, 2=sparse penalized term.

assign2: The assign component, minus the response and sparse terms. It is

useful for printing because of it maps the coefficient vector.

history: A list with one component per penalized term. Each component is a
list, containing the last returned value of the control function for that term.

printfun: The optional list of print functions.
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