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� Introduction

A very general mechanism for penalized regression has been added to the coxph

function in S�Plus� A user written S�Plus function can be supplied that gives addi�

tional term�s� to the partial�likelihood� along with the �rst and second derivatives

of those terms� The variance and degrees of freedom for the extended model are

then computed as outlined in Gray ���� Several other arguments control optional

aspects of the iteration� This setup allows for general shrinkage methods including

ridge regression� the lasso� smoothing splines� and other techniques�

There is an interesting connection between penalized regression and random

e	ects or frailty models� It happens that the gamma frailty model can be repre�

sented exactly as a penalized regression� and a Gaussian frailty can be represented

approximately� Thus we can �t these models as well using the generalized program�

� Shrinkage Estimation

��� Mathematical Basis

Consider a Cox model with both constrained and unconstrained e	ects

�i�t� 
 ���t�e
Xi��Zi�

where X and Z are the covariates and �� � are the unconstrained and constrained

coe�cients� respectively� The problem is solved by maximizing a penalized partial

likelihood

PPL 
 PL��� �� data�� f��� ��

over both � and �� Here PL is the usual Cox partial likelihood� treating � as 
just

another parameter�� and f is some constraint function which gives large values to

�




bad� values of �� For the moment assume that �� a vector of tuning parameters�

is known and constant�

Following Gray ���� let I be the usual Cox model information matrix� and

H 
 I �

�
� �

� f ��

�
be the second derivative matrix for the penalized likelihood PPL� His suggested

estimate of the variance is

V 
 H��IH�� ���

Let c be a column vector of constants� and ���� ��� be the combined vector of p�q pa�

rameters� Then for a general test of hypothesis z 
 ���� ���c 
 � Gray recommends

the Wald test z��c�H��c���z� Because of the shrinkage� this is not necessarily a

chi�square statistic� Let e be the eigenvalues of the matrix �c�H��c��� �c�V c�� then

under H� the Wald test is distributed as as
P

eiX
�
i where the X are iid Gaus�

sian random variables� Let k 

P

ei� When the ei are all � or �� the case for

non�penalized models� then the mean and variance of the test statistic are k and �k

respectively� and the distribution is chi�square on k degrees of freedom� In penalized

models ei � � and the variance is
P
�e�i � �k� so the distribution of the statistic is

more compact than a standard chi�square test based on k degrees of freedom and

the test will be conservative�

The generalized degrees of freedom for the test statistic can be written as

df 
 trace��c�H��c��� �c�V c��

so computation of eigenvalues is not stricly necessary� For a particular term in the

model this becomes trace��H���i� i����V �i� i�� where � � are S�Plus style subscripts

and i indexes the columns corresponding to the term�

An alternate variance estimator is to use H�� directly� the inverse of the second

derivative matrix of the full log likelihood� which is the variance used in the Wald

statistic� It has an interpretation as a posterior variance in a Bayes setting� It

also tends to be larger than V and thus more conservative� Wahba ���� showed it

had good frequentist coverage properties for pointwise intervals for the smoothing

spline curve �t to noisy data� In the context of smoothing� Hastie and Tibshirani

���� �page ��� compare con�dence intervals based on the analog of V with those

based on the analog of H and show that H has a component of bias built into it�

They further suggest that with small degreees of freedom for the smoother� the two

are likely to be very similar but di	er more as there are more degrees of freeedom�

In Statistical Models in S ��� �chapter � where they discuss the implementation of

GAM� they indicate �p ������ that in computing standard errors for the smooth

�



they actually use the analog of H rather than V � Here they justify it on the grounds

of computational simplicity�

The S�Plus function returns both var�
H��IH�� and var
H��� The chi�

square tests are based on var� Simulation experiments �see appendix xxx� suggest

that this is the more reliable choice for tests�

��� S�Plus functions

Penalized likelihoods for the Cox model have been implemented in S�Plus in a

very general way� The iteration depends on two user de�ned functions� a control

function �cfun� and a penalty function �pfun�� If there are multiple penalized terms�

e�g�� smoothing splines on two distinct variables� then each term has it�s own pair of

functions� but for the moment assume only a single penalized term� The algorithm

is

�� On the initial call �with iteration��� the control function cfun returns an

initial value for ��

�� The penalized likelihood is solved� for �xed �� using a Newton�Rhapson itera�

tion� Repeated calls to the penalty function pfun are used to obtain necessary

values of f and its �rst and second derivatives�

�� The control function cfun is called to obtain both the next value for � and

a �ag indicating whether iteration is complete� If iteration is not complete�

return to step ��

The algorithm thus consists of an outer and an inner loop� and the returned

value of iter is a vector of length � giving the number of outer and inner iterations�

respectively� There are at least three distinct types of outer loop� � �xed� in which

the control function does nothing� calibration problems� where the parameter is

�xed by the user but is on a di	erent scale from the internal �� and actual iteration�

such as the use of generalized cross�validation �GCV� to choose an �optimal� �� The

variance formula used by the routine assumes a �xed value of �� and so is not correct

for the third case� Nevertheless� it seems to be fairly accurate in several instances�

For many of the problems considered here� the program is fast enough that more

reliable variance estimates could be obtained via resampling techniques such as the

bootstrap�

We will start with a simple example� Let f��� �� 
 �����
P

��j � a penalty

function which will tend to shrink the coe�cients �j towards zero� The penalty

and control functions are quite simple in this case�

�



pfun�ridge �� function�coef�theta� f

list�penalty� sum�coef	��
theta���

first � theta
coef�

second � rep�theta� length�coef���

flag�F�

g

cfun�ridge �� function�parms� ���� list�theta�parms�theta� done�T�

This psuedo ridge�regression function is simplistic� no provision has been made for

factor �classi�cation� variables and there is no scaling of the penalty with respect

to the scale of the covariates� We will improve on these aspects later� A third


packaging� function ridge is also needed� which passes through the data� adding

attributes that identify the above as the penalty and control functions� Details of

the packaging function are discussed in appendix C�

The penalty function is called with the coe�cients for the term� e�g�� those

corresponding to age and ecog�ps in the example below� along with the tuning

parmeter�s� �� It needs to return the value of the penalty and its �rst and second

derivatives� For some penalty functions and values of � the penalty may be in�nite�

in which case the �ag argument should be set to True� �We will see this in a later

example�� In this example f �� is diagonal� and so pfun returns only a vector of

second derivatives� In other cases� such as smoothing splines� pfun will need to

return a second derivative matrix�

Here is an example of using the ridge functions� The data set is from Edmunson

et� al ���� and gives the survival time of �� women with advanced ovarian carcinoma�

randomized to two treatments� Important covariates are the patient�s age and

performance score� The latter is a measure of physical debilitation with �
normal

and �
bedridden� The value of � 
 � used for the shrinkage parameter was chosen

arbitrarily�


 fit� �� coxph�Surv�futime� fustat� � rx � age � ecog�ps� data�ovarian�


 fit� �� coxph�Surv�futime� fustat� � rx � ridge�age� ecog�ps� theta����

data�ovarian�


 fit�

coef exp�coef� se�coef� z p

rx ������ ����� ������ ����� ������

age ����� ����� ������ ���� ������

ecog�ps ����� ����� ������ ���� ������


 fit�

�



coef se�coef� se� Chisq DF p

rx ������� ������ ������ ���� � ������

ridge�age� ������ ������ ������ ����� � ������

ridge�ecog�ps� ������ ������ ������ ���� � ������

Iterations� � outer� � Newton�Raphson

Degrees of freedom for terms� ��� ���

Likelihood ratio test����� on ���� df� p��������� n� ��

The likelihood ratio test that is printed is twice the di	erence in the PL between

the null model �� 
 � 
 �� and the �nal �tted model� The p�value is based

on comparing this to a chisquare distribution with ���� degrees of freedom� As

mentioned earlier this comparison is somewhat conservative �p too large�� The

eigenvalues for the problem� eigen�solve�fit��var� fit��var���� are �� ������ and

������� The respective quantiles of this weighted sum of squared normals and the

chi�square distribution qchisq�q� ����� are

��� ��� ��� ���

Actual sum ����� ����� ����� ������

������ ����� ����� ����� ������

from which we see that the actual distribution is somewhat more compact than the

Chi�square approximation�

The shrinkage has had a much smaller e	ect on age than on the ecog score�

Although the unpenalized coe�cients for the two covariates are of about the same

magnitude �fit��� the standard error for ecog score is much larger� The impact on

overall �t �Cox PL� of shrinking the age coe�cient will thus be larger than that for

ecog score� the age coe�cient is 
harder to change��

One improvement to the function would be to scale the penalty for each variable

by its variance� so that the function will be invariant to the units of the data� the

above �t would change if age were given in days� for instance� This is taken up in

appendix C�

��� Spline �ts

We now explore a more complicated example� which is to �t a general spline term�

The method we will use is P�splines ���� Start by spanning the range of x with

a b�spline basis� such that the basis functions are evenly spaced and identical in

shape� This di	ers from the traditional b�spline basis for smoothing splines� which

has an asymmetric basis function �knot� for each data point� An example �t for ��
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Figure �� A representative set of weighted p�splines

�terms� is shown in �gure �� the heights of the basis functions are the coe�cients�

and the sum of the basis functions is the �t�

Several authors have noted that for moderate degrees of freedom� a smaller num�

ber of basis functions give a �t which is nearly identical to the standard smoothing

spline� Gray ��� suggests that there is little advantage to using more than �����

knots and uses �� knots for his � degree of freedom simulations and examples�

Hastie ���� uses a more sophisticated eigenvector approach to �nd a nearly optimal

approximating set of basis functions� for several examples with ��� degrees of free�

dom his basis set has ��� terms� The functions below use round����
df� terms by

default but the user can adjust this parameter�

P�splines have several attractive properties� one of which was the key reason

for their inclusion here� Because of the symmetry of the basis functions� the usual

spline penalty �
R
�f ���x���dx is very close to the the sum of second di	erences of

the coe�cients ��sum��diff�diff�coef������� and this last is very easy to program�

Let T be the matrix of second di	erences� e�g�� for � coe�cients T is�BBB�
� �� � � � �

� � �� � � �

� � � �� � �

� � � � �� �

�CCCA �

�



Then with P � T �T the p�spline penalty is f��� �� 
 ���P�� The �rst derivative

of the penalty is ��P� and the second derivative is ��P � This extends easily to a

penalty based on third di	erences� Other properties of note are

� The penalty does not depend on the values of the data x� other than for

establishing the range of the spline basis�

� If the coe�cients are a linear series� then the �tted function is a line� Thus

a linear trend test on the coe�cients is a test for the signi�cance of a linear

model� This makes it relatively easy to testt for the signi�cance of non�

linearity�

� Since there are a small number of terms� ordinary methods of estimation can

be used� i�e�� the program can compute and return the variance matrix of ���

Contrast this to the classical smoothing spline basis� which has a term �knot�

for each unique x value� For a large sample size storage of the n by n matrix

H becomes infeasable�

Pat � should we just delete the following example� It no longer seems important

to the �ow�

The following function creates the spline basis suggested by Eilers et� al� ����

and draws the �gure �� It makes use of the internal S�Plus function spline�des�

pspl �� function�x� df� degree� nterm�round����
df�� f

lower �� min�x� na�rm�T�

upper �� max�x� na�rm�T�

if �nterm � �� stop��Too few basis functions��

dx �� �upper�lower��nterm

knots �� seq�lower � degree
dx� upper � degree
dx� by�dx�

spline�des�knots� x� degree����design

g

xx �� �����

yy �� pspl�xx� degree��� nterm���

coef �� c������������������������������������

yy �� cbind�yy �
� coef� yy �
� diag�coef��

matplot�xx� yy� type��l�� col���

The S�Plus function to impliment P�spline �ts� pspline� has � optional param�

eters�

� The degree of the spline� with cubic splines as the default�

�



� The desired degrees of freedom for the �t� Optionally� the user can specify �

directly�

� The number of basis functions or terms�

The actual penalty used by the function is ����� � �����P� The �rst term was

changed for user convenience� � 
 � now corresponds exactly to the straight line

model �an in�nite penalty for curvature��

��� Example

Consider the ovarian data included with S�Plus� and �t � models�


 fit� �� coxph�Surv�futime� fustat� � rx � age� ovarian�


 fit� �� coxph�Surv�futime� fustat� � rx � pspline�age� df����

data�ovarian�


 fit� �� coxph�Surv�futime� fustat� � rx � pspline�age� df����

data�ovarian�


 fit�

coef exp�coef� se�coef� z p

rx ������ ����� ������ ����� ������

age ����� ����� ������ ���� ������

Likelihood ratio test����� on � df� p��������� n� ��


 fit�

coef se�coef� se� Chisq DF p

rx ������ ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

age� ����� ����� ����� ���� � �����

Iterations� � outer� � Newton�Raphson

Degrees of freedom for terms� ��� ���

Likelihood ratio test��� on ���� df� p��e��� n� ��


 fit��history�����

�theta� �������

�



�done� T

�thetas� �������� �������� �������� ��������

�dfs� �������� �������� �������� ��������

The printout for the simple Cox model shows an increase in the log�hazard for

death of ���� per year of age� with an overall chi�square for the model of ����� The

p�spline basis functions sum to a constant� so the �rst one of them is deleted to

remove the singularity� The actual values of the coe�cients are not very useful�

other than that one can see an overall linear trend� The spline �t with � degrees

of freedom has not improved this signi�cantly� the likelihood based test for non�

linearity would be a chisquare of �� � ���� 
 ��� on ������ degrees of freedom�

We have explicitly printed out the history component of the �nal model� which

contains the last return value�s� of the control function for the problem� In the case

of cfun�ps� the elements are theta� a �ag indicating that iteration was completed�

and the list of successive � values tried by the routine in it�s attempt to achieve a �t

with the requested degrees of freedom� The routine assumes� without computation�

that a penalty of � will give a linear �t �� df�� while a penalty of � gives a �t with

� df� There is no good theoretical reason for the value of 
�� �number of basis

functions � degree of the spline�� but it seems to work well as a generator of the

initial guess of � 
 ���� Using these starting guesses� it took one more iteration to

�nd the value of � 
 ��� leading to ���� df� which is within the default tolerance of

��� df used by the pspline function� The values of � that were attempted required �

and � Newton�Raphson steps� respectively� leading to � outer and � inner iterations�

The next value of � that would have been used in iteration was ������� however�

it was not attempted because the routine considered ���� su�ciently close to the

target value of � degrees of freedom�

A plot of the new �t is easily obtained� and is shown in Figure �� It was produced

by the code below� The addition of con�dence bands would be straightforward using

the se�fit argument of predict� The picture veri�es what we had seen in the tests�

that there is not an important non�linear component to the age e	ect in this data

set�


 xx �� ovarian�age


 yy �� cbind�predict�fit�� type��terms�������

predict�fit�� type��terms�������

predict�fit�� type��terms�������


 temp �� order�xx�


 matplot�xx�temp�� yy�temp��� type��l�� xlab��Age�� ylab��Risk Score��

The routine as distributed has a more re�ned printout than that shown above�

Here is the actual printed result for the � degree of freedom �t�

�
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Figure �� Spline �ts for the ovarian data


 fit�

coef se�coef� se� Chisq DF p

rx ������ ����� ����� ���� ���� ������

pspline�age� df � ��� linear ����� ����� ����� ���� ���� ������

pspline�age� df � ��� nonlin ���� ���� ������

Iterations� � outer� �� Newton�Raphson

Theta� ����

Degrees of freedom for terms� ��� ���

Likelihood ratio test����� on ��� df� p�������� n� ��

There are actually �� coe�cients associated with the � degree of freedom spline

for age� These have been summarized in the printout as a linear and nonlinear

e	ect� Because of the symmetry of the p�spline basis functions� the chi�square test

for linearity is a test for zero slope in a regression of the spline coe�cients on the

centers of the basis functions� using var as the known variance matrix of the coef�

�cients� The linear �coe�cient� that is printed is the slope of this regression� This

computation of coe�cient and p�value is equivalent to the approximate backwards

elimination method of Lawless and Singhal ����� here removing all of the non�linear

terms for age� �By �tting a non�spline model � rx � age we �nd that the true

linear coe�cient is ���� and chisquare for non�linearity is ����� the approximation

��



was reasonably good�� If the terms being dropped are important� i�e� a signi�cant

non�linearity� then the approximation for the linear coe�cient is not as accurate�

Pat� the next paragraph needs help�

The degrees of freedom for the terms are the results of Gray�s formula� We have

applied this formula both to the penalized and to the unpenalized terms� This gives

a value of ��� df for the rx term� when we know that the �true� df for this term is

� since it is unpenalized� �Or is it unpenalized� since it is not uncorrelated with

the age term�� If nothing else� the devation of ��� can be viewed as a measure of

accuracy for the degrees of freedom computation�

Using multiple spline terms� we are able to investigate models that are similar

to the Generalized Additive Models ���� available for binary and other exponential

family data using the gam function of S�Plus� As a more interesting example� we look

at data from the multi�center post�infarction project �MPIP� ����� This contains

data on ��� patients� gathered after hospital admission for a myocardial infarction�

The main goal of the study was to ascertain which factors� if any� were predictive of

the future clinical course of the patients� Four variables will be used in the model

of survival time�

� VED� ventricular etopic polarizations per hour� obtained from analysis of a ��

hour Holter monitor� A large number of these irregular heartbeats is indicative

of high risk for fatal arrythmia�

� New York Heart Association class� a measure of the amount of activity that

a subject is able to undertake without angina� ranging from � to ��

� Presence of pulmonary rales on initial examination�

� Ejection fraction� the proportion of blood cleared from the heart on each

contraction�

VED is very skewed� it has a mean value of ����� a median of ���� a maximum value

of ���� and ��� of the subjects have a value of �� The minimum non zero value

is ������ so we use lved � log�ved����� as a derived covariate� It is still a skewed

variable� but is not unmanagably so� A simple linear �t of the four variables shows

all to be highly signi�cant�


 fit� �� coxph�Surv�futime� status� � lved � nyha � rales �ef� mpip�


 fit�

coef exp�coef� se�coef� z p

lved ������ ����� ������� ���� ���e���

nyha ������ ����� ������� ���� ���e���

rales ������ ����� ������� ���� ���e���

��



ef ������� ����� ������� ����� ���e���

Likelihood ratio test����� on � df� p�����e��� n����

���� observations deleted due to missing�

Next� let us explore more complicated forms for the e	ect of the covariates� Since

rales is a binary covariate it allows no further transformation� and nyha� with four

levels� will be entered as a factor variable� The two continuous variables� lved and

ef� are modeled as p�splines with the default ��� degrees of freedom�


 fit� �� coxph�Surv�futime� status� � pspline�lved� � factor�nyha� �

rales � pspline�ef�� mpip�


fit�

coef se�coef� se� Chisq DF p

pspline�lved�� linear ������ ������� ������� ���� ���� �������

pspline�lved�� nonlin ���� ���� �������

factor�nyha�� ������� ������� ������� ���� ���� �������

factor�nyha�� ������ ������� ������� ���� ���� �������

factor�nyha�� ������ ������� ������� ����� ���� �������

rales ������ ������� ������� ����� ���� �������

pspline�ef�� linear ������� ������� ������� ����� ���� �������

pspline�ef�� nonlin ���� ���� �������

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Theta� �����

Theta� �����

Degrees of freedom for terms� ��� ��� ��� ���

Likelihood ratio test����� on ����� df� p�����e��� n����

���� observations deleted due to missing�

It would appear that NYHA classes � and � might be combined� that the non�

linear e	ect for VED is not signi�cant� and that the non�linear e	ect of ejection

fraction is important� Plots of the two spline terms are shown in �gure � and are

produced with the following commands�


 temp �� predict�fit�� type��terms�� se�fit�T�


 tmat �� cbind�temp�fit����� temp�fit���� � ����
temp�se�fit�����

temp�fit���� � ����
temp�se�fit�����


 jj �� match�sort�unique�lved��� lved�


 matplot�lved�jj�� tmat�jj��� type��l�� lty�c�������� xaxt��n��


 xx �� c��� �� ��� ���� ����


 axis��� log�xx����� as�character�xx��

��
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Figure �� Spline �ts for the MPIP data


 title�xlab��VED�� ylab��log hazard��


 tmat �� cbind�temp�fit����� temp�fit���� � ����
temp�se�fit�����

temp�fit���� � ����
temp�se�fit�����


 jj �� match�sort�unique�mpip�ef��� mpip�ef�


 matplot�mpip�ef�jj�� tmat�jj��� lty�c��������

xlab��Ejection Fraction�� ylab��log hazard��

Some extra work was required to label the �rst graph in the original VED units�

this is done with the axis command� The match function and the jj subscripts sort

the plot from left to right� otherwise the line becomes a back and forth scribble�

We see from the graph that there is an increase in risk with ejection fractions below

���� sharply so below ���� The rise after ��� is not signi�cant based on the wide

con�dence intervals� this agrees with the conventional wisdom of the physicians that

the instumentation is not able to reliably distinguish values above this level�

��� Automatic selection of the degrees of freedom

There are several methods of automatically choosing the amount of smoothing

in a spline �t including cross�validation� generalized cross validation �GCV� and

Bayesian approaches� One of the easiest in this programming context is to use the

��



Akaike informaion criteria

AIC 
 ��log�PLf�� 
 initialg�� log�PLf�� 
 �nalg��� �df � ���

Notice that this uses the ordinary partial likelihood without the penalty term� with

degrees of freedom as a correction rather than the penalty� Hurvich� Simono	 and

Tsai ���� show that in rich non�parametric regression model the AIC can under�

penalize� however� leading to models with an excess number of degrees of freedom�

They suggest a corrected AIC� which uses n�df �����n� �df���� as the correction

term in place of df � In the case of a Cox model we replace n by the total number

of events� Practically� AICc favors smaller models than AIC� with a bias that

grows with df� i�e� it might choose ��� rather than � df and �� rather than ��

df� The parameter df�� directs the pspline routine to select a control function

that maximizes AIC� with caic�T�F as an optional argument to choose either the

corrected or uncorrected form of the statistic�

For the lung cancer data either criteria chooses � degree of freedom for the age

e	ect� For the MPIP data we get the following�


 coxph�Surv�futime� status� � lved � factor�nyha� �

pspline�ef� df���� data�mpip�

coef se�coef� se� Chisq DF p

lved ������ ������� ������� ���� ���� ���e���

factor�nyha�� ������� ������� ������� ���� ���� ���e���

factor�nyha�� ������ ������� ������� ���� ���� ���e���

factor�nyha�� ������ ������� ������� ����� ���� ���e���

pspline�ef� df��� linear ������� ������� ������� ����� ���� ���e���

pspline�ef� df��� nonlin ���� ���� ���e���

Iterations� �� outer� �� Newton�Raphson

Theta� �����

Degrees of freedom for terms� ��� ��� ���

Likelihood ratio test����� on ���� df� p�����e���

n���� ���� observations deleted due to missing�

The result is shown in �gure �� The AICC criterion has chosen ��� degrees of

freedom for the spline term� which has essentially removed the upward jump of the

right hand tail found in �gure ��

We had already concluded that lved had no non�linear e	ect� An attempt to use

the AIC criteria to choose the smoothness of � terms at once however� pspline�lvef�

df��� � pspline�ef� df��� is likely to be unsuccessful in general� Each term is being

��
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Figure �� Spline �t with degrees of freedom chosen by AICC

controlled by a separate ��paramteter minimizer� and unless the terms are nearly

independent �and these two cardiac tests clearly are not� simultaneous univariate

minimization is not a good strategy for �nding the global maximum of a function�

even though it is quite reliable for the bivariate calibration problem that arises when

the df values are speci�ed�

� Frailty

In the last several years there has been signi�cant and active research on the addition

of random e	ects to survival� The random e	ect is usually viewed as a categorical

variable which describes excess risk or frailty for an individual or family� The idea

is that individuals have di	erent frailties� and that those who are most frail will

die earlier than the others� Aalen ��� discusses the impact of such heterogeneity

on analyses� and includes several examples along with an overview of the early

literature� He gives a good discussion of why such models are both of interest and

practical utility�

Computationally� the frailty is usually viewed as an unobserved covariate� This

has led naturally to the use of the EM algorithm as an estimation tool� However� the

algorithm is slow� the proper variance estimate is uncertain� and no implimentation

��



has appeared in any of the more widely available packages�

Assume a proportional hazards model with random e	ects or frailties� with

hazard function

�i�t� 
 ���t�e
Xi��Zi� �

Here � is a vector of p �xed e	ects and � a vector of q random e	ects� where the

individual elements �j are iid realizations from some distributionW ���� The matrix

X will normally contain measured covariate values� and Z will be a design matrix

that describes how the random e	ects apply to individual subjects� Both X and

Z might contain time dependent e	ects� but we will ignore this complication for

the moment� The baseline hazard may contain other parameters 	� these will also

be ignored� Note that if X contains an intercept term �which is implicit for the

proportional hazards model�� we can constrain � to have mean ��

We can treat the random e	ects as unobserved data and apply the EM algo�

rithm� The �x� of the formal EM argument is the entire observed data �time� status�

covariates� plus the frailties� and �y� is the data without the frailties� The full log�

likelihood� if we had observed �� is

Lf 


qX
j��

log�W ��� ���

�

nX
i��


i�log����ti�� �Xi� � Zi���  ��ti�e
Xi��Zi�

Here 
i 
 � for censored observations� and � for events� X will be an n by p matrix

and Z will be n by q�

This way of setting up the problem is similar in notation to random e	ects

models in linear regression� Another notation� which is more common in the survival

literature� is to de�ne � 
 exp�Zi�� as the frailty parameter for each subject� Then

�i�t� 
 �j���t�e
Xi� �

subject i being a member of the jth family� The imposed constraint is usually

E��� 
 � rather than E��� 
 ��

The most popluar choice for the random distribution is the gamma frailty model�

where � is from a Gamma distribution with variance mean � and variance � 
 ���

The details of the EM approach for survival data and for the gamma frailty model

in general are found in appendix B� This shows that the marginal likelihood Lg

after integrating out the frailty is

Lg 
 Cox PL �
X
j


 log

�




 �E�

j

�
� log

�
!�
 �Dj�

!�
�

�
�Dj log�
 �Dj� � ���

��



By 
Cox PL� in the above we mean the numerical value returned as the partial

likelihood by a standard Cox model program for the given values of � and �� �

having been entered as an o	set term� This derivation only applies to the simple

frailty problem where each subject i is a member of exactly � family j� with a

random e	ect per family� Then Dj is the number of events in the family� and

E�

j 
 Ej� exp��j� where Ej is the expected number of events for the family� using

the �nal model�

��� Computation

Some care must be taken with computing the log�likelihood as 
 goes to in�nity�

in which case the frailty goes to zero and we should converge to the results of an

ordinary� non�frailty Cox model� Equation ��� converges in this particular case to

Cox PL �
P

Dj � For this reason� we have added
P

Dj to the value of Lg in the

S�Plus code� to make the results of frailty and non�frailty models appear comparable

on the printout�

The computation of the correction terms in ��� must be done with care for them

to converge to
P

Dj as desired� The �rst correction term� 
 log�
��
�Ej�� becomes

numerically problematic on a Sun workstation for 
 � ��� or so� Such a value is

unlikely to occur during iteration� but if so the term could be replaced at that point

by it�s Taylor series expansion �Ej��� � Ej�
�� Because the martingale residuals

D �E sum to zero� for 
 
� this converges to the sum of the events�

The more problematic terms� numerically� are

log

�
!�
 �Dj�

!�
�

�
�Dj log�
 �Dj� �

There are three possible ways to compute this� as the expression above� as the di	er�

ence in log ! functions� which is an elementary function in S� or using a recurrence

formula for the ! function to show that

!�
 �Dj�

!�
�



DjY
k��


 �Dj � k

On a Sun workstation the �rst method is unstable for 
 � ���� the second for


 � ����

Finally� we can combine the log ! and logarithmic terms together giving

log

�� DjY
k��


 �Dj � k


 �Dj

�A � ���

For large 
 this form will be well behaved� and clearly goes to zero in the limit�

��



� Frailty and penalized likelihoods

��� Derivation

There is an interesting connection between the frailty models and penalized like�

lihoods� In particular� let the penalty function for a constrained solution be the

log�gamma density

�f�w� 
� 
 
�w � ew� � 
 log�
�� log !�
� �

with � 
 ��
 as the variance of the random e	ect and with Z de�ned as in the

frailty model� The �rst and second derivatives are 
�� � exp���� and �
 exp����

respectively�

Surprisingly� for any �xed value of 
 the EM algorithm and this contrained

minimization have the same solution� This was discovered by accident in some

tests� but can easily be veri�ed by rewriting the formula for Lg� Combine the

de�nition of the PLL

PLL 
 Cox PL �

qX
j��


�wj � ewj � � 
 log�
�� log !�
�

with equation ��� using equation �� to eliminate E�

j � Per the prior section� we want

to maximize Lg �D where D is the total number of events� Then

Lg �D 
 PLL �

qX
j��

�
e�j �Dj � log!�
 �Dj�� �
 �Dj� log�
 �Dj��


 PLL �

qX
j��


 �Dj � log!�
 �Dj�� �
 �Dj� log�
 �Dj� ���

The second step above can be made because of a constraint� throughout the inter�

ation the solution values will satisfy E��i� 
 �� Since the correction terms involve

neither � nor �� we see that Lg and the PLL must have the same maximum�

This connection between the two methods has several interesting consequences�

� Since penalized likelihood methods are well understood numerically� this leads

to more stable computational methods� In particular� it �ts in nicely to the

new coxph function�

� Equation ��� can also be viewed as the objective function from an empirical

Bayes model� with a gamma prior on � and a hyperprior on 
 that is a product

of q densities each of the form ex!�x��xx� where x 
 
 �Dj � This density is

extremely long tailed�

��



� There is a connection to the 
degrees of freedom� for a �t�

� It suggests a heuristic approach for other frailty distributions and"or frailty

terms� e�g� nested models� for which the EM mathematics is not tenable�

An example of the last point is found in McGilchrist and Aisbet ���� ���� who

use a Gaussian density with variance �� as the penalty function f � So

PLL 
 Cox PL� �������

qX
j��

��j ���

There remains the question of how to choose the variance or 
shrinkage� paramter

�� There is no exact connection to frailty models as there was with the gamma

distribution� However� the authors note the similarity of the Cox model�s Newton�

Raphson step to an interatively reweighted least�squares calculation� and using this

as a basis they propose using standard estimators from Gaussian problems� Exter�

nal to the modi�ed Cox program� � is chosen to satisfy

�� 


Pq
j�� �

�
j

q � r

where r is

� BLUP estimate� r
�

� ML estimate� trace��H���
������

� REML estimate� trace��H��������
��

It should be possible to make this derivation more precise using a Laplace ap�

proximation� as in Breslow and Clayton ���� but the task is a little beyond me�

McGilchrist and Yau ���� ��� generalize the REML method to a more general case�

Assume that the variance of the random e	ect is ��A for a known matrix A� Then

the penalty is ��A�������� and the REML estimate satis�es

�� 

��A��� � trace�A���H������

q
�

which is equivalent to the above formula when A is the identity matrix� �The ML

method would use �H���
���� However� in simulations they �nd the REML to be

less biased than the ML method�

��



��� Sparse computation

One important computational addition has been made to the underlying code specif�

ically to support the frailty computations� represented by the sparse argument �al�

though it may be useful in other contexts as well�� Assume a single frailty term of

the usual type� Zij 
 � if subject i is a member of group j� and zero otherwise� If

we partition the Cox model�s information matrix according to the rows of X and Z

I 


�
IXX IXZ

IZX IZZ

�

then the lower right corner will be a diagonally dominant matrix� �It has almost the

form of the variance matrix for a multinomial�� The added penalty is also diagonal�

If sparse computation is elected� then the underlying programs retain only the

diagonal of IZZ �

� The savings in space can be considerable� particularly in the case of a frailty

term per subject� Assume that there were ��� subjects and � other variables

�age� sex� � � � �� Then the full matrix will have ���� 
 ����� elements� but the

sparse version retains only the left hand 
slice� of ��� � � 
 ���� elements�

� Because the score vector and likelihood are not changed� the solution point

is identical� The Newton�Raphson iteration may undergo a slight loss of ef�

�ciency so that ��� more iterations are required� However� because each NR

iteration requires the Cholesky decomposition of the information matrix� the

sparse problem is much faster per�iteration than the full matrix version� �We

sweep out the sparse rows �rst in the decompositon� which makes them par�

ticularly simple to process�� The �nal solution may di	er trivally from the

non�sparse one because of a di	erent iteration path�

� In a small number of examples� the e	ect on estimates of degrees of freedom

and standard error have been slight�

� The output of the program is slightly changed� Under the assumption that the

sparse terms coe�cients should not be printed by default� they are returned

as a component frail� and the usual coef and var components contain only

the non�sparse terms�

� The Schoenfeld and dfbeta residuals� both of which are a matrix with one

column per variable� are computed with the frailty treated as a �xed o	set�

Whether or not sparse computation is selected� the program does one other

�trick� that is worth noting� We want the shrinkage term to be symmetric with

��



respect to the families� However� the standard S model matrix would be formed per

the global contrast option� which leads to nfamily�� coe�cients that are not sym�

metric� e�g�� for treatment style contrasts the reference group is left out� Although

this recoding would not change the predicted value of a given subject in an ordinary

Cox model� it does change both the coe�cients and the prediction in a penalized

model� because of the explicit shrinkage� In order to prevent this transformation a

special 
don�t do contrasts� attribute is added to the frailty term� Alternatively�

the penalty function could be made more sophisticated� with the type of contrast

passed to it as an argument�

Exactly the same issue must be considered to extend the ridge function to

categorical variables�

The computation of the degrees of freedom and variance matrices are also spe�

cialized to avoid any intermediate steps that would give an q by q result� where q

is the number of sparse coe�cients and p is the number of other variables in the

problem� The details of this are shown in appendix A�

The martingale and deviance residuals are unchanged by the use of a sparse

computation� To compute the score and Schoenfeld residuals� the code treats the

�nal �tted values of the sparse term as �xed values� the returned matrix of residuals

does not include columns for the dummy variables that represent the frailty�

The function for predicted values has not yet been updated to accomodate sparse

terms� For those values that depend only on the linear predictor� e�g�� the estimated

per�subject risk score� the current routines will work as expected� The default

baseline survival curve corresponds to a �ctional subject with � for the random

e	ect and means for the other covariates� Results that depend on a new data set

are more problematical� should we allow a �value� to be set for the random e	ect�

or always force it to be zero� What should the variance of the prediction be�

��� Examples

����� Rat data

A data set on the e	ect of treatment on survival for ��� female rats� where the rats

come from �� litters� has been used by several authors� The data set can be found

in Mantel� Bohidar and Ciminera ����� This example concentrates on the female

litters�

The data set has � rats per litter� one of which recieved a potentially tumorigenic

treatment� Forty rats developed a tumor during follow�up� In order to match prior

analyses we need to use the Breslow approximation for tied times�


 rfit �� coxph�Surv�time� status� � rx � frailty�litter��

��



data�rats� method��breslow��


 rfit

coef se�coef� se� Chisq DF p

rx ����� ����� ����� ���� ��� �����

frailty�litter� ����� ���� �����

Iterations� � outer� �� Newton�Raphson

Variance of random effect� ����� EM likelihood � ������

Degrees of freedom for terms� ��� ����

Likelihood ratio test����� on ����� df� p������ n� ���


 rfit� �� coxph�Surv�time� status� � rx� rats� method��breslow��


 rfit�

coef exp�coef� se�coef� z p

rx ����� ���� ����� ���� ������

Likelihood ratio test����� on � df� p�������� n� ���


 rfit� �� coxph�Surv�time� status� � rx � frailty�litter� theta����

data�rats� method��breslow��


 rfit�

coef se�coef� se� Chisq DF p

rx ����� ����� ����� ���� ��� ������

frailty�litter� theta � �� ����� ���� ������

Iterations� � outer� � Newton�Raphson

Variance of random effect� � EM likelihood � ������

Degrees of freedom for terms� ��� ����

Likelihood ratio test����� on ����� df� p������ n� ���

The main thing to notice about the result is how little the treatment coe�cient

is changed by the inclusion of a random e	ect term� This is likely a consequence of

the balanced model� each litter recieved both the active and control treatments�

We see that for a �xed value of the frailty the iteration is nearly as e�cient as

for a normal Cox model� which usually requires ��� iterations� The generalized �t

required � guesses to maximize the pro�le likelihood� and about � internal iterations

per 
 value�

The 
likelihood ratio test� is always the di	erence in partial likelihood between

the initial and �nal �t� ignoring penalty terms and corrections� The default for

the initial �t is ��� �� 
 �� which is a �t with no covariates or random e	ect� The

��



degrees of freedom is computed as described earlier� The random e	ect has added

little�

The history component of the returned �t contains the �nal return values of

the control function�s�� For an iterative method such as this� this shows the history

of the iteration as well as the �nal value for ��


rfit�history�����

�theta� ���������

�done� T

�loglik� ���������

�history�

theta loglik c�loglik

���� ��������� ��������� ���������

���� ��������� ��������� ���������

���� ��������� ��������� ���������

���� ��������� ��������� ���������

���� ��������� ��������� ���������

���� ��������� ��������� ���������

The component history�history has columns that give successive values of ��

the �maximal� penalized likelihood for that value of �� and the corrected likelihood

Lg� We see that in this example that the pro�le likelihood Lg is very �at as a

function of �� The �rst element of the list� ���������� is the value that would have

been used for the next iteration�

The solution using a Gaussian frailty is not much di	erent�


 rfit� �� coxph�Surv�time� status� � rx �

frailty�litter� dist��gauss��� rats�


 rfit�

coef se�coef� se� Chisq DF p

rx ����� ����� ����� ���� ��� ������

frailty�litter� dist�ga ����� ���� ������

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� �����

Degrees of freedom for terms� ��� ����

Likelihood ratio test����� on ����� df� p��������� n� ���

��



��� Survival of kidney catheters

The following data set is presented in McGilchrist and Aisbett ����� Each obser�

vation is the time to infection� at the point of insertion of the catheter� for kidney

patients using portable dialysis equipment� Catheters may be removed for reasons

other than infection in which case the observation is censored� There are �� pa�

tients� each of which has exactly � observations� Variables are the subject id� age�

sex ��
male� �
female�� disease type �glomerulo nephritis� acute nephritis� poly�

cystic kidney disease� and other�� and the time to infection or censoring for each

insertion�


 kfit �� coxph�Surv�time� status� � age � sex � disease � frailty�id�� kidney�


 temp �� coxph�Surv�time� status� � age � sex � disease �

frailty�id� sparse�F�� kidney�


kfit

coef se�coef� se� Chisq DF p

age ������� ������ ������ ���� � ���e���

sex �������� ������ ������ ����� � ���e���

diseaseGN ������� ������ ������ ���� � ���e���

diseaseAN ������� ������ ������ ���� � ���e���

diseasePKD �������� ������ ������ ���� � ���e���

frailty�id� ���� � ���e���

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� ����e��� EM likelihood � ������

Degrees of freedom for terms� � � � �

Likelihood ratio test����� on � df� p�������� n� ��


temp

coef exp�coef� se�coef� se� z p

age ������� ����� ������ ������ ����� ���e���

sex �������� ����� ������ ������ ������ ���e���

diseaseGN ������� ����� ������ ������ ����� ���e���

diseaseAN ������� ����� ������ ������ ����� ���e���

diseasePKD �������� ����� ������ ������ ������ ���e���

��� lines of other coefs�

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� ����e��� EM likelihood � ������

Degrees of freedom for terms� � � � �

��
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Figure �� Realized gamma frailties for the kidney data

Likelihood ratio test����� on � df� p�������� n� ��

The non�sparse solution has given the same answer as the sparse algorithm

in �� fewer iterations� but it took somewhat over � times as long to run� Both

programs have decided that the optimal value for a gamma frailty is essentially ��

The 
p�value� for the frailty term is almost random� both the test statistic and the

degrees of freedom are � ����� and round o	 error in both the computation and

the chi�square probability function begin to dominate�

A somewhat di	erent result ensues when the disease variable is left out of the

model� however�


 kfit� �� coxph�Surv�time� status� � age � sex � frailty�id��

data�kidney�


 kfit�

coef se�coef� se� Chisq DF p

age ������� ������ ������ ���� ��� �������

sex �������� ������ ������ ����� ��� �������

frailty�id� ����� ���� �������

Iterations� � outer� �� Newton�Raphson

Variance of random effect� ����� EM likelihood � ������

Degrees of freedom for terms� ��� ��� ����

��



Likelihood ratio test����� on ����� df� p�����e��� n� ��

A plot of the realized frailty coe�cients shows that the gamma frailty has 
picked

up� a large outlier� the same subject is an in�uential point for the fourth disease

group� In a model with only age and gender� this subject has a martingale residual

of ����� the next smallest is ����# This subject� number ��� is a �� year old male

�median age
������ There are �� males in the study and most had early failures�

��"�� of the remaining kidneys had an infection at a median of �� �days��� � were

censored at � and � days respectively� Subject �� however had failures at ��� and

��� days� making him quite an extreme outlier�

Using the approximate Gaussian frailty method of McGilchrist ���� with REML

gives a non�zero estimate of the random e	ect�


 mfit� �� coxph�Surv�time� status� � age � sex � disease �

frailty�id� dist��gauss��� data�kidney�

mfit�
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diseaseAN ������� ����� ������ ���� ��� �������

diseasePKD �������� ����� ������ ���� ��� �������

frailgy�id� ����� ���� �������

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� �����

Degrees of freedom for terms� ��� ��� ��� ����

Likelihood ratio test����� on ���� df� p�����e��� n� ��


 mfit� �� coxph�Surv�time� status� � age � sex � disease �

frailty�id� dist��gaus�� sparse�F�� kidney�


 mfit�

coef se�coef� se� Chisq DF p

age ������� ������ ������ ���� ��� �������

sex �������� ������ ������ ����� ��� �������

diseaseGN ������� ������ ������ ���� ��� �������

diseaseAN ������� ������ ������ ���� ��� �������

diseasePKD �������� ������ ������ ���� ��� �������

frailty�id� dist��gaus ����� ���� �������

Iterations� � outer� �� Newton�Raphson
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Figure �� REML solution for the kidney data

Penalized terms�

Variance of random effect� �����

Degrees of freedom for terms� ��� ��� ��� ����

Likelihood ratio test���� on ����� df� p�� n� ��

In this case the sparse routines have some impact on the solution itself� The

REML estimate of � satis�es the following equation

�� 


P
�i � sum�diag�var�� � �����

��
� ���

Moderate changes in the estimated H matrix can have a large e	ect on the �nal

value of ��� The sparse method uses a diagonal approximation to the �frailty� portion

of H � and this e	ects the diagonal of H��
var� The overall Wald test of ���� is

still not signi�cant� The Gaussian frailty model without the disease variable also

has a single large negative frailty�

We should point out as well that these answers di	er slightly from the author�s

���� results� Their paper presents formulas that are completely valid only for untied

data� and this data set has a � tied pairs and one quadruple� This is certainly

not clinically signi�cant� and in a standard Cox model would barely perturb the

answers� Unfortunately� the REML solution for � is very touchy� Figure � shows

the left and right�hand sides of equation � for a range of values along with the line

��



y 
 x� �Remember that H is implicitly a function of the current ��� The solution

point lies at the intersection of these curves�

��� CGD Data

Chronic granulotomous disease �CGD� is a heterogeneous group of uncommon in�

herited disorders characterized by recurrent pyogenic infections that usually begin

early in life and may lead to death in childhood� Interferon gamma is a princi�

pal macrophage�activating factor shown to partially correct the metabolic defect

in phagocytes� and for this reason it was hypothesised that it would reduce the

frequency of serious infections in patients with CGD� In ����� Genentech� Inc� con�

ducted a randomized� double�blind� placebo�controlled trial in ��� CGD patients

who received Genentech�s humanized interferon gamma �rIFN�g� or placebo three

times daily for a year� The resultant data set can be found in appendix D of Flem�

ing and Harrington ���� The primary endpoint of the study was the time to the

�rst serious infection� However� data was collected on all serious infections until

loss�to�followup� which occurred before day ��� for most patients� Thirty of the ��

patients in the placebo group and �� of the �� patients in the rIFN�g group had

at least one serious infection� The total number of infections was �� and �� in the

placebo and treatment groups� respectively�


 coxph�Surv�tstart� tstop� status� � rx � cluster�id�� cgd�

coef exp�coef� se�coef� robust se z p

rx ���� ����� ����� ����� ����� �������
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coef exp�coef� se�coef� robust se z p

rx ����� ����� ���� ����� ����� ������


 coxph�Surv�tstart� tstop� status� � rx �frailty�id� � strata�enum�� cgd�

coef se�coef� se� Chisq DF p

rx ������ ����� ���� ���� ���� ������

frailty�id� ���� ���� ������

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� ���� EM likelihood � ������

Degrees of freedom for terms� ��� ���

Likelihood ratio test����� on ���� df� p�������� n� ���


 coxph�Surv�tstart� tstop� status� � rx �mfrail�id� �strata�enum�� cgd�

��



coef se�coef� se� Chisq DF p

rx ������ ����� ����� ��� ��� ������

mfrail�id� ���� ���� ������

Iterations� � outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� �����

Degrees of freedom for terms� ��� ����

Likelihood ratio test����� on ����� df� p�����e��� n� ���

The example above shows partial results of Andersen�Gill� conditional� gamma

frailty and normal frailty models� The conditional model is known to be biased

downwards� and one question is whether the addition of a frailty term can compen�

sate�

For the gamma frailty model� the �nal value of � was essentially zero $ the

�t is maximized at the no frailty model� For the REML normal model �sparse

computation�� the value is maximized at a value of � 
 ����� With this value of ��

the coe�cient is signi�cantly increased�

A gamma model with the same degrees of freedom agrees with the above in

all important respects� it has almost an identical treatment coe�cient and random

e	ect variance�


 coxph�Surv�tstart� tstop� status� � rx � frailty�id� df������

� strata�enum�� cgd�

coef se�coef� se� Chisq DF p

rx ������ ����� ����� ���� ��� ������

frailty�id� df � ����� ���� ���� ������

Iterations� � outer� �� Newton�Raphson
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Variance of random effect� ����� EM likelihood � ������

Degrees of freedom for terms� ��� ����

Likelihood ratio test����� on ����� df� p��������� n� ���

��� Colon Cancer study

This data is from a study by Moertel� et� al� ���� of three regimens� placebo�

Levamisole� and Levamisole � ��FU� in the treatment of resected colon cancer� The

data is used in Lin�s paper on marginal Cox models ���� �he uses only � of the arms��

For each patient we have both the time to survival and the time to progression� and

��



would like to use both concurrently in an assessment of treatment� There are ���

patients distributed as follows

N umber of events

� � �

Placebo ��� �� ���

Levamisole ��� �� ���

Lev��FU ��� �� ���

As we can see� most patients have either both outcomes or neither�

The code below �ts the marginal model �recommended by Lin�� along with the

gamma and Gaussian frailty models�


 fitc� �� coxph�Surv�time� status� � rx � extent � node� � cluster�id�
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node� ������ ����� ������ ������ � ���e���

mfrail�id� ������� ��� ���e���

Iterations� �� outer� �� Newton�Raphson

Penalized terms�

Variance of random effect� ����

Degrees of freedom for terms� ��� ��� ��� �����

Likelihood ratio test����� on ������ df� p�� n� ����


 fitc� �� coxph�Surv�time� status� � rx � extent � node� � frailty�id�

��



� strata�etype�� colon�


 fitc�

coef se�coef� se� Chisq DF p
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rxLev��FU ������� ����� ����� ���� � ���e���
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Iterations� � outer� ��� Newton�Raphson

Penalized terms�
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Likelihood ratio test����� on ������ df� p�� n� ����


 fitc� �� coxph�Surv�time� status� � rx � extent � node� �

frailty�id� df���� � strata�etype�� colon�


 fitc�

coef se�coef� se� Chisq DF p

rxLev ������� ������ ������ ���� � ���e���

rxLev��FU ������� ������ ������ ����� � ���e���

extent ������ ������ ������ ����� � ���e���

node� ������ ������ ������ ������ � ���e���

frailty�id� df � ��� ����� �� ���e���

Iterations� � outer� � Newton�Raphson

Penalized terms�

Variance of random effect� ������ EM likelihood � �������

Degrees of freedom for terms� ��� ��� ��� ����

Likelihood ratio test���� on ���� df� p�� n� ����

This is the �rst data set where the �nal frailty solution is large� the variances

are ��� for the gamma and ��� for the REML gaussian models� The �tting is

also quite slow� as compared to a standard Cox model� The number of Newton�

Raphson iterations necessary for a particular value of � increases markedly when �

is larger than about �� for this data set� the penalized information matrix is not so

clearly diagonally dominant in this case� and the sparse solution not as e�cient an

approximation�

The unconstrained frailty �ts are worrysome� For subjects with no events� the

realized values of � for the gamma frailty model range from �� to ��� �median of ����

versus a median value of ��� for those with � events� With such a weight� exp������
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Figure �� Density of the realized frailties� colon cancer data

����� the model we obtain is almost equivalent to removing all of the subjects with

no events from the data set� That is� the frailty model declares them to be 
risk

free��

Figure � shows the densities of the realized frailties from the gamma frailty

model� There is almost no overlap in the densities of subjects with both death and

progression� and those with neither�

��	 Further notes

In the code as actually distributed� the penalty functions are incorporated into the

wrapper� rather than being separate as shown in some of the examples� This avoids

cluttering up the S�Plus space with too many function names�

At this point the underlying C programs and the control structures of the coxph

program are very solid� and I don�t anticipate any changes� The functions to de�

scribe the penalties are quite simple� so they also shouldn�t change much� The

biggest place for algorithmic improvement appears to be in the control functions�

The heart of these are simple one�dimensional minimizers� either Brent�s method

�frailty�brent� or exponential interpolation �frailty�controldf�� The starting es�

timates� bracketing rules� and step sizes in each of these has not been examined in

any systematic way� although they do work for all of the current examples�

��



The important auxillary functions predict�coxph and surv�t�coxph have not been

modi�ed as yet� they will work as is for non�sparse models� However� both the

default 
predicted survival curve� and the type
terms result from predict cannot

be of much use for a random e	ects model� Plans are to treat the sparse terms as

a �xed o	set�

In conjunction with Silke Schmidt �her thesis� we have tried extending this

code to a more complicated frailty problem involving family data� This is a nested

problem with both a per�subject e	ect and a familial e	ect that has a genetic basis�

The result is that the penalty matrix for the subject random e	ects has a block

diagonal structure� The sparse Newton�Raphson didn�t work� �Blast# And I had

such high hopes�� Ignoring the o	�diagonal information causes the algorithm to

take poor steps� sometimes in the opposite direction to the actual solution� A more

sophisticated change does appear to work� and may become part of the distributed

routines at a later date�

And last� this document is still a working draft� The authors would appreciate

any feedback on its structure or de�ciencies�

A Computing degrees of freedom

Let H denote the negative Hessian �minus the matrix of second partial derivatives�

of the log penalized partial Cox likelihood� A Cholesky decomposition gives H 


U �DU � where U is upper triangular with Uii 
 � for all i and D is diagonal� The

underlying code places the sparse terms �rst in the model� so that the Cholesky

decomposition actually has the form

U 


�
I U�

� U�

�

with I being a q by q identity matrix and � a matrix of zeros� Then� we have

H�� 
 U��D��U ���

� TD��T �

where T 
 U�� is upper triangular with ��s on the diagonal� like U � and can be

partitioned analogously into I � �� T� and T��

Note that T� 
 U��
� � So�

H�� 


�
I T�

� T�

��
D��
� �

� D��
�

��
I �

T �

� T �

�

�

��






�
D��
� � T�D

��
� T �

� T�D
��
� T �

�

T�D
��
� T �

� T�D
��
� T �

�

�

�

�
A B

B� C

�

A is a q by q matrix� and our goal is to compute further information using only the

diagonal of A� Let V 
 H���H � P �H��� where P is the matrix of second partial

derivatives of the penalty terms for the log of the Cox penalized log likelihood� so

H 
 I�P � The lower right p by p submatrix of V is the second estimate of variance

of the nonfrailty terms �var� on the printout�� the lower right p by p submatrix of

H�� being the �rst estimate of variance �var� If P is partitioned�

P 


�
P� �

� P�

�

where P� is a q by q submatrix with the penalty terms for the frailty part of the

model and P� is a p by p submatrix with penalty terms for the rest of the model�

including any ridge or penalized splines� then we note that P� is diagonal as a

consequence of the choice of sparse computation� and that P� will be zero if there

are no other penalized terms in the model� which is a common situation when doing

frailty models�

The coxpenal�df program� which does the essential computations� is called with

arguments hmat� the q � p by p matrix containing the righmost columns of U � hinv

which contains the p rightmost columns of T � fdiag containing the diagonal of D���

along with the penalty matrices and some bookkeeping information� It returns the

lower right corners of V and H��� the vector of degrees of freedom� and the diagonal

of the upper left corner of H���

The lower right corner of H�� is simply T�D
��
� T �

�� a p by p matrix� Some

further e�ciency could be gained� in terms of the total number of multiplications

and additions� by noting that T� is upper triangular but this has not been persued�

The lower right of V is

V�� 
 H��
�� � �B�P�B � CP�C� �

The degrees of freedom for the sparse term is

trace
�
�H��

�� �
��V��

�

 trace�A���A�AP�A�BP�B

���


 q � trace�P�A�� trace�A
��BP�B

��


 q � trace�P�A�� trace�B
�A��BP�� �

��



If P� is zero then since P� is diagonal� only the diagonal of A is needed� This

simpli�cation occurs for any penalized term� sparse or not� when it is the only

penalized term in the model and P is diagonal�

If P� is non�zero� then note that the standard formula for partitioned matrices

gives that the lower right corner of H must be

H�� 
 �C �B�A��B��� �

We can compute the p by p matrix H�� directly from T and then subtract from C

to get the matrix B�A��B� without having to form or invert the q by q matrix A�

For individual terms that are part of the non�sparse portion of the matrix� we

have to use the usual formula since this may involve sub�portions of the matrix�

However� since the two quantities of interest are already computed this is not a

large issue� �Again� we assume that p is relatively small��

The S�Plus code also makes frequent use of the identity trace�x �
� y� � sum�t�x�


 y�� where �
� is matrix multipltication� t�� is the transpose function� and 
 is

elementwise multiplication�

B EM Algorithm

B�� Derivation

Let x be the full data with density f�x� ��� y the observed� or partial� data with

density g�y� ��� and let

k�xjy� �� 

f�x� ��

g�y� ��

be the conditional density of f given g� For simplicity abbreviate log�g�y� ��� as

Lg�y� ��� and similarly for f and k�

The log�likelihood can be broken up according to the simple identity

log�g�y� ��� 
 log�f�x� ���� flog�f�x� ��� log�g�y� ���g

Lg��� 
 Lf ���� Lk��� ���

Now� let � be a provisional guess for the value of �� and take the conditional

expectation of equation ��� with respect to y and ��

EfLg�y� ��jy� �g 
 EfLf�x� ��jy� �g � EfLk�xjy� ��jy� �g

Lg�y� �� � Q��� ���H��� �� � ���

The term on the left hand side of the equation is unchanged� since the conditional

expectation of y with respect to any parameter�s� and y must be y itself� The right

��



hand side de�nes the terms Q and H in the original paper by Dempster� Laird and

Rubin ���� This equation is the key� In particular� the terms on the right are often

computable� where the original term on the left is not� Lf � the full data likelihood

may be easy to write down and maximize� H is not necessary to the maximization

process� but is needed for the evaluation of the likelihood itself �if desired��

The di	erence between � and � is crucial� The EM algorithm consists of two

alternating update steps�

E step� Compute the algebraic form of Q� This will involve replacement of x

and functions of x in Lf with their expected values given y and ��

M step� Maximize this new expression� now only a function of �� with respect

to �� Let �� be that maximizing value for Q��� ��� Return to the E step� replacing

� with ���

The convergence of the EM rests on the following lemma� For any value of ��

H��� �� � H��� ��� with equality occuring only if Lf ��� 
 Lf ��� a�e� The left hand

side is the expected value of a log�likelihood at parameter � when the true density

has parameter �� and the lemma states that the expected value of a log�likelihood is

maximized at the true parameter� I will follow the lead of other authors and state

that the proof is a 
standard result due to Jensen�s inequality��

From this we can easily show that

Lg����� Lg��� 
 �Q���� ���Q��� ��� � �H��� �� �H���� ��� � � �

The �rst term on the right hand side is greater than zero by de�nition of ��� and the

second from the lemma� The algorithm may converge arbitrarily slowly� however�

For any given component of �� the error will eventually decrease by a multiplicative

constant�

Suppose that Lf has the expansion

Lf �x� �� 
 a�x� � b�x� �� � c���

for some functions a� b and c� Technically� the E step of the algorithm involves

calculation of Efa�x�jy� �g� However� since this term will not be used in the M step

it can be ignored during iteration� For an exponential family� e�g�� Gaussian with

known variance�

b�x� �� 
 ��t�x�

where t�x� is the vector of su�cient statistics� This leads to the 
classic� EM� which

simply replaces su�cient statistics by their expectation�

��



B�� Example

Consider a censored data example found in Cox and Oakes ���� Let xi be the true

survival time and �yi� 
i� be the observed time along with a censoring indicator�

xi 
 yi� if 
i 
 �

xi � yi� if 
i 
 �

a� Assume that X is exponential� For this problem we can easily write down

the true likelihood

Lg 


nX
i��

�
i log��� � �yi� �

b� Assume that the actual likelihood Lg was not known� and that we want

instead to compute our solution using the EM method� The full data likelihood is

easy to state� since it does not involve censoring�

Lf 

X

�log���� �xi� �

We also need to compute the form of Q� In this case� it is simply a replacement of

each xi with E�xijyi� ��� This is equal to yi for the uncensored observations� For

the censored observations� the memoryless property of the exponential distribution

means that the time remaining is also exponential� with expected value of ����

Thus

Q��� �� 

X

�log��� � �E�xijyi� 
i� ���



X

�log��� � ��yi � ��� 
i�����

The E step is thus a replacement of each censored y by its expectation given

the current value of ��� The M step consists of maximizing Lf � using these replaced

data values�

c� Using the same conditional distribution argument� we see that

Lk 


	
� 
 
 �

log��� � ��x� y� 
 
 �

so that

H��� �� 
 E�Lkjy� 
� ��



X

��� 
i��log���� ��yi � ���� yi��

The value of H is not needed for the iteration� Note� however� that the �nal

loglikelihood at �� can be computed as Q���� ����H���� ���� This may be important in

other problems� where Lg is di�cult to write down�

��



B�� Gamma frailties and PH models

B���� Preliminaries

We will make use of two densities in the derivation� Since they are used mostly in

log�likelihoods� I give the log of the density� The gamma density has formula

log�f�x� �� 
�� 
 �
 � �� log�x�� �x � 
 log����� log !�
�

�This f has nothing to do with Lf $ here it�s just a dummy symbol for the dis�

tribution�� Two quantities that will be needed are E�X� 
 
�� and E�log�X�� 


��
�� log���� where � is the digamma function�

Let � 
 exp��� follow a gamma distribution with parameters 
 and �� so that

the distribution W of � is�

log�W �w� �� 
� 
 �
w � �ew� � 
 log��� � log !�
� � ����

The mean and variance of w are ��
� � log��� and ���
�� where � and �� are the

digamma and trigamma functions� respectively� �The distribution of w � log���

follows the log�gamma distribution of Kalb�eisch and Prentice ���� equation ������

see there for derivation of the result��

B���� General setup

Assume a proportional hazards model with random e	ects or frailties� with hazard

function

�i�t� 
 ���t�e
Xi��Zi� � ����

Here � is a vector of p �xed e	ects and � a vector of q random e	ects� where the

individual elements �j are iid realizations from some distributionW ���� The matrix

X will normally contain measured covariate values� and Z will be a design matrix

that describes how the random e	ects apply to individual subjects� Both X and

Z might contain time dependent e	ects� but we will ignore this complication for

the moment� The baseline hazard may contain other parameters 	� these will also

be ignored� Note that if X contains an intercept term �which is implicit for the

proportional hazards model�� we can constrain � to have mean ��

We can treat the random e	ects as unobserved data and apply the EM algo�

rithm� The �x� of the formal EM argument is the entire observed data �time� status�

covariates� plus the frailties� and �y� is the data without the frailties� The full log�

likelihood� if we had observed �� is

Lf 


qX
j��

log�W ��� ���

��



�

nX
i��


i�log����ti�� �Xi� � Zi���  ��ti�e
Xi��Zi� ����

Here 
i 
 � for censored observations� and � for events� X will be an n by p matrix

and Z will be n by q�

This way of setting up the problem is similar in notation to random e	ects

models in linear regression� Another notation� which is more common in the survival

literature� is to de�ne�i 
 exp�Zi�� as the frailty parameter for each subject� Then

�i�t� 
 �i���t�e
Xi� �

and the imposed constraint is usually E��� 
 � rather than E��� 
 �� We will

prefer the linear models like formulation�

B���� Simpler case

The above equation ���� is not particularly useful unless we can determine the

conditional distribution of � given the rest of the information� This is possible in

one particular case� We will largely follow the derivation of Neilson et� al� �����

Let � 
 exp��� follow a gamma distribution with parameters 
 and �� Without

loss of generality� we will assume that 
 
 �� i�e�� that the distribution � has mean

� and variance ��
� �This is� in this case� algebraicly simpler than imposing the

constraint that E��� 
 ���

Furthermore� assume that the random e	ect consists of independent clusters of

observations� i�e�� Zij 
 � i	 subject i belongs to cluster j� with no subject in two

clusters� Then if we de�ne

Dj 


nX
i��

Zij
i

E�

j 

nX
i��

Zij ��ti�e
Xi� ����

we see that the likelihood ���� can be re�arranged so that the individual �j terms

separate�

Lf 


qX
j��

��
�j � 
e�j � � 
 log�
�� log !�
��

�

qX
j��

�
Dj�j �E�

j e
�j
�

�
nX
i��


i�log����ti�� �Xi�� � ����

��



�Because each subject is in exactly one cluster� Xi� 
 �ji � with ji being the cluster

to which subject i belongs�� Dj is the number of events in the jth cluster� and

Ej 
 E�

j exp��j� is the expected number of events in the cluster based on the

covariates and the model� E� is� roughly� the expected number of events for the

cluster if their frailty were set equal to �� but with all the frailties used to compute

the baseline hazard � �

As a function of any single �j � the likelihood ���� is proportional to

�
 �Dj��j � �
 �E�

j �e
�j �

Comparing this to the gamma distribution de�ned earlier� we see by inspection that

conditional on the data the �j are distributed as gamma variates with shape and

scale parameters of 
 �Dj and 
 �E�

j � respectively�

Now� given a provisional guess � 
 �%�� %
� and the observed data y 
 �t� 
�� the

E step of the algorithm will involve replacing �j and exp��j� terms in Lf by

E��j j�� y� 
 ��Dj � %
�� log�E�

j � %
� � w�

j

and ����

E �e�j j�� y� 

Dj � %


E�

j � %

� ebwj ����

Since the prior variance of the random e	ect is ��
� we see that as the variance

goes to in�nity the estimated random e	ect � 
 exp��� converges to D�E�� the

unconstrained estimate of excess risk in the cluster ignoring the frailty� As the

variance goes to zero� all of the frailties � become �� The EM algorithm is then�

initialize� An obvious starting guess is %
 
�� %� 
 ��� the MLE from a no�frailty

model� This is not particularly useful� however� since the frailties then remain �xed

at zero in the update formula� We have found ��� ��� to be a reasonable starting

estimate�

E step� From the provisional value of %� compute Ej for each group� and from

this the function Q��� �� 
 E�Lf j%
� %��� If we then rearrange the terms �again� the

function is

Q 


qX
j��

�
 log�
� � log !�
�

�Dj�w
�

j � bwj� � 
�w�

j � ebwj �

�

nX
i��


i�log����ti�� �Xi� � Zi bw��  ��ti�eXi��Zibw ����

�Note again that
P

j Dj bwj 

P

i 
iZi bw��
��



M step� Choose new values of 
 and � to maximize Q� Notice that the last line

of the above expression� the only one to involve �� is precisely the log�likelihood for

a full data model that has Ziw as an o	set term� In fact� this is the very reason

to rearrange the equation in this way� It shows that the next iterate of �� can be

obtained using a standard Cox model program� The partial likelihood returned by

the Cox program will be the value of the last line in ���� above� Maximization with

respect to 
 can be done using any one of a number of methods since it is a single

parameter�

In fact� the solution can be obtained using only the quantities returned by an

ordinary Cox model program� Start with the case of a �xed variance � 
 ��
� The

quantities Dj and Mj 
 D � E can be obtained by summing over the input data

and the returned martingale residuals� respectively� E� is obtained from E and the

current estimates of ��� equation �� is used to get the next estimate of ��� and �nally�

Z �� is used as an offset in the next invocation of the Cox model� For �xed �� this

process will often converge in ��� iterations�

At the end of the iteration� we will want to compute the value of the actual

log�likelihood Lg 
 Q � H for the �nal parameter values� Let a�
� �� be the log

density shown in equation ����� We saw that the conditional distribution of the

unknown parameters � was a�
 � Dj � � � Ej�� H is the expected value of this

expression itself� with respect to the density a�
 � Dj � � � Ej� �circular sounding

isn�t it�� Then

H 


qX
j��

h
�
 �Dj�w

�

j � �� �E�

j �e
bwj

i
� �
 �Dj� log�� �E�

j �� log !�
 �Dj�

so that

Lg 
 Q�H 
 Cox PL �
X
j


 log

�




 �E�

j

�
� log

�
!�
 �Dj�

!�
�

�
�Dj log�
 �Dj� � ����

By 
Cox PL� in the above we mean the numerical value returned as the partial

likelihood by a standard Cox model program for the given values of � and �� �

having been entered as an o	set term� Again� we see that this can be computed

in a standard package such as SAS� after the Cox model has been �t� For the no�

covariate case � 
 � this formula gives� after cancellation� equation ���� of Nielsen

et� al� ����� �Note that for a Cox model the last term of equation ���
P
 ��ti�ri� is

identically equal to the number of deaths� by de�nition of � ��

A heuristic approximation helps us get a feel for the probable size of �� At its

solution� the EM algorithm must satisfy %
 
 �
� i�e�� the next step of the algorithm

��



is equal to the current estimate� Then

e	�j 

Dj � 


Eje�	�j � 



e	�j �Ej 
 
 �Dj

e	�j 
 � � �Mj ����

whereMj 
 Dj�Ej is the sum of the martingale residuals for all subjects in group

j� Since ex � �� x� we see that the �nal values of �� are approximately � times the

martingale residuals� Now� note that an approximate estimate of 
functional form�

for the group of subjects with Z 
 j would be Mj � under an unpenalized model

with Z as a factor variable ����� This implies that the solution with � 
 � may not

be too far from that with � 
��

B�� Other frailties

Let L�t� �� be the Laplace transform of the frailty distribution� and L
n� be the nth

derivative of L� Let Z be restricted to the same form as in the last section� i�e�� a

�one�way anova� layout where each subject is a member of exactly one frailty group�

Then Parner ���� has shown that the EM step �for �xed �� is

e	�j 
 �
L
Dj����E�

j � ��

L
Dj��E�

j � ��
�

For the gamma frailty this works out particularly well� since L�t� �� 
 ��� �t������

leading to formula �����

Other distributions do not simplify as neatly� The positive stable distribution�

which has often been suggested as a candidate for the frailty� has L�t� 
 exp��t���

leading to

L
�� 
 e�t
�

���t����

L
�� 
 e�t
� �
���t����� � ��� � ���t���

�
L
�� 
 e�t

� �
���t����� � ��� � ���� � ���t��� � ����� � ��t����

�
���

Parner derives a recursion formula for computing these derivatives� but the ratios

do not have a simple algebraic form� Does any distribution except the gamma

simplify�

Far more serious than any di�culty in extending to other distributions� however�

is the fact that this approach does not easily generalize to other types of problems�

��



The entire derivation depends on the segregation of � into a separate term as in

equation ��� which in turn is only possible for these simple 
one�way anova� layouts�

Crossed e	ects� nested e	ects� random coe�cients for continuous variables� and

other interesting models are much more di�cult�

C Writing S�Plus functions

This section describes the details of adding an arbitrary penalty function to the

S�Plus code� It can be skipped by most readers�

C�� Ridge regression

The original control and penalty functions for the ridge regression example were�

pfun�ridge �� function�coef�theta� nevent� f

list�penalty� sum�coef	��
theta���

first � theta
coef�

second � rep�theta� length�coef���

flag�F�

g

cfun�ridge �� function�parms� ���� list�theta�parms�theta� done�T�

This psuedo ridge�regression function is simplistic� no provision has been made for

factor variables and there is no scaling of the penalty with respect to the scale of

the covariates� In order to use these functions within coxph we need to �package�

them in the following way�

ridge �� function����� theta��� f

x �� cbind�����

class�x� �� �coxph�penalty�

temp �� list� pfun� pfun�ridge�

cfun� cfun�ridge�

diag�T�

cparm�list�theta�theta��

attributes�x� �� c�attributes�x�� temp�

x

g

fit� �� coxph�Surv�futime� fustat� � rx � age � ecog�ps� data�ovarian�

fit� �� coxph�Surv�futime� fustat� � rx � ridge�age� ecog�ps� theta�����

data�ovarian�

��



The ridge function �passes through� the data given to it� with a small number of

added attributes�

� the data has class �coxph�penalty�� This is how the coxph routine recognizes

penalty terms�

� pfun� the penalty function�

� cfun� the control function� In this case the control function does nothing

except echo back the initial � value and signal completion�

� diag� a �ag indicating whether f �� is a diagonal matrix�

� cparm� the paramer vector for cfun�

The penalty function will be called with the coe�cients for the term� e�g�� those

corresponding to age and ecog�ps in the above example� along with the tuning

parmeter�s� � and the number of events in the data set� It needs to return the value

of the penalty and it�s �rst and second derivatives� For some penalty functions and

values of � the penalty may be in�nite� in which case the �ag argument should be set

to True� The iteration routines force coe�cients to zero when the penalty is in�nite

�which is not always the mathematically correct solution�� The main function of

flag is to avoid numeric exceptions such as division by zero in the C language code�

In this example f �� is diagonal� and so pfun returns only a vector of second

derivatives� This is indicated by diag�T� In other cases� such as smoothing splines�

pfun will need to return a matrix�

Here is the output of �t� and �t� �some lines removed for clarity��


fit�

coef exp�coef� se�coef� z p

rx ������ ����� ������ ����� ������

age ����� ����� ������ ���� ������

ecog�ps ����� ����� ������ ���� ������


fit�

coef exp�coef� se�coef� se� z

rx ������� ����� ������ ������ ������

ridge�age� ecog�ps� theta � ����� ������ ����� ������ ������ �����

ridge�age� ecog�ps� theta � ����� ������ ����� ������ ������ �����

p

rx ������

ridge�age� ecog�ps� theta � ����� ������

ridge�age� ecog�ps� theta � ����� ������

��



One improvement to our function would be better variable names� The printout is

so wide that the column for p�values has wrapped onto a new line� �In the earlier

part of the paper row labels were edited�� Another improvement is to scale the

penalty for each variable by it�s variance� so that the function will be invariant to

the units of the data� the current �t would change if age were given in days� for

instance� To accomplish the scaling� we need to pass through the variances of the

terms as another argument to the penalty function�

pfun�ridge �� function�coef� theta� nevent� vars� f

list�penalty� sum�coef	�
vars� 
 theta���

first � theta
coef
vars�

second � theta
vars�

flag�F�

g

The changes to the control function are only a bit more complicated�

ridge �� function����� theta��� f

x �� cbind�����

xname �� as�character�parse�text�substitute�cbind������������

vars �� apply�x� �� function�z� var�z��is�na�z����

class�x� �� �coxph�penalty�

temp �� list� pfun� pfun�ridge�

cfun� cfun�ridge�

diag� T�

cparm� list�theta�theta��

pparm� vars�

varname�paste��ridge��� xname� ���� sep�����

attributes�x� �� c�attributes�x�� temp�

x

g

There are three basic changes� an improved variable name is returned as the varname

attribute� the variances of the columns are passed as the pparm vector� and then those

variances are used to scale the penalty function� The code to create the variable

names is somewhat tricky �the idea is borrowed from the data�frame function��

Normally� the 
input� representation of a function argument x is obtained with

deparse�substitue�x��� but in this case the expression only returns 
����� We use

one more level of indirection� 
���� is passed to cbind as the expanded list� substitute

returns the single character string 
cbind�age� ecog�ps��� and parse is used to break

this expression into its � parts�

��



The result is both more useful and more pleasant to read�


 coxph�Surv�futime� fustat� � rx � ridge�age� ecog�ps� theta�����

data�ovarian�

coef exp�coef� se�coef� se� z p

rx ������ ����� ������ ������ ������ �������

ridge�age� ����� ����� ������ ������ ����� �������

ridge�ecog�ps� ����� ����� ������ ������ ����� �������

Iterations� � outer� � Newton�Raphson

Degrees of freedom for terms� ��� ���

Likelihood ratio test����� on ���� df� p�������� n� ��

C�� Psplines

As in the ridge regression example� we need to pass 
extra� information to the

penalty function� in this case the penalty matrix P �

pfun�ps �� function�coef� theta� nevent� P� f

if �theta 
��� list�penalty����theta�� flag�T�

else f

if �theta ���� lambda ��

else lambda �� �nevent�length�theta��
 theta��� � ���theta����

list�penalty� c�coef �
� P �
� coef� 
 lambda ���

first � c�P �
� coef� 
 lambda�

second � c�P
lambda��

flag�F�

g

g

The penalty function is quite simple� The �rst new feature is special handling for

� 
 �� which leads to an in�nite penalty and could cause an arithmetic exception

in the underlying C code if not �agged� The �rst and second derivatives are never

referenced by the underlying code in this case� so no values are needed� Secondly� we

added some safety checks for illegal values of the tuning parameter �� �The control

function should� of course� never suggest such a value�� Last� we have in this case

decided to scale the penalty� The partial likelihood in a Cox model is proportional

to the number of deaths� and the penalty function is roughly proportional to the

number of terms� the initial constant will make �ts with the same number of degrees

of freedom� but di	erent sample sizes or number of terms in the p�spline basis� have

similar sized � values� Of course the data plays a large role as well� for a �xed �

��



a truely curvilinear variable will optimize the PPL at a larger degrees of freedom

than one with a near linear relationship�

The function which appears in the user�s model statment is

pspline �� function�x� theta� df��� nterm����
df� degree���

eps���� f

if ��missing�theta�� f

if �theta ��� �� theta 
��� stop��Invalid value for theta��

g

else if �df ���� f

method �� �aic�

nterm �� ��  will be ok for up to ��� df

if �missing�eps�� eps �� �e��

g

else f

method �� �df�

if �df ���� stop ��Too few degrees of freedom��

g

xname �� deparse�substitute�x��

keepx �� �is�na�x�

rx �� range�x�keepx��

nterm �� round�nterm�

if �nterm � �� stop��Too few basis functions��

if �df �� differ��� stop��Too few degrees of freedom��

dx �� �rx��� � rx�����nterm

knots �� c�rx��� � dx
���degree���nterm����� rx���� dx
���degree��

if �all�keepx�� newx �� spline�des�knots� x� degree����design

else

temp �� spline�des�knots� x�keepx�� degree����design

newx �� matrix�NA� length�x�� ncol�temp��

newx�keepx�� �� temp

newx �� newx�����  redundant coefficient

class�newx� �� �coxph�penalty�

nvar �� �� ncol�newx�  should be nterm � degree

dmat �� diag�nvar�

dmat �� apply�dmat� �� diff� �� ��

P �� t�dmat� �
� dmat

P �� P�������  rows corresponding to the � coef

xnames ��paste��ps��� xname� ���� ��nvar� sep����

��



if �method���fixed�� f

temp �� list�pfun�pfun�ps�

printfun�printfun�ps�

pparm�dmat�

diag �F�

cparm�list�theta�theta��

varname�xnames�

cfun � function�parms� iter� old�

list�theta�parms�theta� done�T��

g

else if �method���df�� f

temp �� list�pfun�pfun�ps�

printfun�printfun�ps�

diag �F�

cargs���df���

cparm�list�df�df� eps�eps� thetas�c������

dfs�c��� nterm�� guess�� � df�nterm� �����

pparm� dmat�

varname�xnames�

cfun � frailty�controldf�

g

else f  use AIC

temp �� list�pfun�pfun�ps�

printfun�printfun�ps�

pparm�dmat�

diag �F�

cargs � c��status�� �df�� �plik���

cparm�list�eps�eps� init�c���� �����

lower��� upper��� �����

varname�xnames�

cfun � frailty�controlaic�

g

attributes�newx� �� c�attributes�newx�� temp�

newx

g

� The �rst few lines do some error checking�

� The next lines create the matrix of basis functions� This is essentially a reprise

of the pspl function shown earlier� with signi�cant nuisance value added by

the possibility of missing values� The pspline function is called before the

��



removal of missing values from the data frame by the na�omit function� Thus

it must allow for� and propogate� missings�

� The next three lines create the penalty matrix P �

� If � is �xed� then the control function needs only to set the initial value and

signal completion� similarly to the ridge regression example above� If the user

has set the degrees of freedom� then a calibration function is required� if AIC

then the AIC control function� In the latter � cases some initial values for the

functions are supplied in cparms�

� Some special control for printing has been added�

The �rst three arguments to the control function are always the parameter vector

given by cparms� the iteration number� and the list returned by the control function

from its last call �this allows storage of local variables without using fancy frame
�

tricks�� There may be further arguments� the cargs parameter is used above to

signal that the estimated degrees of freedom for the current term� at the current

values of the �tted parameters� should be added as a fourth argument by the parent

routine when frailty�controldf is called� Allowable 
extra� arguments are

� coef� The coe�cients for the term

� df� The degrees of freedom for the term

� x� The columns of the X matrix for this term

� status� The vector of status �censoring� values

� plik� The current value of the partial likelihood PL

� loglik� The penalized partial likelihood PPL

� trH� trace��H������� used for the REML Gaussian�

The last � of these are used by the frailty functions� �Others may be added to this

list in later versions of the program��

Here are the �rst lines of the calibration function

frailty�controldf �� function�parms� iter� old� df� f

if �iter���� f

theta �� parms�guess

theta��� �� �parms�nterm �parms�df���parms�nterm���

return�list�theta�theta� done�F�

thetas�parms�thetas� dfs�parms�dfs�

��



g

done �� �iter
� !!

�abs�df�parms�df� � parms�eps��

thetas �� c�old�thetas� old�theta�

dfs �� c�old�dfs� df�

newtheta �� newguess�thetas� dfs� parms�df�

list�theta�theta� done�done� thetas�thetas� dfs�dfs�

g

The control function has � steps� First� it maintains two vectors thetas and dfs

that contain the history of guesses so far� The return values of the function are the

next guess at �� a �ag� and these history lists� The �nal return value is included in

the coxph output as the history component in the �nal model object� should the

user want to examine them�

Second� at iteration �� it returns a �rst guess for � along with initial values for

the thetas and dfs vectors based on input parameters� In the pspline function�

these were set based on the known fact that � 
 �� � correspond to nterms and �

degree of freedom� respectively� and a linear interpolation between these two for the

�rst guess at a solution�

Third� if this is not iteration �� then the function checks to see whether it has

�nished iteration� by comparing df �the value resulting from this function�s last

guess at �� to the target value parms�df�

Last� whether the �t has completed or not� the routine obtains a next guess at

�� The reason for this is that there may be multiple penalized terms in the model�

and iteration may need to continue even though this particular term has converged

successfully� If that is the case� a new guess at � is required by the parent routine�

and it might as well be a good one� The newguess function is a simple interpolation

method and will not be listed�

The print function is shown below�

printfun �� function�coef� var� var�� df� history� cbase�

test� �� coxph�wtest�var� coef��test

 cbase contains the centers of the basis functions

 do a weighted regression of these on the coefs to get a slope

xmat �� cbind��� cbase�

xsig �� coxph�wtest�var� xmat��solve  V X � where V � g�inverse�var�

cmat �� coxph�wtest�t�xmat��
� xsig� t�xsig���solve����  �X�VX�	�� X�V

linear �� sum�cmat 
 coef�

lvar� �� c�cmat �
� var �
� cmat�

��



lvar� �� c�cmat �
� var��
� cmat�

test� �� linear	� � lvar�

cmat �� rbind�c�linear� sqrt�lvar��� sqrt�lvar���

test�� �� ��pchisq�test�� ����

c�NA� NA� NA� test��test�� df���

��pchisq�test��test�� df�����

dimnames�cmat� �� list�c��linear�� �nonlin��� NULL�

theta �� history�thetas�length�history�thetas��

list�coef�cmat� history�paste��Theta��� format�theta���

printfun����� �� knots���nvar� � �rx��� � knots����

This function will be passed along as part of the output structure� and then

invoked by the coxph print routine at the time that a result is displayed� It is

called with the coe�cients that correspond to the penalized term� along with the

appropriate portions of the H�� and V matrices� the degrees of freedom for the

term� and the history structure for the term �the last return values of the control

function��

The routine returns two peices of output� one or more lines to be inserted into

the printed table of coe�cents� and an optional line of further information that is

printed just below the iteration count for the model� The �rst object must be a

matrix or a vector� and �t into the table� It therefore has � elements or columns�

which will list under the headings of 
coef�� 
std�coef��� 
std��� 
Chisq�� 
DF��

and 
p�� Missing values will be printed as blanks�

For the second part of the printout� this function lists the �nal value of �� Note

that this is not the value of history�theta� which contains the next value of � that

would have been tried� had iteration continued�

For the �coe�cient� printout� we have decided to print tests of the linear and

nonlinear portions of the �t� Because of the nature of our pspline basis functions�

any evenly spaced contrast vector c would give the same �� statistic and p�value for

the test of linearity� The test of non�linearity is de�ned as the di	erence between

the overall test for non�zero coe�cients and the linear portion �test� � test��� As

a coe�cient for the linear test� we have printed an approximation to the �t of a

simple linear term� Consider the least�squares line through the �tted coe�cients�

The base of the line is the x�coordinates of the centers of the basis functions� which

are evenly spaced over the range of x� the vector cbase above� The coe�cients

are not independent� i�e�� var is not diagonal� so the formula for the �tted line

is a weighted linear regression� The coxph�wtest function is similar to the S�Plus

solve function� Because it assumes that its �rst argument is symmetric it can use

the relatively fast Cholesky decomposition to compute the result �exactly the same

��



routines as used by coxph�� but more importantly� the routine does not fail for

singular matrices� rather it produces a generalized inverse solution�

The last line is more S�Plus magic� At the time the print function is invoked

the range of x will no longer be available� only the �static� function de�nition� This

line changes the function so that the range of x� known at the time of function

de�nition� becomes the default value for argument ��

C�� Frailty

Here is the penalty function for gamma frailties�

pfun�gfrail �� function�coef� theta� nevent� f

if �theta���� list�recenter��� penalty��� flag�T�

else f

recenter �� log�mean�exp�coef���

coef �� coef � recenter

nu �� ��theta

list�recenter � recenter�

first� �exp�coef� ��� 
nu�

second� exp�coef� 
 nu�

penalty� �sum�coef� 
nu�

flag�F�

g

g

The �rst thing you might notice is that the penalty function is missing a portion�

�

P
exp�
�� � 
 log�
�� log�!�
��� In line with the concerns found in section ����

it is better to combine these terms with the Lg corrections� The function below

computes the overall correction term along with the missing PLL term from pfun

frailty�gammacon �� function�d� nu� f

nfrail �� length�d�

maxd �� max�d�

if �nu 
 �e�
maxd� term� �� sum�d
d��nu  second order Taylor series

else term� �� sum�d � nu
log�nu��nu�d���

tbl �� table�factor�d�d
��� levels���maxd��

ctbl�� rev�cumsum�rev�tbl���

dlev�� ��maxd

term��numerator �� nu � rep�dlev��� ctbl�

term��denom �� nu � rep�dlev� tbl
dlev�

term� �� sum�log�term��numerator�term��denom��

��



term� � term�

g

Term� is formula �� and the term � approximation is based on a Taylor series for

the logarithm�

The penalty function has one important addition over previous examples� A

frailty terms adds a set of indicator variables to the model� one indicator per �family��

Since each subject has one and only one of these indicators equal to �� the set of

coe�cients � for the indicators could be replaced by ��c for any constant c without

changing the value of the Cox partial likelihood PL� The second term in the penalty



P
��i�c�exp�gammai�c�� is minimized when exp�c� 
 mean exp�gamma�� This

is true trivially for the starting estimate � 
 �� and under full Newton�Raphson

iteration it remains true at each iteration �within numerical precision�� We stated

earlier that the Newton�Raphson iteration preserves the identity E��i� 
 �� which

is the same statement� When using routines based on a sparse approximation this

is no longer algebraicly true� One function of the penalty routine is to recenter the

coe�cient vector so that the identity does hold� Doing so signi�cantly speeds the

convergence of the algorithm�

frailty�gamma �� function�x� sparse�T� theta� df� eps��e���

method�c��em�� �aic�� �df�� �fixed�� ���� f

if �sparse�f

x ��as�numeric�as�factor�x��

class�x� �� �coxph�penalty�

g

else f

x �� as�factor�x�

class�x� �� c��coxph�penalty�� �factor��

attr�x��contrasts�� �� function�n����� contr�treatment�n�F�

g

if �missing�method��

if ��missing�theta��

method �� �fixed�

if ��missing�df��

stop��Cannot give both a df and theta argument��

else if ��missing�df�� method �� �df�

method �� match�arg�method�

��



if �method���em��

temp �� list�pfun�pfun�

printfun�printfun�

diag �T�

sparse� sparse�

cargs � c��x�� �status�� �loglik���

cfun � frailty�controlgam�

cparm� c�list�eps�eps�� �����

else if �method���aic��

temp �� list�pfun�pfun�

printfun�printfun�

diag �T�

sparse� sparse�

cargs � c��x�� �status�� �loglik�� �df�� �plik���

cparm�list�eps�eps� lower��� init�c���� ��� �����

cfun �function�opt� iter� old� x� status� loglik�����

temp �� frailty�controlaic�opt� iter� old� status�����

if �iter 
��

 compute correction to the loglik

if �old�theta���� correct �� �

else

if �is�matrix�x��

x ��c�x �
� ��ncol�x��

d �� tapply�status�x�sum�

correct �� frailty�gammacon�d� ��old�theta�

temp�c�loglik �� loglik � correct

temp

�

else etc���

attributes�x� �� c�attributes�x�� temp�

x

g

The routine accomodates � options� The AIC solution uses the same control

function as for splines� but adds one more piece of information to the returned list�

namely the marginal likelihood Lg for a gamma model� If sparse�F then x will be

the matrix of indicator variables� otherwise a vector containing the grouping code�

��



the function to compute the correction term needs a vector containing the number

of events in each group�

The solution for method��df� and fixed are similar to those for splines� and are

not shown�

If method
em then the actual frailty problem is solved� using a pro�le likelihood

search for �� The frailty�controlgam program has only a few variations on the prior

code that has been listed� Since almost all problems seen to date have a �nal value

in ������ so � and � are used as the �rst two guesses for the frailty� Guesses at �� ��

�� � � � are then tried until the solution has been bracketed� Once that has occured�

Brent�s algorithm ���� is used to perform the search for a maximizing value of ��

D Internal calls

For certain applications� it may be more useful to call the �tting function coxpenal�fit

directly� for instance if a single penalization is to be applied across several terms

of the model� This routine solves penalized models for both right censored and

�start� stop� survival data� The arguments to the function are the same as those to

coxph��t� with three additions� pcols� pattr and assign�

The third argument assign may be omitted� in which case the assign attribute

of the X matrix is assumed� It is simply a list which groups the columns of the X

matrix into an arbitrary collection of �terms�� and gives names to each term� The

df component of the returned �t has one value per term� containing the degrees of

freedom for that term�

The pcols argument is similar to assign� and must be a strict subset of it� Each

of the terms given in pcols will be penalized with a separate penalty function�

The pattr list contains most of the essential information� This list has one

element for each term identi�ed in pcols� and that element is itself a list with the

following components�

� pfun� the penalty function

� cfun� the control function

� sparse� whether the term is to be solved using sparse methods

� diag� whether the penalty function is diagonal

� cargs� pparm� cparm� argument lists

� printfun� an optional print function

��



Each of these has been described in the earlier section�

If a term is sparse� then it must correspond to a single column of the X matrix

which contains the group indices � $ number of groups� No other contraints are

made on X � The numerical optimizer can deal with only � sparse term�

The return value of the function contains the same components as that for

coxph�fit� with these additions�

� var�� The alternate variance estimator H��IH���

� iter� The iter vector is of length �� containing the number of outer iterations

used by the control function� and the total number of Newton�Raphson steps�

� frail� If there was a sparse term� its coe�cients are here rather than in the

coe�cient vector�

� fvar� Approximate variances for the sparse term�

� df� Degrees of freedom for each term�

� penalty� The value of the penalty function at the initial and �nal iterations�

� pterms� A vector of the same length as assign� with the code �
ordinary

term� �
penalized term� �
sparse penalized term�

� assign�� The assign component� minus the response and sparse terms� It is

useful for printing because of it maps the coe�cient vector�

� history� A list with one component per penalized term� Each component is a

list� containing the last returned value of the control function for that term�

� printfun� The optional list of print functions�
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