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Abstract

The concordance statistic is used to measure the amount of agreement
between two variables, often a risk score and time until an event in survival
analysis. Surprisingly, the concordance statistic is a score statistic from
a Cox model with a time varying coefficient. This relationship connects
the literature on the concordance statistic and Cox model, specifically
non-parametric techniques for survival analysis with time weighted Cox
models. We also discuss the sensitivity of the concordance statistic with
respect to the censoring distribution and introduce robust variance esti-
mators for both the concordance statistic as well as comparisons between
two correlated concordance statistics.

1 Introduction

The concordance between two variables X and Y is an old idea in statistics [4].
Two observed pairs (z;,y;) and (z;,y;) are said to be concordant if x and y
have the same ordering, that is, either {z; < z;,y; <y,} or {z; > z;,y; > y;}.
A concordance statistic is the proportion of all possible pairs in a sample that
are concordant:

Zi;ﬁj oz <xj,y <y} + o >,y > y5 )
(n—1)2

where 1{-} is an indicator function and n is the sample size. Variations on
the statistic handle ties in different ways, sometimes counting them as half a
concordant pair and sometimes ignoring them.

In survival analyses, some event times are unobserved or right censored, com-
plicating the notion of a concordant pair because not all pairs can be ordered.
We consider a set of n subjects followed forward from time ¢ = 0 until an event
of interest occurs (e.g., death). The response for each subject is represented as
a pair (t,9) where survival time ¢ is either the event time, if it was observed,
or the last known time at which the event had not yet occurred and § = 1 if
the event was observed and 0 otherwise (i.e., censored). Due to censoring, some
pairs of survival times will be incomparable, for example a censored observation
at 10 years and an event time at 12 years.

In such situations, [5] modified the concordance statistic to only consider
comparable pairs. As a convenience, define the function K (¢,7) to be 1 if event
time of subject i is known to be smaller than event time of subject j and 0
otherwise, that is

= 1{6; = 1} [1{t; < t;} + L{t; =t;,6; = 0}]

The second indicator function addresses ties and follows the convention used
in other survival methods that if subject j is censored at the same time that
subject ¢ has an event, then subject j has a longer event time than subject .
Other definitions do not consider such ties ordered [15].



[5] defined the concordance as the fraction of all the ordered time pairs (i.e.,
all 7 and j such that K(i,5) = 1 or K(j,4) = 1) in which the risk score, z,
correctly predicts the order. Let 7 be an upper time limit for comparison, for
instance in advanced cancer any survival beyond five years might represent a
cure and thus the relative ordering of any times beyond that point are uninter-
esting. The concordance statistic C' is

2oigg Mt <T}K(J) [ > a5} + Hai = 5}/2)
>z Hts < T}K(i, j) .

Pairs where the risk score is tied count as half of an agreement, and tied event
times are not counted as comparable and appear in neither the numerator nor
denominator (these conventions are analogous to the AUC in logistic regression).
For a Cox model, higher risk scores predict shorter event times, so C' inverts the
standard definition of concordance. Values of C range from 0 to 1 indicating
a perfectly discordant to concordant risk score, and a value of 1/2 indicates
the risk score is independent of the event times. The concordance statistic has
become increasingly popular as a summary statistic for survival analyses, with
recent work by [6], [14], [7], [24], and [15].

We show in the next section that the concordance statistic can be written
as a sum over the distinct event times, where only the individuals still at risk
contribute to the statistic. Rewriting the statistic in this way leads to many
connections to the literature on survival analysis. Foremost, the concordance
statistic is a score statistic from a Cox model with time varying covariates (Sec-
tion 3.1). This realization relates the concordance statistic to previous work on
rank transformations and time-weighted Cox models (Section 3.2). Moreover,
in the two sample case (i.e., x = 0, 1), it leads to a connection between concor-
dance and the Gehan-Wilcoxon test (Section 4.1), and this insight suggests a
new class of concordance statistics with time-dependent weights (Section 4.2).
Our reformulation suggests variance estimators for the concordance statistic
(Section 4.3) and the difference between two correlated concordance statistics
(Section 4.4).

C = (1)

2 Efficient computation

The obvious way to compute the concordance is to consider and rank all pairs
of observations, which is a O(n?) computation and can be very slow for large
data sets. Without loss of generality assume that the data has been sorted in
time order such that ¢; < ¢; for all ¢ < j, with events preceding censorings in
the case of tied times. Then K(i,7) = 0 for all ¢ > j and we can then rewrite
the concordance as

Doicy Wi < 7HK(4,5)[1{zi > 25} — {z; > 2;}]

U
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Focusing on the numerator, we have

U= Y6y K(i,j)sign(x; — ;) (2)

iti<T  j>i
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= > 82fri(t:) — 7(t:)] (4)

1t <T
where
-1, z<0
sign(z) = 0, z=0
1, z>0.

Equation (2) rewrites the sum as one term per event time, a common form
for survival statistics. Equation (3) carries this further and writes this term
as a sum over the risk set where R(t) = {j : t; > t} which is the set of all
observations at risk at time ¢. In Equation (4), r;(¢) is the rank of x; among
all risk scores for those still at risk at time ¢ and 7(¢) is the average of these
ranks. The proof for these steps with further extensions to case weights is given
in Appendix A of the supplementary materials.

Computation of Equation (4) requires ranking each observation within the
risk set at each event time. This task is analogous to the problem of maintaining
an ordered list as elements are added and removed from it and has a rich history
in the computing literature on binary search trees. Using these methods, [12]
computed C with computational time of O(nlog, n). Whereas [12] applied this
approach directly to Equation (1), the advantage of our reformulation is that it
facilitates comparison to other statistical methods.

3 Cox model

3.1 Concordance as score statistic

The most surprising connection comes from realizing that Equation (4) is pre-
cisely the score statistic for a Cox model [1] with time-dependent covariate r(t),
namely the rank of the risk score, x, within the current risk set at time ¢. The
(unstandardized) score statistic for the Cox model with a time-varying covariate
z(t) is

L  2jerq) %iti) explz; (1) ]
Zi:él i(t) Y ere,) bz ()] ]

= dilai(t) — 2(t)],
g=0 i
and letting z(t) = 2r(t) exactly recovers Equation (4). When there are tied

death times, the appendix verifies that Equation (4) matches the Breslow ap-
proximation for ties.



Equivalently, we can let 77 (t) = r;(¢t)/n(t) be the scaled ranks where n(t) is
the number of subjects still at risk at time ¢. Equation (4) can be rewritten as
a time-weighted sum

U= Z d:2n(t:) [ri (t) — 7 (t)] - (5)

Thus, we can also interpret U as a the score statistic of a time-weighted Cox
model using the scaled ranks of the risk score, r*(¢), as a time-dependent co-
variate and event time weights of n(¢). Both of these interpretations lead to
interesting connections to previous work and suggest some interesting exten-
sions.

3.2 Rank transformations and time-weighted Cox models

We relate the concordance statistic to previous work on scaled rank transfor-
mations and time-weighted Cox models, two ideas that have been considered
separately in the literature on survival analysis.

[13] proposed a modification to the single covariate Cox model as a way to
protect against outliers in x by reranking the covariate at each individual event
time. The suggested statistic uses the sum of the logit transformed scaled ranks
(which have expectation 0 under the null hypothesis): . d;logit(r}(¢;)). In
practice, the final logit transform has little impact on the statistical properties
of the O’Brien test, similar to the what is seen between a rank-sum and nor-
mal scores test [8]. Thus the primary difference between the concordance and
O’Brien’s test statistic is that the former weights each event by n(t) and the
latter weights events evenly.

[11], [21], [18], and [20] discuss time-weighted Cox regression, in particular
for assessing and handling non-proportional hazards. If we apply this method
with the time-dependent scaled ranks r*(¢) as the covariate and using event
time weight of n(t), their score statistic is exactly U of Equation (5). The
scaled ranks (compared to unscaled) behave more like a typical covariate in a
Cox model. For instance, the resulting score statistic has 7*(¢) = 1/2, which is
similar to the usual Cox models where Z(¢) normally has only small variation over
time. Although previous work on time-weighted Cox models focused primarily
on time fixed covariates, often baseline scaled ranks, r*(0), are very similar to
time-dependent scaled ranks, r*(¢), which we show with the following example.

Example 3.1. The lung cancer dataset included in the survival package in
R consists of 228 patients enrolled in chemotherapy trials for advanced disease
[23]. We fit a simple Cox model for the time until death with predictors age,
sex, and patient’s assessment of their own Karnofsky score. Figure 1 shows that
the time-dependent scaled ranks of the risk score contribute approximately the
same as the baseline (or time fixed) ranks to the respective score statistics.

In light of this previous work, we can view the concordance statistic as a
combination of a time-weighted Cox model on the rank transformed risk score.
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Figure 1: Contribution to score statistic for time-dependent scaled ranks,
ri(t;) —7*(t;), versus baseline scaled ranks, r¥(0) —7*(0). Solid line is 45 degree
line.



4 Additional connections

4.1 Two sample rank tests

It is well known that for a binary covariate the score test of the Cox model is
equivalent to a log rank test. Moreover, allowing for a time-dependent weights
leads to a whole class of rank tests that compare the number of the observed
events to expected events under the null hypothesis at each event time, that is
a test statistic

ng1dg }

Viw=> Wg|di —
Wzk:k{kl "

where the sum is over all distinct event times, di; and dj are the number of
events at the kth event time in group 1 and overall respectively, nix and ny are
the number of individuals at risk at the kth event time in group 1 and overall
respectively, and Wy is some time-dependent weighting function. Under the null
hypothesis that the two groups have identical survival functions, standardized
Vi is asymptotically a standard normal random variable. Letting Wy = 1,
as mentioned, produces the log rank test. A weight of W), = nj produces the
Gehan-Wilcoxon test and this test statistic is in fact the same as U for a binary
risk score (for details see Appendix B of the supplementary materials); that is,
the Gehan-Wilcoxon test statistic is the concordance statistic.

[16] and [17] showed theoretical and substantive examples respectively of how
the censoring distribution can adversely affect the Gehan-Wilcoxon statistic.
Heuristically, letting S(¢) and G(t) be the underlying survival functions of the
time until event and censoring respectively, if event times and censoring times
are independent then E[n(t)] o< S(t)G(t). Thus n(t) depends on the censoring
distribution, which may differ across studies or between groups. In particular,
heavy censoring puts much of the weight on early events. [16] suggested a weight
of W(t) = S(t), an estimate of the survival function of the event times. Several
variants have been explored; for an overview, see Section 7.3 of [10].

(6)

4.2 Time-weighted concordance

The same criticism of the Gehan-Wilcoxon test should also apply to the concor-
dance statistic, which implicitly weights the scaled ranks by n(t). The general
form of the rank test suggests a new class of concordance statistics with a choice
of time-dependent weights. In particular, let

Uw = Y 82W(t)[ri (t:) =7 ()],  Dw =) W(ti)w’

ity <T it <T n(tl)

where d(t) is the number of events at time ¢. For Dy, a similar argument to
Equations (2)—(4) shows subject 4 contributes ;[n(¢;) — d(¢;)] to the sum of D,
and in order to generalize for time-dependent weights, each term is multiplied
and divided by W (t;) and n(t;) respectively. The time-weighted concordance



0.3 0.517
sSG A
SG 0.3 0.516
g n/G 2.4 0.554
S 2.4 0.555
G2 4.4 0.538
sig MG
/ S/G 4.4 0.541

Table 1: Two sample test statistics and concordance for different weights for
the data in Example 4.1

measure Cyy with weight W () is
Uy 1

Cw = Dy + 5"

[24] first proposed a time-weighted concordance statistic in order to make the
resulting measure robust to different censoring patterns; in particular, a weight
of W(t) = n(t)G(t)~? is recommended where G(t) is an estimate of the survival
function of the censoring distribution. The weighted concordance statistic of
[24] is written in a form similar to the definition in Equation (1) and does not
explicitly include a factor of n(t) in the weight, but we see this factor implicitly
applies from Equation (5). Again as a heuristic, E[n(t)G(t)"2] o< S(t)G(t)"!. A
weight of W (t) = S(t)G(t)~" is recommended by [20], but for the time-weighted
Cox model.

In the presence of no censoring, E[n(t)] « S(t), which suggests a weight
proportional to (an estimate of) the survival function of the event times. In-
deed, this is the recommendation of [16] for their rank test. We explore the
weighted concordance with weights that are proportional to S(t)G(¢), S(t), and
S(t)G(t)~! with a substantive example and simulations.

Example 4.1. [17] reported data on time until developing cancer for 281 dogs
that either did or did not receive a marrow transplant and total body irradiation.
This data suffers from extreme censoring and provides a substantive example
of a disparity between the Gehan and Peto generalizations of the Wilcoxon
rank-sum test. The test and concordance statistics are provided in Table 1 and
the weights for each event time are plotted in Figure 2. Weights proportional
to SG, which the concordance statistic implicitly use, put much of the weight
at early time points. In contrast, the weights proportional to S/G heavily
weight the later times and become slightly erratic near the end due to extreme
censoring. Interestingly, these weights provide the largest (and most significant)
test statistic, but this significance does not translate into the largest concordance
statistic.

Example 4.2. We consider a simulation to demonstrate potential disparities
in the weighted concordance. The risk score, which is distributed as a standard



Figure 2: Weights at different event times for the data in Example 4.1. Weights
are normalized to sum to 1.
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normal random variable, only differentiates longer event times, specifically after
one year. A quarter of the sample of size n = 200 is followed until an event
is observed, but the remaining three quarters are heavily censored early. The
survival functions of the event and censoring times are plotted in dashed and
solid lines respectively in Figure 3. The uncensored concordance is 0.77 and
the simulated averages of the weighted concordances for weights proportional
to SG, S, and S/G are 0.67, 0.72, and 0.77. Clearly, the standard concordance
statistic, with a weight proportional to SG, is biased for this model where as
the weights proportional to S/G work well.

and the weights proportional to S/G perform the best with slight positive
bias. Under the conditionally independent censoring mechanism, all weights
underestimate the uncensored concordance, though again weights proportional
to S/G were the least biased.

The theory for the weight n/G? recommended in [24] assumes that the cen-
soring distribution is independent of the event distribution and risk score. If this



Figure 3: Survival curves for event and censoring times for simulation in Ex-
ample 4.2. Survival curves for event times are dashed and dotted lines for low
(x = —1), medium (z = 0), and high risk (x = 1) risk scores. The solid line is
the censoring distribution.
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assumption is violated, [3] suggests weighting with an estimate of the censoring
distribution that conditions on the risk score.

The first factor of 1/G accounts for the fact that there would have been
more terms in the sum without censoring, and the second for the fact that n(t)
would be larger within each term. Replacing n(t) with G(t)S(¢) leads to score
statistic of Schemper, showing a close relationship between the two approaches.

4.3 Variance estimation

A natural estimate of the variance of U, and thus for concordance C' as well, is
to use the variance of the Cox score statistic, that is the observed information
evaluated at § = 0. For the Cox model, this estimate is simply the sum of the
variances of the ranks, r(t), over the risk set at each event time. The resulting
variance estimator is

~ 1 Ty t1'2 _
o= gp | 3 O -

JER(ts)
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Prop. to  Weight Independent  Cond. indep.

censoring censoring

0.55 0.57

SG A
SG 0.55 0.57
g n/G 0.58 0.58
S 0.58 0.58
G2 0.63 0.59

sia "G
/ S/G 0.63 0.59

Table 2: Simulated expectations of weighted concordance statistics under an
independent and conditionally independent censoring distribution. Expected
value of the concordance statistic without censoring is 0.62. All Monte Carlo
standard errors are less than 1073.

When the risk score is independent of the event time (i.e., 3 = 0 or a true
concordance of 1/2), this variance estimate is correct, so this estimate is appro-
priate for testing whether the concordance is 1/2. However, if the risk score is
associated with the event times, this estimator tends to be an overestimate of
the variance.

When the risk score is associated with the event we would prefer an estima-
tor that is robust to alternatives to the null hypothesis of no association. The
infinitesimal jackknife of [9] offers a robust variance estimator for the Cox model
e.g., see Chapter 7.2 of [22], and thus could work well for the concordance statis-
tic. The results of Section 2 facilitate efficient computation of the infinitesimal
jackknife estimator (formulas are given in Appendix A of the supplementary
materials).

Example 4.3. We show the performance of these variance estimators via sim-
ulation of a sample of size n = 200. The risk score is drawn from a standard
normal distribution. Event times are drawn from an exponential distribution
with mean e~ 7* for 7 > 0. Values of 7 are chosen to correspond to an (un-
censored) concordance of approximately 0.5, 0.55, ..., 0.95. We consider both
no censoring and exponentially distributed censoring times with mean 2. Esti-
mated and true standard errors are plotted against the concordance in Figure 4.
The variance of the score statistic is correct for a concordance of 0.5, but over-
estimates the variance for larger values. The infinitesimal jackknife has little
bias.

Other estimates of the variance have been proposed in [14] and [12]. Future
work should assess these variance estimators, including frequency properties and
computational complexity.

4.4 Comparing correlated concordances

A reasonable comparison of two risk scores is the difference of the resulting con-
cordance statistics. The results from the previous section on the infinitesimal

11



Figure 4: Simulated results of Example 4.3: true standard errors (squares) and
estimated standard errors via the variance of the score statistic (circles) and
infinitesimal jackknife (triangles) for uncensored (solid line) and censored data
(dashed line). All Monte Carlo standard errors are less than 0.005.
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jackknife are easily extended to estimating the variance of the difference of two
(potentially correlated) concordance statistics (see Appendix A of supplemen-
tary materials or details). The resulting variance estimator is comparable to
the results of [2] for the AUC based on U-statistics theory because the resulting
variance estimators from the infinitesimal jackknife and asymptotic U-statistic
theory are identical [19].

Example 4.4. We revisit the dataset from Example 3.1 to compare the con-
cordance statistic from risk scores from two Cox models, one with predictors
age, sex, and patient’s assessment of their own Karnofsky score and the other
with just predictors age and sex. The concordance statistics for the larger and
smaller models are 0.64 and 0.60 respectively. The standard error for the es-
timated difference of 0.04 is 0.02, so the difference is statistically significant at
the 0.05 level. Thus, the improvement in the concordance when including the
Karnofsky score in the Cox model is statistically significant.

12



5 Conclusion

It is a surprising fact that the concordance statistic is the score statistic from
a Cox model. This realization helps in understanding previous work showing
the dependence of the concordance statistic on the censoring distribution [24]
and provides easy to compute variance estimators for the concordance statistic.
There are potentially many other connections to explore between the concor-
dance statistic and the Cox model.

13



A Case weights

Define analogous definitions of U and W using case weights, w; (not to be
confused with time-dependent weights, W (t)), as

U=> wd; »  wsign(z; — ;)

i GiK(i,5)=1
D=Yui Y w
i GiK(i,5)=1

If the weights w are positive integers, this is exactly the result obtained by
making a new data set that contains w; copies of individual i.

The step from (2) to (3) is obvious if there are no ties, thus we focus only
on the situation in which ties are present. Consider a and b such that a < b
and t, = tp. If both a and b have events at the observed time, 6, = &, = 1,
then K(a,b) = 0 and this pair does not contribute to the sum of (2). In (3),
when ¢ = a, a term of w,wpsign(x, — xp) contributes to the sum, but it is
cancelled by the term wqwpsign(zy, — x4), which contributes to the sum when
i = b. If individual b is censored, then 6, = 0 and the term wqwpsign(x, — xp)
contributes to the sum in (2). This term also contributes to the sum in (3)
when i = a, and nothing contributes to the sum when ¢ = b because the J; term
zeros the summation over the risk set. Including all tied survival times in the
other’s risk set, that is letting R(¢;) = {j : t; > t;} corresponds to the Breslow
approximation for ties in a Cox model computation.

To see the step from (3) to (4), we define the rank of z; within a set of m
weighted observations as the sum of the weights for all observations with z; less
than z;, plus half the sum of weights for ties, that is

m

T = Z [wjl(sci > x;) + %I(gcZ = xj)]

Jj=1

wj [sign(z; — ;) + 1] /2

|

<
Il
—_

+

I
=
DN | =

m
Z wjsign(x; — ;)
j=1

where 7 = Y w;r;/ > w;, the weighted mean of the ranks. To see the last line,
the numerator of 7 is

2
1 1
Zwiwj +Zw?/2 = Zwiwj/2+2w?/2 = 5221011% il lZw,]
1<j ) i#] ) i J %

and thus 7 = Y w;/2. This justifies the transition from (3) to (4), or more
generally, U = >, w;0;2[r;(t;) — 7(t;)]. When all the weights are 1 the ranks
defined above are 0.5, 1.5, 2.5, ..., rather than the more usual 1, 2, 3, ..., but
this convention makes no difference for Equation (4).

14



Introducing case weights, in addition to their obvious use, facilitates the
derivation of the variance estimator via the infinitesimal jackknife [9]. The
variance estimator is

- aC\? DU} - UD}\”
Vijkzzwz‘(awi) Zzwi (2D2 )

where

U = ou Z w;dsign(z; — ;) — Z wjd;sign(z; — x;)

T ow, L | L
J:K(4,5)=1 7:K(j,4)=1
oD
D; = Ow, = Z wjéi — Z wjdj.
K (iy)=1 §iK(5,1)=1

The above abuse of notation means evaluate the partial derivative of the con-
cordance at the specified weights. The second sum on the right hand side of U]
compares z; to all x; for which 7 is at risk at time ¢; (and not a tied event).
Using similar arguments as above, U/ can be rewritten in terms of ranks over
the risk set and event set (i.e., the observed events up to a specified time). Com-
puting ‘A/ijk can be implemented in O(n log, n) computational time using binary
search trees.

Now suppose we want to compare two concordance statistics from two risk
scores fit to the same dataset, that is C,, = (U, /D +1)/2 where v = 1,2 denotes
the risk score and noting D is the same for both risk scores. The infinitesimal
jackknife variance estimator of the difference Cy — C5 is

Vo = ;wi {a(cl - 02)} 2 Y [D(U{i —Ub) — (Uy — Uy) D17 .

awi - l 2D2

%

B Binary risk score

We show for a binary risk score, that is x = 1 for high risk subjects and z = 0
otherwise, U of Equation (6) equals Z of Equation (5) when Wy = ny, that is
the Gehan-Wilcoxon test statistic. For this section, we assume all survival times
are unique. For individual ¢ corresponding to the kth event, it suffices to show

2n(t:)[r; (t) = 7 (t)] = mxldu — o ] )
= n(t;)[z; —ni(t:)/n(t:)]

where the second line follows from exchanging the event time index of k for
the individual index of ¢ and n,(t) is the number of individuals at risk in
group x = 0,1 at time ¢t. If z; = 1, then the left hand side of Equation (7)
is 2[ng(t;) +n1(t:)/2 — n(t;)/2] = no(t;). Similarly, if x; = 0, then the left hand
side of Equation (7) is 2[ng(t)/2—n(t)/2] = —n1(t;). Thus, the Gehan-Wilcoxon
statistic equals U.

15



For variance estimators, similar argument show each term in the sum of VSC
is simply d;n0(t;)n1(t;)/4 and, letting e;(¢) be the number of events in group 1
occurring before time ¢, U/ = ey (t;) — x;e(t;) + d;[xn(t;) —ni(t;)], which can be
plugged into the formula for Vijk.

B.1 The details for Dy
Following similar logic as Equations (2)—(4), we have
D= > 6> K(i,j)= Y dint)—dt),
it <T >t 1t <T

where d(t) is the number if individuals who are have an event at time t. To
generalize the concordance statistic for time weights, we multiply each term by
W (t;) and divide by n(t;). Performing the same operation leads to Dy .

C Derivatives

C—-D= Zwiéi Z wjsign(r; — rj)

t;>t;

C+D+T:Zwi6i Z w;

ti>t;

The first derivatives of these quantities with respect to an arbitrary subject
k are

- D
8087 = Z w;0ksign(ry — rj) — Z w;0jsign(ry — rj) (8)
Wk ti >t t; <tk
7ac—gD+T: Z wjék—i— Z wjéj (9)
Wk by >ty t; <tk
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