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1 Introduction

One of the primary goals of human genetics research is the elucidation of the underlying genetic
architecture of complex disorders or phenotypes such as hypertension. Hypertension is a trait
that relies on the underlying quantitative measure of systolic blood pressure (≥ 140 mmg)
and/or diastolic blood pressure (≥ 90 mmg). In genetic studies the quantitative measure such
as systolic blood pressure of a complex disorder (hypertension) will provide more information
than its categorized measure (e.g., yes/no). Thus, our goal is the linkage analysis of quantitative
phenotypes or traits.

In contrast to simple Mendelian disorders that result from a mutation in a single gene
(Huntington’s Disease), complex phenotypes are the product of the action of multiple genes and
environmental factors as well as their interactions. If genetic factors influence inter-individual
variability of a trait, identifying the specific factors involved is a major goal of most current
genetic studies. Although some environmental factors can be observed directly and modeled
as fixed effects, genetic effects are typically unobservable. To identify the total proportion of
variance that can be attributed to genetic factors, mixed linear models, path analysis, and other
methodologies have been developed and applied, as discussed by Thompson and Shaw [47] and
Rao et al. [39]. Although effects from specific alleles at identified genetic loci are usually not
available for the study of quantitative traits, a dense map of microsatellite markers and single
nucleotide polymorphisms (SNP) is currently available for human genome-wide linkage analysis.
These markers usually do not have a direct effect on trait variability, but if they are linked,
co-segregation of the linked markers with a trait locus can be used to partition inter-individual
variability into linked and unlinked components of variance [6].

Some environmental effects can be attributed to known and measurable factors, and a fixed
effects model is appropriate to represent these sources of variability. Other sources of variability,
such as measurement error, reflect an inherently variable process and are specified by a random
effects model. In some cases unmeasurable environmental effects due to factors such as shared
household effect can be modeled as a random effect. Genetic sources of variability can be
modeled as either fixed or random components of variance. Observed effects from specific
alleles at a locus, which are believed to directly affect trait variability, are modeled as fixed
effects. Polygenic effects, which arise from effects of many unlinked loci with unmeasurably
small effects, induce a correlation structure among relatives [26] and are modeled as a random
effect. The effect from a major locus, which by definition has an estimably large effect, can
be modeled as a fixed or random component. If the number of alleles at a locus is known, the
unobservable genetic effects from the locus could be modeled as a fixed effect. Standard models
of qualitative traits, such as being affected by a disease, assume a simple biallelic genetic model.
For many of the quantitative traits that have been characterized at the molecular level, such as
Lp(a), α1 - antitrypsin, and galactosemia, this assumption seems to be invalid, because a large
number of variant alleles are typically observed in those cases. Thus, a random effects model
may be more appropriate for assessing the effects from a genetic factor linked to a marker. If
the genetic effect actually results from a single locus that has two alleles, specifying a random
effects model has been shown in simulation studies to lead to unbiased estimates of the variance
components provided the sample size is large enough and families are not selected through
extreme individuals [9].

For the preliminary evaluation of genetic linkage using quantitative traits, numerous strate-
gies have been developed. The Haseman-Elston (H-E) method is the simplest of these [27]. In
this procedure, the squared difference between trait values from two siblings is regressed upon
the estimated proportion of genes ”identical by descent” (IBD) at a marker locus. In the ab-
sence of linkage, there is no relationship between IBD at the marker locus and the squared pair
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differences. In the presence of linkage, pairs of sibs who share two genes IBD are concordant
for the genetic factor that influences variation in trait levels. Therefore, they show a smaller
squared pair difference than pairs that share no alleles IBD. Thus, a simple test for linkage can
be developed by testing for a negative regression of squared pair differences onto IBD. The H-E
method is easy to apply, has been shown to detect linkage in the presence of non-normally dis-
tributed residual non-genetic variance [11], and has been extended to provide a test for linkage
using multivariate data [8]. Recently, the H-E method was revisited to incorporate the trait
covariance between the two sibling pairs [25]. However, even the ”revisited” method, which
uses the cross-product–rather than the squared difference–in sib trait values, is, in general,
less powerful than VC models [44]. To provide a simpler framework for modeling data from
sibships and extended families and for inclusion of covariates, Hopper and Mathews [28] and
Amos [6] suggested the use of a components of variance approach. The obvious approach of
simply applying standard likelihood theory and assuming a multivariate normal distribution
to model the residual distribution of the phenotypes (after conditioning on fixed effects such
as measurable covariates) in families may not be appropriate if unobservable major genes are
segregating, because this segregation introduces platykurtosis and may skew the distribution
of trait values. Extensive simulations by Amos et al. [9] failed to document significant bias
attributable to the moderate kurtosis introduced by major gene effects, but robust estimation
procedures were preferable when the nongenetic variation was markedly non-normal.

For correlated traits, such as those predicting cardiovascular disease risk, multivariate ap-
proaches for genetic linkage can increase the power and precision of estimators for genetic effects
[15, 40]. For traits influenced by several genetic factors, the specific genetic loci may induce
distinct correlation structures among the measures, so that one can separate the effects of each
genetic locus by multivariate analysis, even though this might not be possible with simple uni-
variate analyses. Finally, multivariate analysis provides a statistically efficient mechanism for
controlling the analysis-wide significance level when there are multiple trait observations for
each subject. In multivariate analysis of quantitative traits, it is not always apparent whether
a variable should be treated as a covariate or as an outcome. For example, in analysis of blood
pressure, body-mass index (BMI), which is a measure of obesity, is often treated as a covariate.
However, if a genetic factor influences both BMI and blood pressure, then adjusting blood pres-
sure for BMI would reduce the effects from the major-genetic locus. Therefore, using methods
that can analyze several traits jointly is essential. Genetic model-free methods [28, 21, 3] are
more easily applied than full likelihood methods, which require modeling the prevalences of
genetic factors along with the parameters to describe the genotype specific phenotype distribu-
tions. In a 2002 article [18], de Andrade and Amos provided an overview of the methodology
currently available for multivariate linkage analysis.

Modeling becomes more complex when observations are recorded over time. Studies in
which one family member is observed over a specific time and variations in outcomes are sought
are commonly called longitudinal. Several authors have developed and reviewed statistical
methods for longitudinal cohort studies (see [23]). For genetic analysis, Province and Rao
[37, 38] used path analysis to estimate the genetic and environmental effects in families in the
presence of temporal trends or time effect, but did not include variance components (VC) to
measure effects from specific genes. Models using structural equations have also been developed
and widely applied in the field of behavioral genetics to twin studies [36], but these models,
primarily directed to the estimation of polygenic and environmental effects, are difficult to use
for studies of large families or extended pedigrees. de Andrade et al. [18] extended the general
linear model framework for longitudinal studies of families observed over a specific period of
time and for which the familial correlation interacts with the temporal correlation.
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This technical report attempts to provide an overview of the theory behind the variance
components approach for analyzing one or more quantitative traits in the face of familial corre-
lation. It also provides an introduction to the S-Plus/R multic library which contains software
to carry out this analysis. Details of the theory, examples, and further directions are combined
together in the rest of this report.

2 Software

2.1 Overview of primary functions

In 1996 MULTIC (Multivariate Analysis for Complex Traits) was created [19] to analyze quan-
titative traits in familial data using a variance components approach. Unlike other software,
it allows the user to look at multivariate traits and longitudinal data. We have created an S-
Plus/R interface to the original MULTIC code and have added in user-friendly plotting functions,
summarizing routines, and diagnostic tools.

The main S-Plus/R function is multic which is the modeling function for univariate, mul-
tivariate, or longitudinal phenotypes, allowing for multiple environmental covariates and the
identity-by-descent (IBD) data. The function multic assumes that multipoint or singlepoint
IBD information has already been assessed, and that this information is stored in a certain
format. There are several software packages that can obtain this information. Currently we
have written the utility function solar2multic for using IBD files that are in the Solar format
[12, 13, 4] and the utility function sw2mloci for using IBD files that are in the Simwalk format
[45]. In addition to multic, there are a number of supporting functions in the library. These
are briefly described below.

• polygene: Prints descriptive statistics for the traits and covariates, plus covariate informa-
tion and variance components for the polygenic and sporadic model. This can be applied
to any multic object.

• print.multic: Summarizes basic information about the families and the maximum lod
score in the multic object.

• summary.multic: Provides a short summary of the multic object listing the maximum lod
score, it’s location, and the top 5 families that contribute to this lod score (if the user has
specified calc.fam.log.liks=TRUE).

• mlociCut: Subsets the multic IBD file to a smaller region.

• plot.multic: Plots the LOD scores from the specified multic object.

• plot.family.lods: Plots the LOD scores for the individual families that contribute the
most to the overall peak LOD score.

• residuals.multic: This is an extractor function which allows the user to obtain several
types of residuals from the multic object. In order to extract this information, you will
need to fit multic with the calc.residuals option set to TRUE (the default is FALSE to
save space).

• fitted.multic: This is an extractor function which allows the user to obtain the fitted
values from the multic object.
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• clean: multic creates a number of temporary files while it’s running. Use clean if your
call to multic is interrupted and you want to get rid of these temporary files.

• expand.multic and expand.data: These functions are used for bootstrapping when you are
sampling families with replacement and you need to include a family more than once into
the various files.

• addGE: This function uses input from more than one multic object and estimates a multi-
variate LOD score from these univariate multic objects.

There are also a large number of supporting routines which will rarely if ever be called
directly by the user. A listing of these routines are found in the appendix. We have not
ported the software to the Windows environment although we expect others will. This is not
an argument against Windows, however it is not an environment that we routinely use.

2.1.1 Converting Solar IBDs

When converting IBD information that is in the Solar format, solar2multic utilizes the following
files:

• phi2 file: The phi2.gz file contains the ID for two related individuals and the two times
the kinship coefficient matrix.

• ped file: The pedigree file consists of one record for each individual in the data set. Each
record must include the following fields: individual ID, father ID, mother ID, sex, famid.
The file must be comma delimited.

• pedindex files: There are two pedindex files: pedindex.out and pedindex.cde. The file
pedindex.out associates each ID in your pedigree file with a sequential ID used by all
SOLAR files. The file pedindex.cde identifies the fields in the fixed width pedindex.out
file.

• Directory where the ibd files are stored: Two kinds of IBD files can be provided (two-point
or multipoint).

More details about the files can be found in SOLAR user’s guide
(http://www.sfbr.org/solar/doc/00.contents.html).

2.1.2 Converting Simwalk IBDs

When converting IBD information that is in the Simwalk format, sw2mloci utilizes the following
files:

• ibd files: one for each family.

• map file: an optional map file that incorporates genetic distance.

Note that you need to have access to the S-Plus/R kinship library if you use the Simwalk IBDs.
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2.2 Example: Data preparation

Our examples use data from the Rochester Family Heart Study (RFHS), a community-based
cross-sectional study of the genetic epidemiology of atherosclerotic coronary artery disease and
essential hypertension in Rochester, MN [50]. Between 1984 and 1991, 3978 members from
601 households underwent standardized medical interviews, physical examinations, and blood
sampling at the Mayo Clinic. Subjects were ascertained through households with two or more
children enrolled in the schools of Rochester, MN, in 1983. Additional details of the sampling
design, recruitment, and study protocols have been previously published [48, 49]. Genotype and
phenotype measurements were available for 2135 RFHS participants from 279 multigenerational
pedigrees.

This first example illustrates how files from Solar or Simwalk can be translated to the right
format for multic. The function solar2multic takes the Solar files and creates mloci.out.gz

and share.out.gz in the directory multicInput as specified. The function sw2mloci takes the
Simwalk files and creates mloci.out.gz. A dataframe called d10 is including the phenotype and
family relationship data is also created.

# Attach the multic library

library(multic)

# Translate the Solar files to the correct format for multic

# This creates the files share.out and mloci.out in the directory multicInput

solar2multic(phi2='solar/phi2', pedigree='solar/roch.ped',

pedindex.out='solar/pedindex.out',

pedindex.cde='solar/pedindex.cde',

ibd='solar/ibd10',output='multicInput')

# OR #

# Translate Simwalk files to the correct format for multic

# This creates the file mloci.out in the directory multicInput.

# The information for share.out is calculated using the kinship library.

sw2mloci(directory='simwalk', map='simwalk/c10.map', output='multicInput')

# Read in the phenotype and family relationship data and

# create the dataframe d10

ped <- read.table("solar/roch.ped", header = T, sep = ',')

phen <- read.table("solar/roch.phen", header = T, sep = ',')

d10 <- merge(ped, phen)

d10 <- d10[order(d10$famid, d10$id), ] ## data needs to be sorted by famid
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3 Polygenic and Sporadic Models

3.1 Theory

As was mentioned before, consider the case in which a particular trait, such as systolic blood
pressure, is observed for families (or clusters of related individuals). Under a sporadic model
(HO: there is no genetic effect), the observed values of the trait for the members of the ith
family can be represented by

yi = µ + Xiβ + εi. (1)

It is important to note that the model described above is the same as the standard linear model.
Under a polygenic model (H1: there is a genetic effect) the observed values of the trait for

the members of the ith family can be represented by

yi = µ + Xiβ + ai + εi, (2)

where yi is the vector of the observed values of the trait (or phenotype) for the ith family, µ is
the vector of overall mean, ai is the unobservable vector of the additive random genetic effects
for the ith family, Xi is the matrix of observable covariates, β is the vector of fixed covariate
effects uncorrelated with the additive genetic effects and environmental effects, and εi is the
vector of environmental effects for the ith family, ∀i, i = 1, 2, . . . , k.

We assume that the additive genetic effect for the ith family is ai ∼ N (0, σ2R), where
R is the matrix of coefficients of relationship between pairs of related individuals (the same
as twice the kinship coefficient matrix), for example, 1

2 for full sibs and parent-offspring; the
environmental effect for the ith family is εi ∼ N (0, τ2I), where I is the identity matrix; and the
additive genetic effect is uncorrelated with the environmental effect. Then yi ∼ N (µ+Xiβ,V),
where V = σ2R + τ2I.

3.2 Estimation Methods

To estimate the VCs, σ2 and τ2, we can use the E-M algorithm, Newton-Raphson (N-R) method,
or the Fisher Scoring method. These methods are well described in the literature for the case in
which a design matrix can be specified for each VC [42]. For most genetic problems in humans,
however, no design matrix can be specified a priori because the structure of the matrix will
vary from family to family and markers are usually less than fully informative, and few reports
concern the estimation of VC in such a case. The E-M algorithm is based on sufficient statistics
of the complete data, which consist of the observed and unobserved data. Observed data are the
observed quantitative traits or phenotypes, and unobserved data are the random components,
in our case, the genetic components. The N-R and scoring methods are based on the derivatives
of the log likelihood function. Each method has its own advantages and disadvantages.

The E-M algorithm generally takes longer to converge but does not produce negative esti-
mates of the variance components, whereas the N-R and scoring methods converge faster, but
can produce negative estimates unless boundary constraints are imposed. The E-M algorithm
can yield the breeding values, an important measure in animal breeding, but it does not provide
an information matrix of the estimates. To produce this matrix, we need to apply an additional
step [34, 35]. Conversely, the scoring and N-R methods automatically provide this information
matrix. As a note, we use maximum likelihood estimates and not restricted maximum likelihood
(REML) estimates. The first two methods have not yet been implemented in multic, though
we have plans to do this. Details about all these methods can be found in Searle et. al [42].

The Expectation-Maximization Algorithm
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The basic form of E-M equations for the above model are well known [32, 22]. The natural
sufficient statistics for the “complete data” (y, a) when there are no fixed effects except for the
overall mean µ, are k−11t(y− a) , k−1atR−1a, and k−1εtε, whose unconditioned expectations
are µ, σ2, and τ2, respectively. Thus, the iterative equations are formed by setting new values
for these parameters equal to the conditional expectations of the statistics taken at current
parameter values

µ(+) = k−1E(1t(y − a) | x, µ, σ2, τ2) = k−11′(y − η), (3)

σ2(+) = k−1E(atR−1a | y, µ, σ2, τ2) = k−1[tr(R−1Σ) + ηtR−1η], (4)

τ2(+) = k−1E(εt ε | x, µ, σ2, τ2) = k−1[tr(Σ) + εtε], (5)

where
η = E(a | x, µ, σ2, τ2), ε = y − µ− η,

Σ = σ2R(I− σ2V−1R) = σ2τ2RV−1,

tr(R−1Σ) = σ2τ2tr(V−1),

tr(Σ) = σ2τ2tr(RV−1) = τ2tr(I− τ2V−1).

The problem with these E-M equations is that they all require computation of V−1 at
each iteration. For large pedigree, the computation of V−1 at each iteration can become
computationally intensive. To deal with this issue, Thompson and Shaw [47] solved the above
E-M equations without determining V−1. Instead, only the eigenvalues of R needed to be
determined, which provide the eigenvalues of V, hence, V−1. Thus the trace terms of equations
(4) and (5) are easily computed.

The Newton-Raphson Method

In the VC estimation problem, we can estimate the set of parameters denoted by θ, which
consists of the fixed effects coefficients and the VC parameters, by the N-R iterations

θ(m+1) = θ(m) − (H(m))−1∇L(m), (6)

where L indicates the log likelihood function, H(m) the Hessian matrix (second-derivative ma-
trix), and ∇L(m) the gradient vector, with θ replaced by θ(m).

The Fisher Scoring Method

This method uses an iteration scheme and replaces the Hessian matrix with the information
matrix, which is the negative expectation of the Hessian matrix. By doing so, the information
matrix need only be calculated once, thus, avoiding the computational burden of iteratively
calculating the Hessian. Then, the scoring method uses the following iteration scheme:

θ(m+1) = θ(m) + (I(m))−1∇L(m), (7)

where I(m) is the information matrix. Currently this is the only method implemented in multic.
In the VC estimation problem, we can estimate the set of parameters denoted by θ, which

consists of the fixed effects coefficients and the VC parameters, by the N-R iterations

θ(m+1) = θ(m) − (H(m))−1∇L(m), (8)

where L indicates the log likelihood function, H(m) the Hessian matrix (second-derivative ma-
trix), and ∇L(m) the gradient vector, with θ replaced by θ(m).
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3.3 Example: The polygene function

As an initial step, it is important to look at the data and determine if there is an indication of a
genetic component in the overall trait variance. It is also necessary to view the trait distribution
and make sure the overall model distributions are met. Influential points and highly skewed
data can have a negative impact on the overall analysis.

The multic function requires the user to supply family variables, a formula specifying the
traits and covariates, if any, and the name of the dataset. All other arguments are optional.
If the kinship matrix is not supplied with a share.out file, this information is automatically
calculated using a function available from the kinship library. The formula follows standard
S-Plus rules with a trait (or traits), a tilde, and covariates separated by a plus-sign (+). A one
(1) is listed on the right-hand side of the function to specify a model with no covariates. The
control option allows the user to specify initial values and convergence criteria, and to request
that a shared environmental component be calculated.

#########################################################################

## The polygenic model is fit when no marker data is specified

#########################################################################

## Fit with the share.out file

> fit1a <- multic(formula=sys.avg ∼ male + agexam + agexam^2,

data=d10, famid, id, fa, mo, sex, share='multicInput/share.out.gz')

## OR

## Fit without the share.out file

> fit1b <- multic(formula=sys.avg ∼ male + agexam + agexam^2,

data=d10,famid, id, fa, mo, sex )

############################################################################

Call:

multic(formula = sys.avg ~ male + agexam + agexam^2, data = d10, famid = famid,

id = id, dadid = fa, momid = mo, sex = sex)

Fitting traits without covariates...

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46

Calculating likelihoods under null hypothesis on Thu Feb 23 13:52:34 2006

Iteration Number:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Loading (fixed, random) effects from file...

Loading inverse of the expected second derivative from file...

Loading variance-covariance sandwich matrix from file..

Calculating heritability values...

Calculating correlation values...
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The polygene function provides basic summaries of the cohort and allows the user to check
for evidence of a genetic component in the trait (or traits) of interest (e.g. heritability). The
heritability estimate (h2 = σ2

R/σ2
T ) in this example is 0.393, with an associated p-value of <

0.001, confirming that there is evidence that this trait has a genetic component. The proportion
of the total variance ( σ2

T = σ2
R + τ2 ) due to the covariates is 0.49.

> polygene(fit1b)

Pedigree Information

--------------------

Pedigrees People Females Males Probands

279 2494 1243 1251 0

Complete-Count Information

--------------------------

People Females Males

2114 1101 1013

Other Information

-----------------

Traits Covariates Locations

1 3 0

Descriptive Statistics for the Variables

----------------------------------------

n Mean Std.Dev Minimum Maximum Kurtosis Skewness

sys.avg 2114 114.3000 21.4900 69.670 272.70 2.9760 1.28200

male 2114 0.4792 0.4997 0.000 1.00 -1.9940 0.08327

agexam 2114 38.4200 23.2400 5.158 90.27 -1.2600 0.28350

I(agexam^2) 2114 2016.0000 1988.0000 26.610 8149.00 -0.4756 0.84210

Covariate coefficients

----------------------

Trait 1 ( sys.avg ):

Estimate Std.err t.value p.value

(Intercept) 1.003e+02 1.10800 90.5000 0.0000

male 6.009e-01 0.64920 0.9257 0.3547

agexam -1.113e-01 0.05670 -1.9640 0.0497

i(agexam^2) 8.902e-03 0.00067 13.2900 0.0000

Variance Components

-------------------

Polygenic:

Estimate Std.err Wald W.p.value h^2 se.h^2 h.p.value

92.74 11.19 68.67 0 0.3929 0.03982 0

Environmental (non-genetic component):

Estimate Std.err Wald W.p.value

143.3 9.367 234 0

Proportion of Variance due to the Covariates

--------------------------------------------

R.sq: 0.4917
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4 Major Gene or QTL Analysis

4.1 Theory

Advances in molecular biology enable us to evaluate the association and genetic linkage of
markers with quantitative traits. Let us assume that in addition to the polygenic additive
effect, a major gene is responsible for the trait and a marker locus is linked with this major
gene. Then equation (2) can be rewritten as

yi = µ + Xiβ + ai + gi + εi, (9)

where gi is the unobservable major gene effect for the ith family. Amos [1994] showed that
gi ∼ (0, σ2

gFi), where Fi = (f(θ, πijl)), θ is the recombination fraction between the major
gene and the marker locus, and πijl is the IBD sharing assessed by marker typings for pairs of
individuals (j, l) at the ith family. The values for f(θ, πijl) for several relationships are given
by Amos [6].

We assume that the dominance component of variance for the major gene effect is negligible.
Amos [5] showed that, except for unusual situations, the additive component of variance usually
dominates the dominance variance. For most linkage testing situations, the additive assumption
is reasonable. The dominance variance can become appreciable for recessive traits. When
the recessive disease allele frequency is less than 1/3, the dominance variance is greater than
the additive variance. Consequently, here σ2

g refers to the additive major gene component of
variance. The value of πijl can assume only 3 values: 0, 1

2 , or 1. For incomplete marker data
estimates of πijl can be obtained using different algorithms [27]; [45].

Under tight linkage, we assume that θ = 0. Then f(θ, πijl) = πijl, and consequently,
gi ∼ (0, σ2

gΠi), where Πi = (πijl). In this case, the variance-covariance matrix for each family
yi is V = σ2R + σ2

gΠi + τ2I. Here we assume that yi ∼ N (µ + Xiβ,V), despite the fact
this assumption may not be correct because the major gene effect does not necessarily follow a
normal distribution.

To estimate the VC of the major gene effect, one extra parameter is added to the N-R and
scoring equations (8) and (7), respectively. These equations can produce negative estimates of
the VC parameters, which is an inadmissible solution [42]. We applied the step-halving method
suggested by Jennrich and Schluchter [31] to avoid this problem whenever a parameter was
estimated outside the admissible region. The E-M algorithm has the advantage to accommodate
the parameter constaints. However, it requires to invert Πi for each family i. For some families,
this matrix may be singular . To overcome this problem, the computation of the spectral values
decomposition of Πi was proposed by Iturria et al. [30]. Quasi-likelihood methods are also
available for QTL analysis but these two approaches are not currently available in multic.

4.2 Statistical Tests

The hypothesis test for univariate data is H0 : σ2
mg = 0 versus HA : σ2

mg ≥ 0. To test whether
this hypothesis is true, we use the likelihood ratio test (LRT) and the Wald test (WT). The
Wald test is constructed by dividing the parameter estimate σ2

g by its standard error, and it
has t distribution. The LRT is distributed as a mixture of χ2’s distributions as suggested by
Self and Liang [43] when the true parameter value is on the boundary of the parameter space.
For the univariate case, the mixture is a 1/2 χ2

0 + 1/2 χ2
1.
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4.3 Example: Whole Chromosome

Typically you will want to look at multiple markers within a chromosome to determine the
maximum lod score. By simply adding in the IBD information using the mloci.out option,
the analysis is run for each marker location that is specificied in mloci.out. Note that this
analysis may take awhile. For this example 185 mibd positions were studied and the analysis
took approximately 80 minutes to run.

The print of this multic object gives you basic information about how many subjects were
used in this analysis and where the maximum lod score was located. In this example the
maximum lod score was 1.45, located around 177 cM.

## Note: mloci.out and share.out were calculated in the Software section

> mult10 <- multic(sys.avg ∼ sex + agexam + agexam^2, data=d10,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='multicInput/mloci.out.gz',

share='multicInput/share.out.gz')

> print(mult10)

Call:

multic(formula = sys.avg ∼ sex + agexam + agexam^2, data = d10,

famid = famid, id = id, dadid = fa, momid = mo, sex = sex,

mloci.out = "multicInput/mloci.out.gz",

share.out = "multicInput/share.out.gz", calc.fam.log.liks = T)

Multivariate analysis counts:

Pedigree Information

--------------------

Pedigrees People Females Males Probands

279 2494 1243 1251 0

Complete Phenotype Count Information

------------------------------------

People Females Males

2114 1101 1013

Other Information

-----------------

Traits Covariates Locations

1 3 185

Maximum lod score: 1.4458

at locus: mibd.10.177

at positions (cM): 177

The summary.multic function provides a few more details, listing a range surrounding the
maximum lod score. It also provides the top 5 families that contributed to the maximum
if you originally ran multic with the option calc.fam.log.liks=TRUE. Using the default plot
function (see figure 1) provides a quick look at the overall results. Additional information can
be found in the multic object; mult10$log.liks provides the loglikelihood, lod score value and
the corresponding p-value.
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Figure 1: Default plot of a multic object. The trait is systolic blood pressure and the covariates are sex,
age at exam, and age at exam2.

> summary(mult10)

Call:

multic(formula = sys.avg ∼ sex + agexam + agexam^2, data = d10,

famid = famid, id = id, dadid = fa, momid = mo, sex = sex,

mloci.out = "multicInput/mloci.out.gz",

share.out = "multicInput/share.out.gz", calc.fam.log.liks = T)

Maximum lod score: 1.4458

at locus: mibd.10.177

at positions (cM): 177

The top 5 families and their lod score contributions

to the maximum lod score are:

80 249 163 102 45

0.41722 0.24083 0.22126 0.20274 0.1943

The minimum and maximum positions (cM) that produced a lod score

greater than the maximum - 1 ( 1.4458 - 1 )

and are contiguous to mibd.10.177 are:

133 184

> plot(mult10)
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4.4 Example: Subset marker region or subjects

In some circumstances you may want to run models focusing on a certain region of the chro-
mosome or only using a subset of the families. In order to analyse a subset of the chromosome,
you first need to create a subset of your mloci object using the mlociCut function. Subsetting
subjects is possible using the subset option within multic. In this particular example, the
largest families (those with at least 10 members) are identified with a TRUE/FALSE variable.
For this subset analysis, only those markers between 120 and 180 cM are of interest. In the
print summary 61 locations are examined instead of 185 and 560 people were analysed instead
of 2114 (see complete phenotype count information). Using only the largest families in this
subsetted region, the lod score was reduced from 1.45 to only 0.639.

### Cut mloci.out in order to only look at a certain region

> mlociCut('multicInput/mloci.out', c(120,180), 'multicInput/mloci.cut')

## identify families that have at least 10 members, create T/F flag if large

> tmp <- rle(d10$famid)

> large <- !is.na(match(d10$famid, tmp$values[tmp$lengths>10]))

> sub10 <- multic(sys.avg ∼ sex + agexam + agexam^2, data=d10, subset=large,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='multicInput/mloci.cut.gz', share='multicInput/share.out.gz')

> sub10

Call:

multic(formula =

sys.avg ∼ sex + agexam + agexam^2, data = d10,

famid = famid, id = id, dadid = fa, momid = mo, sex = sex,

mloci.out = "multicInput/mloci.cut.gz",

share.out = "multicInput/share.out.gz", subset = large)

Multivariate analysis counts:

Pedigree Information

--------------------

Pedigrees People Females Males Probands

279 2494 1243 1251 0

Complete Phenotype Count Information

------------------------------------

People Females Males

560 294 266

Other Information

-----------------

Traits Covariates Locations

1 3 61

Maximum lod score: 0.63919

at locus: mibd.10.176

at positions (cM): 176
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5 Multivariate Traits

5.1 Theory

The multivariate variance components (MVC) approach is an extension of the univariate ap-
proach described by

Yj |Xj = µ + Xjβ + aj + gj + ej (10)

where Yj is a vector of dimension Nj ∗m, for family j, where Nj is the number of individuals
for family j and m is the number of traits; µ is the overall mean vector of dimension Nj for
family j, Xj is an Nj × p matrix of covariates, β is a p-vector of regression coefficients, gj is a
Nj-vector of genetic effects by which the major locus affects the trait values for family i, aj is
a 1 x Nj vector expressing how the additive polygenic factor affects the trait values for family
j, and ej is residual variation (or environmental effects) from the model. For more details see
Amos [6] and de Andrade et al. [16]. The MVC approach is also a model-free approach, and it
has advantages over model-dependent approaches. To simply describe these models we use the
vec transformation [3, 21, 7], to string out the observations as a single vector and then allow
elements of this vector to be correlated, according to the model proposed by the equation 10.
Let Yj = (Y11, ..., Y1Nj , ..., YmNj )

′ be a vector of m multivariate trait values for Nj members
of the jth family. Let N be the total number of families, β a vector of dimension mp of the
regression coefficients for the p covariates (including a vector of 1’s corresponding to the overall
mean), Xj = Im ⊗ XNj ,p an mNj × mp known matrix of covariate values for the jth family,
where ⊗ is the Kronecker product. Then, the variance-covariance matrix of the m traits, Vj ,
with dimension mNj ×mNj is

Vj = A⊗Rj + B⊗ πj + C⊗ Ij , (11)

where, Rj is the Nj × Nj matrix of the coefficients of relationship for the jth family; πj

an Nj × Nj matrix of estimated proportion of alleles identical by descent (IBD) for pairs
of related individuals for the jth family; Ij is the Nj × Nj identity matrix; and A, B, and
C are, respectively, polygenic, major-gene, and residual variance-covariance matrices each of
dimension m ×m. A fourth term to measure dominance components can be added. Because
the dominance component of variance is usually much smaller it is ignored here, but can be
modeled by including by modeling increased covariance among pairs sharing 2 alleles IBD.
Similarly, additional terms to model shared environment can be added. When longitudinal data
are considered, the error variance structure can be modified to take account serial correlation
among the observations [18]. A special approach can be taken for discrete/quantitative traits.
In this approach, a decomposition is effected in which the quantitative trait is first conditioned
on the discrete trait [51].

The Multivariate Variance Components Test

To test for genetic linkage, we construct a likelihood ratio test. Under the null hypothesis, the
major gene parameter(s) B of equation 11 are constrained to 0. For simplicity, let us consider
bivariate traits. For bivariate linkage analysis of an additive genetic effect, the parameters are
σ2

a1, σ2
a2 , and σa1,a2 where the first two components measure the major-genetic variance of

the traits and the third component measures the major-gene covariance for the traits. We also
usually constrain the major-gene variances to be positive so that they fall in the admissible part
of the parameter space. As a result, the distribution of the bivariate test that the major-gene
components and covariance are zero is a mixture of 1/4 χ2

0, 1/2 χ2
1, and 1/4 χ2

3 as suggested
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by Self and Liang [43]. This follows because for one-quarter of the parameter space, both
genetic variance parameters are estimated to be positive and hence lead to a chi-squared test
having 3 degrees of freedom; for one-half of the parameter space, one of the genetic variances is
constrained to be 0 and hence the major gene covariance is 0 so that the chi-squared distribution
has 1 degree of freedom, while for the remaining one-quarter of the parameter space, both genetic
variances are constrained to be zero, resulting in a degenerate distribution of a point mass at 0.

Because the same major gene alleles are assumed to be determining the two traits, it is logical
to consider imposing the constraint σa1,a2 = ±σa1σa2, which is always satisfied whenever there
is a single genetic factor in a region and the dominance components of variance affecting each
trait is 0. As discussed by Almasy et al. [3], the observed correlation attributable to a locus
may not be one if there are multiple loci affecting both traits in a region. Therefore, they
proposed testing the hypotheses of pleiotropy, which presumes that the trait(s) are influenced
by the same gene versus coincident linkage, which presumes that there are two or more linked
loci that separately influence the traits. If the covariance is constrained to be the product of the
square root of the variances, then the hypothesis test of linkage for either of the traits becomes
a mixture of 1/4 χ2

0, 1/2 χ2
1, and 1/4 χ2

2. In this case, the covariance is no longer a parameter
to be estimated. Amos et al. [7] compared the efficacy of fitting data either with or without
this constraint on the covariance. They found rather similar power for either the unconstrained
or constrained tests when the empirically derived critical values were used.

5.2 Example: look at three traits

As was mentioned earlier, hypertension is a trait that relies on the underlying quantitative
measure of systolic blood pressure and/or diastolic blood pressure. As has been shown earlier,
we can easily study the genetic influence of genetic markers on an individual trait, but it may
be that the genetic factor influences both BMI and blood pressure. Therefore, we will look at
the influence of the genetic information on systolic blood pressure, diastolic blood pressure, and
BMI. To do this, we simply modify our endpoint in the previous call to multic. Note that we
used the subsetted marker region mloci.cut.gz to save analysis time. The maximum lod score
is now 5.02, up from 1.45 when we examined sys.avg alone. The position has also changed and
is now 145 when it was 177.

> bsd10 <- multic(cbind(bmi,dia.avg,sys.avg) ∼ sex + agexam + agexam^2,

data=d10, famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='multicInput/mloci.cut.gz',

share='multicInput/share.out.gz', max.iterations=40)

> bsd10

Call:

multic(formula =

cbind(sys.avg, bmi, dia.avg) ∼ sex + agexam + agexam^2,

data = d10, famid = famid, id = id, dadid = fa, momid = mo, sex = sex,

mloci.out = "multicInput/mloci.cut.gz", share.out =

"multicInput/share.out.gz", max.iterations = 40)

Multivariate analysis counts:

Pedigree Information

--------------------

Pedigrees People Females Males Probands
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Figure 2: Multivariate analysis combining bmi, diastolic blood pressure, and systolic blood pressure.
Analysis was run in a limited portion of chromosome 10.

279 2494 1243 1251 0

Complete Phenotype Count Information

------------------------------------

People Females Males

2081 1084 997

Other Information

-----------------

Traits Covariates Locations

3 3 61

Maximum lod score: 5.0241

at locus: mibd.10.145

at positions (cM): 145

This analysis analysis is useful, but it can take quite awhile to run. If you’ve already run
univariate analyses on your traits, there is a quick way to see if it’s even worthwhile to look at a
multivariate analysis (see figure 3). The function addGE will take several univariate trait multic
objects and provide an estimate of the maximum multivariate LOD score [20].

> add2 <- addGE(list(bmi10, dia10, sys10), combine = 2, plotit = T, ylim=c(0,8), legend=F)

> add3 <- addGE(list(bmi10, dia10, sys10), combine = 3, plotit = F)

> lines(add3$cM, add3$lod, col=4, lwd=2, lty=4)

> key(corner=c(0,1), lines=list(lwd=2, col=1:4, lty=1:4),

text=list(c('BMI-Dia','BMI-Sys','Dia-Sys','BMI-Dia-Sys'), col=1:4))

19



Chromosome 10: Position
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Figure 3: Is it worthwhile to run a multivariate analysis? Determine an estimate of how much you’ll
actually gain when combining the three traits.

> add2[1:4, ]

comb statChi pChi cM lod

1 1, 2 2.1323231 0.07211102 120 1.1419984

2 1, 3 0.5145535 0.23658714 120 0.6260089

3 2, 3 1.1492481 0.14185331 120 0.8481605

4 1, 2 2.1762557 0.07007754 121 1.1544212

5.3 Example: usage of Principal Components and Factor Analysis to
combine traits

Multivariate analysis is really only practical for two or three traits at a time. The multic

function has a limit of five traits that can be examined together and that analysis would take
multiple days to run. Principal Components Analysis (PCA) and Factor Analysis (FA) are
both dimension-reduction techniques, in the sense that they can be used to replace a large set
of observed variables with a smaller set of new variables. The two methods are different in their
goals and in their underlying models, but they provide another tool in multivariate analysis.
A general rule is that you should use Principal Components Analysis when you are interested
in summarizing your traits using fewer dimensions, whereas Factor Analysis is used more when
you need an explanatory model for the correlations among the traits.

The following example looks at multiple traits that are often indicators of cardiac problems
(bmi, waist size, waist to hip ratio, systolic blood pressure, diastolic blood pressure, triglycerides,
hdl, ldl, glucose, and insulin). In analysis not shown, both the PCA and FA suggest using only
the first element of each analysis. These new summary measures are then used in multic as a new
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Figure 4: Combine standard tools such as Principal Components Analysis and Factor Analysis with
multic when combining multiple traits.

trait. The plot of the results indicate that neither methodology fully captures the information
from these traits with a maximum lod scores of 1.43 using PCA and 2.14 using FA.

> traits <- cbind(bmi, e.waist, invwhr, sys.avg, dia.avg, k.trig, k.hdl,

k.ldl, gluc.avg, insulin)

## determine which rows have no missing data

> traits.notna <- rowSums(is.na(traits))==0

## run the principal components and factor analysis

> traits.pc <- princomp(traits, cor=T, na.action=na.omit)

> traits.f <- factanal(traits, factors=4, na.action=na.omit)

## create matrices of the components that has the same length

## as the original data

> pcscores <- matrix(NA,nrow=nrow(d10), ncol=10)

> pcscores[traits.notna,] <- predict(traits.pc)

> factorscores <- matrix(NA,nrow=nrow(d10), ncol=4)

> factorscores[traits.notna,] <- predict(traits.f)

## save the first component in the original data frame for further analysis

> d10$pc1 <- pcscores[,1]

> d10$fac1 <- factorscores[,1]

## run the multic analysis

> fitpc1 <- multic(pc1 ∼ sex + agexam + agexam^2, data=d10,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,
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mloci='multicInput/mloci.cut.gz', share='multicInput/share.out.gz')

> fitfac1 <- multic(fac1 ∼ sex + agexam + agexam^2, data=d10,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='multicInput/mloci.cut.gz', share='multicInput/share.out.gz')

## plot results

> plot(fitfac1, col=2, lty=2, lwd=2, ylim=c(-1,8))

> par(new=T)

> plot(fitpc1, col=1, lty=1, lwd=2, ylim=c(-1,8))

> key(corner=c(0,1), lines=list(lty=1:2, col=1:2), lwd=2,

text=list(c('Principal Components','Factor Analysis'), col=1:2))

6 Longitudinal Data

6.1 Theory

We extended the VC approach proposed by Hopper and Mathews [28] and Amos [6] to acco-
modate longitudinal familial data. The VC approach is described in detail for observations at a
single time point for two-point analysis [6, 16], for multipoint analysis [4], and for multivariate
traits [21, 30, 7].

For longitudinal familial data, suppose we observe a quantitative trait, such as systolic blood
pressure, in families. Then, the model for T time points of observed values of the trait for the
jth relative in a family can be written as

Yj = µ + Xjβ + aj + gj + sj + εj (12)

where Yj is the vector having T time points of observed values of the quantitative trait. µ is
the vector of overall mean for the T time points. Xj is the T × p matrix of observed covariates
where p is the number of covariates. β is the vector of covariate effects. aj is the vector having
T time points of unobserved additive polygenic effects with ajt ∼ N (0, σ2

a.t) for all time point t.
gj is the vector having T time points of unobserved additive major gene effects with E(gjt) = 0
and var(gjt) = σ2

g.t for all time point t [6]. Typically, the number of alleles in gj and the degree
of their effects are not known. The methods we propose do not require that the number of
alleles be known. sj is the vector of common shared environmental effects with sjt ∼ N (0, σ2

s.t)
for all time point t. The sj can be partitioned by sets of dummy variables representing the
common shared environment for sibships, parents-offspring, and spouses. εj is the vector of
random environmental effects with εjt ∼ N (0, τ2

t ) for all time point t. We assume the random
effects, aj , gj , sj , εj , are uncorrelated with each other, and with the covariate effects, and
Yj follows a multivariate normal distribution. This assumption is not critical for estimation
[29] but violations of multivariate normality can influence the accuracy of hypothesis tests [1].
Although an extra term for measuring dominance components can be added, we did not do so
because the dominance component of variance is usually much smaller than other components.

The covariances of the traits for individuals j and l at times t and t
′
are

cov(yjt, ylt′) =





σ2
a.t + σ2

g.t + σ2
s.t + τ2

t j = l, t = t′

σa.tt′ + σg.tt′ + σs.tt′ + τtt′ j = l, t 6= t′

δjlσa.t + πjlσg.t j 6= l, t = t′

δjlσa.tt′ + πjlσg.tt′ j 6= l, t 6= t′
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To express Vi (the variance-covariance matrix of Yi) in a simpler way, we considered the
situation in which all the family members have already attained adulthood at the time of the
first measure. An individual was considered an adult when he or she is older than 16 years or
has reached puberty.

To describe these models simply, we use the vec transformation [21], to string out the
observations as a single vector and allow elements of this vector to be correlated, according to
the model proposed in equation 12. Let Yi = (Y

′
i1, . . . ,Y

′
iT )

′
be a vector of T time point trait

values for ki members of the ith family, where Y
′
it = (Yi1t, . . . , Yijt, . . . , Yikit)

′
for t=1,. . .,T.

Let E(Yi) = µ + Xiβ, and

Vi = A⊗Ri + B⊗Πi + C⊗ Si + D⊗ Ii,

where ⊗ defines the direct product of two matrices [41]; Ri is a ki × ki matrix of coefficient of
relationship between pairs of relatives; Πi is a ki × ki matrix of IBD values for the ith family;
Si is a ki × ki matrix of indicator values in which, for sibships, Si,j,l = 1 if j = l or j and l
belongs to the same sibship and = 0 otherwise (alternatively the matrix S can be modified to
accomodate the common shared environment of parents-offspring and spouses); Ii is a ki × ki

identity matrix; and A, B, C, and D are, respectively, polygenic, major gene, common shared,
and random environment variance-covariance matrices each of dimension T×T . These matrices
are represented by A = (σa.tt′), σa.tt = σ2

a.t, B = (σg.tt′), σg.tt = σ2
g.t, C = (σs.tt′), σs.tt = σ2

s.t,
and D = (τtt′), τtt = τ2

t , with their typical elements in the parentheses.
We applied the scoring algorithm to estimate the fixed effects and the variance components

parameters [19].

6.2 Longitudinal Heritability Measure

One way to measure polygenic and major gene heritabilities for longitudinal data is to extend
the standard heritability measure to incorporate the serial VC components. Thus, the polygenic
and major gene heritabilities can be expressed as

h2 =
∑T

t=1 σ2
a.t +

∑
t<t′ σa.tt′∑T

t=1

(
σ2

a.t + σ2
g.t + σ2

s.t + τ2
t

)
+

∑
t<t′ (σa.tt′ + σg.tt′ + σs.tt′ + τtt′)

(13)

and

h2
g =

∑T
t=1 σ2

g.t +
∑

t<t′ σg.tt′∑T
t=1

(
σ2

a.t + σ2
g.t + σ2

s.t + τ2
t

)
+

∑
t<t′ (σa.tt′ + σg.tt′ + σs.tt′ + τtt′)

. (14)

6.3 Longitudinal Statistical Tests

Hypothesis tests for longitudinal data can be constructed to test whether any of the VCs
differ from hypothesized values. For genetic linkage analysis, one would test H0 : σ2

g.t =
0 for all time points t against H1 : σ2

g.t > 0 for some time point t. To test whether this hypoth-
esis is true, we can use the likelihood ratio test (LRT) or a Wald-type score test. We define the
LRT as -2(log likelihood under H0 - log likelihood under H1). For the linkage test, the LRT
is often preferable to a Wald test for two reasons. First, the parameters modeling the major
gene and polygenic components are highly correlated. Because of this correlation, the variance
of the components may not be well estimated, so Wald tests for the linkage parameter may
not be reliable. Second, the information for linkage depends upon the number of informative
meioses, which may be limited. Because the LRT is more robust for small samples than Wald
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tests, use of the LRT is probably preferable. Because the major gene covariance (σg.12) is not
defined when one of the major-gene VC is zero, the distribution of the hypothesis test that the
major-gene components are zero may not converge to a limiting chi-squared distribution. The
LRT is distributed as a mixture of χ2 distributions as suggested by Self and Liang [43] when
the true parameter value is on the boundary of the parameter space. For longitudinal data, the
mixture of χ2s will depend on the number of time points. For instance, for two time points, H0:
σg = (σ2

g.1, σg.12, σ
2
g.2)

′
= 0 against H1: σ2

g.t > 0 for some t. Thus, the LRT is distributed as a
mixture of χ2 distributions, 1/4 χ2

0 + 1/2 χ2
1 + 1/4 χ2

3. We and others performed simulation
studies to confirm that the likelihood ratio test is distributed as a mixture of χ2’s under H0

[7, 30].
For interaction between genes and time, one would test whether the genetic factors are the

same at different time points by introducing constraints that they are equal: H0 :
∑T

i=1 ct σ2
g.t =

0, for
∑T

i=1 ct = 0 against HA : σ2
g.t 6= σ2

g.t′ for some time points t, t′. To test whether this
hypothesis is true, we can use a Wald test, W. For instance, for some two time points, H0 :
η0 = σ2

g.t − σ2
g.t′ = 0 against HA : σ2

g.t 6= σ2
g.t′ ,

W =

(
η̂ − η0√
var(η̂)

)2

(15)

where η̂ = σ̂2
g.t − σ̂2

g.t′ , and var(η̂) = cov(σ̂2
g.t, σ̂

2
g.t′), with W asymptoticaly distributed as χ2

1.

6.4 Example: look at three time-points

For this example we used one of the simulated datasets from the Genetic Analysis Workshop
13. We’ve chosen to use 7 markers from chromosome 21, replicate 3, focusing on systolic blood
pressure measured at multiple times (visits 10, 11, and 12).

> fit2 <- multic(formula=cbind(sbp10,sbp11,sbp12) ∼ age10+sex10 + age11+sex11 + age12+sex12,

data=d21, famid, id, fa, mo, sex,

longitudinal=T,

mloci='multicInputLong/mloci.cut.gz',

share='multicInputLong/share.out.gz')

> summary(fit2)

Call:

multic( formula =

cbind(sbp10, sbp11, sbp12) ∼ age10 + sex10 + age11 + sex11 + age12 +

sex12, data = d21, famid = famid, id = id, dadid = fa, momid = mo,

sex = sex, mloci.out = "multicInputLong/mloci.cut.gz",

share.out = "multicInputLong/share.out.gz", longitudinal = T)

Maximum lod score: 1.2772

at locus: mibd.21.29.8

at positions (cM): 29.8

Since multic was run with calc.fam.log.liks = F (default),

the top families and their lod scores have not been calculated.

The minimum and maximum positions (cM) that produced a lod score
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Figure 5: Default plot of a multic object. The trait is systolic blood pressure measured at three time
points and the covariates are sex, age at exam, and age at exam2 (measured at the three time points)

greater than the maximum - 1 ( 1.2772 - 1 )

and are contiguous to mibd.21.29.8 are:

15.4 29.8

7 Diagnostics

7.1 Theory

7.1.1 Testing for Normality

Since the polygenic model assumes that the trait values for each family (~Yi) follow a multivariate
normal distribution with mean ~µi = µ + Xiβ and covariance matrix ~Vi = σ2 ~Gi + τ2~I, the
normality assumption and presence of outliers need to be checked. Note that the proposed tests
do not justify the normality assumption; they only detect significant departures from it.

Define ~̂
Zi = (Ẑ1, Ẑ2, ..., Ẑni)

T to be the standardized residual trait values

~
Ẑi = V−1/2

i (Yi − µ̂i),

where ~̂
Vi the MLE of the covariance matrix for family i of size ni ,i = 1,2,..,k, and ~

µ̂i = µ̂ + Xiβ̂
is the MLE of the mean. A normal probability plot can be constructed to visually check the
normality assumption, and a residual plot can be constructed in an effort to identify outliers.
This can be easily been done in multic.jj
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Kurtosis can also be used as a measure of departure from the normality assumption. Allison
et al.[2] showed that leptokurtic distributions (with kurtosis value (κ) > 0) have increased false
positive rates compared with the nominal values expected for normally distributed traits using
sibpair data. However, Blangero et al. [14] suggested that distributions with κ < 2 could be
reasonably analyzed under the assumption of a multivariate normal distribution for pedigree
trait values. When κ ≥ 2, it was recommended to apply a transformation to the trait, which
is a common statistical procedure when the variable is not normally distributed, using a power
transformation [Box and Cox, 1982; Cook and Wang, 1983]. These methods are readily available
in Splus and R.

7.1.2 Empirical Normal Quantile Transformation

To reduce the impact of non-normality, one transformation to consider applying is the empirical
normal quantile transformation. This transformation consists of the following steps:

1. Consider the traits values of jth subjects in ith families, yij , i=1,..,k; j=1,..,ni.

2. Sort the y’s and rank them (rij).

3. The transformation of yij is

y∗ij = Φ−1

(
rij

(1 +
∑k

i=1 ni)

)

where Φ−1 is the inverse of the cumulative function of the standard normal distribution.
The value (1 +

∑
ni) in the denominator is to assure that y∗ij is < ∞ .

This transformation is also known as the van der Waerden normal scores. One way to
think as an application to the QTL is that the correlation coefficient calculated using this
transformation measures now the measure the similarity between phenotypic traits given their
IBD status and not the ordinary linear correlation, i.e., ρ(IBD) = ρ + γ(IBD − 1), IBD =
0,1,2. The null hypothesis is γ = 0. [33, 10].

7.1.3 Influence of outliers

We are not only interested in individual outliers or deviations from the normality assumption,
but also whether one family is influencing the linkage analysis due to either family outliers or
the lack of normality. To address the issue of family outliers, possible diagnostic tools include
the family mean residuals and quadratic forms over families in polygenic models and lod scores
over families in major gene models.

Diagnostic tools for the major gene model measure a family’s likelihood contribution (Li)
to the total likelihood (L). These diagnostic measures include the family likelihood (Li), the
family log-likelihood (log(Li)), and the family lod scores. Plots of these values for each family
may indicate whether one or more families are greatly contributing to the total likelihood and
thus warrants further investigation. If family i contains multiple outliers, Li will be large and
thus inflate the total likelihood value or lod score, resulting in misleading conclusions. Details
about outliers can be found in de Andrade et al. [17]
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Figure 6: Box-Cox transformation for triglycerides, using the covariates sex, age at exam, and age at
exam2
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Figure 7: Histogram of triglyceride using two different transformations
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Figure 8: Boxplots of the traits systolic blood pressure, diastolic blood pressure, BMI, and triglycerides
for four age groups.

7.2 Example

7.2.1 Normality and Outliers

In this example we examine four different traits: systolic blood pressure, diastolic blood pressure,
BMI, and triglycerides. The first analysis step for model diagnostics is a visual examination of
the data. Boxplots of the traits versus age groups shows why age2 is important in the models
(see figure 8). Note that there are several points that appear to be outliers. The kurtosis of
triglycerides À 2, indicating that a transformation is necessary [14]. Using the boxcox function,
1/
√

k.trig is the appropriate transformation (see figure 6). Note that the Empirical Normal
Quantile Transformation also does a good job at normalizing the data (figure 7).

## Box-Cox transformation for triglycerides

> library(MASS)

> boxcox(k.trig ∼ male + agexam + agexam^2, data=d10, plotit=T)

## Look at the differences of the transformations

> par(mfrow=c(1,2))

> hist(1/sqrt(d10$k.trig))

> hist(t.rank(d10$k.trig))

## create age groupings from the variable agexam

> d10$agegp <- cut(d10$agexam, c(0,20,40,60,110), left.include=T,

labels=c('0-19','20-39','40-59','60+'))
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par(mfrow=c(2,2)) ## plot using 2 rows and 2 columns

boxplot(split(d10$sys.avg, d10$agegp), ylab='Systolic Blood Pressure',

xlab='Age Group',style.bxp='old')

boxplot(split(d10$dia.avg, d10$agegp), ylab='Diastolic Blood Pressure',

xlab='Age Group',style.bxp='old')

boxplot(split(d10$bmi, d10$agegp), ylab='BMI', xlab='Age Group', style.bxp='old')

boxplot(split(d10$k.trig, d10$agegp), ylab='Triglycerides',

xlab='Age Group', style.bxp='old')

## calculate kurtosis for k.trig

> kurtosis(d10$k.trig, na.rm=T)

[1] 670.7128

Often we also want to look at the normality assumption of the residuals, which we can easily
do using a quantile-quantile (QQ) plot. If the distribution of the residuals is the same as it
would be for a standard normal, then the plot is approximately a straight line. In this particular
example there are several extreme points and a heavier right tail that would be expected.

##

## First remember to fit the polygenic model with the option calc.residuals=T

##

> trig10 <- multic(famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

k.trig ∼ sex + agexam + agexam^2, data=d10, calc.residuals=T)

## Now extract the standardized residuals (average per family)

> tmp <- qqnorm(resid(trig10, type='standard'), ylab='Standardized Residuals')

> qqline(resid(trig10, type='standard'))

## define an outlier as being greater that 2 or less than -2

outliers <- abs(tmp$y) > 2

outliers[is.na(outliers)] <- F

## -- stick FAMID values on the plot

uni.famid <- unique(d10$famid)

text(x=1.01*tmp$x[outliers], y=tmp$y[outliers], uni.famid[outliers],

cex=.7, adj=0)

Note that family 32 appears as on outlier in both the standardized residuals and Q-Q plots.

## Now look at the fitted values (average per family) and the Q1 residuals

> plot(fitted(trig10), resid(trig10, type='Q1'),

xlab='Ave Fitted: k.trig ∼ sex + agexam + agexam^2', ylab='Q1')

## This looks at the standardized residuals and fitted vaules

## without collapsing (i.e. 1 obs/person)

> sr.trig10 <- resid(trig10, type='standard', collapse.family=F)
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Figure 9: Quantile-Quantile plot for the Triglyceride model.

> fit.trig10 <- fitted(trig10, collapse.family=F)

> plot(fit.trig10, sr.trig10, xlab='Fitted: k.trig ∼ sex + agexam + agexam^2',

ylab='Standardized Residual')

> abline(h=0)

## Again define an outlier as being further than 10 times the IQR (6 obs)

> outliers <- abs(sr.trig10) > 10*(quantile(sr.trig10, .75, na.rm=T) -

quantile(sr.trig10, .25, na.rm=T))

> outliers[is.na(outliers)] <- F

## Stick the family ID values on the plot

> text(x=1.01*fit.trig10[outliers], y=.98*sr.trig10[outliers], d10$famid[outliers],

cex=.7, adj=0)

Now look at family 32 and see why there may be a problem.

####################

### PLOT FAMILY 32

####################

> library(kinship)

## create a pedigree object for family 32

> ok <- d10$famid==32

> ped32 <- pedigree(id=d10$id[ok], dadid=d10$fa[ok], momid=d10$mo[ok],

sex=d10$sex[ok])
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Figure 10: Fitted values, averaged for each family, versus Q1 values for triglycerides using a model with
the covariates sex, agexam, and agexam2.
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Figure 11: Individual fitted values versus standardized residuals for triglycerides using a model with the
covariates sex, agexam, and agexam2.
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Figure 12: Pedigree plot of family 32 with triglyceride levels underneath the subject ID, with outliers of
1972 and 5173.

# -- indicate those with high triglyceride levels in red

# -- place the triclyceride level underneath the subject ID

> high.trig <- ifelse(is.na(d10$k.trig) | d10$k.trig < 200, 1, 2)

> plot(ped32, id=paste(d10$id[ok], 'backslash n' , d10$k.trig[ok]), col= high.trig[ok])

7.2.2 Influential Families

It is often of interest to determin the influence of individual families on the total LOD score.
The plot.family.lods function selects the top (default 5) families that contribute to the overall
lod score and plots what the lod score would be just using these families. It is important to
remember to fit your multic model using the calc.fam.log.liks=T option.

> get.top.n.families(mult10, n=5)

log.lik lod.score

80 -59.6111 0.4172174

249 -29.5070 0.2408261

163 -27.3228 0.2212609

102 -46.6765 0.2027391

45 -77.2895 0.1943043

> plot.family.lods(mult10, type="total")

[1] "80: 29%" "249: 17%" "163: 15%" "102: 14%" "45: 13%"
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Figure 13: LOD Scores for the 5 families that contribute most to the peak LOD score when looking at
triglycerides with the covariates sex, agexam and agexam2.

8 Validation of Results

The jackknife and bootstrap methods are two approaches that can be used to validate linkage
findings and are easy to run using functions available in S-Plusand R [24]. Both techniques
involve sampling from the existing data and recalculating a statistic in order to obtain an
estimate of the variability of the statistic. The jackknife is an approximation of the bootstrap,
but is computationally less intense. In our setting, sampling is done on the family unit instead
of the individual and we’re most interested in the estimate of the overall lod score at a specific
location.

The jackknife technique removes a subset of the families and calculates the statistic. This
process is repeated for each subset (often removing 1 family at a time). The bootstrap technique
samples with replacement from the existing families and calculates the statistic. Each subsample
typically includes roughly two-thirds of the families. This step is typically repeated some large
number of times (100 or 500). Below are examples showing how to implement these concepts.
The examples focus on chromosome 10 where a lod score of 1.45 was found at 177 cM. We can
obtain estimates of the standard error of the lod score using either approaches.

8.1 Jackknife

In our jackknife example we looked at a small region of chromosome 10 ranging from 175-179
cM. We removed one family at a time and ran multic using the remaining families.

#############################################################################

## Jackknife example
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############################################################################

## cut the IBD file (mloci.out) so that only a small region is used

> mlociCut('multicInput/mloci.out', 175:179,'multicInput/mloci.cut177')

## create a blank matrix to store results

jacklods <- matrix(NA, nrow=length(unique(d10$famid)), ncol=5,

dimnames = list(1:length(unique(d10$famid)),

c('lod175','lod176','lod177','lod178','lod179'))

## remove one family at a time and rerun the results

> for(i in 1:length(unique(d10$famid)))

fam.del <- d10$famid != unique(d10$famid)[i]

fit <- multic(sys.avg ∼ sex + agexam + agexam^2, data=d10,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='multicInput/mloci.cut177.gz', share='multicInput/share.out.gz',

max.iterations=30, subset=fam.del)

jacklods[i,1:4] <- fit$log.liks[-1, 4]

## Plot the results

> matplot(175:179, t(jacklods), type='l', xlab='cM',

ylab='LOD, Jackknife Analysis', xlim=c(175,179), ylim=c(0,2))

> plot(sys10, xlim=c(175,179), ylim=c(0,2), ylab='LOD, Original Analysis')

> hist(jacklods[,3], 'fd', xlab='LOD, 177 cM')

> abline(v=sys10$log.liks$lod.score[sys10$log.liks$distance==177], lwd=2)

8.2 Bootstrap

We used two different approaches to obtain bootstrapped results. The first approach bootstraps
the families and runs multic on each of these sets of families to obtain the overall lod. The
second approach fits multic once using the option calc.fam.log.liks = T, samples from the
family lods obtained from that one call and adds up the family lods to obtain an overall lod
score for each sample.

The two approaches produce different distributions, as can be seen in figures 15 and 16.
In the second approach where the bootstrap is performed using the lod for each family at
a particular position, the estimated parameters values are the same for each family and for
each bootstrap run. Thus the bootstrap distribution of the lod values will follow a normal
distribution according to the bootstrap theory. However, when the bootstrap is performed by
random selecting families and then calculating the lod at a particular position, the estimated
parameter values will change for each bootstrap run. Thus, the distribution of the lod will follow
a mixture of 1/2 (χ2

0 + χ2
1) as expected but the distribution of the parameters estimates will

follow a normal distribution. The empirical distribution of these two boostrap approaches are
similar but slightly different at the mean due to skewness difference of these two distributions
(1.64 for method 1; 1.44 for method 2). The medians (1.43 for method 1 and 1.42 for method 2)
are much more similar. Using these two approaches, it is possible to better understand different
parts of the variation within the modeling process.

34



cM

LO
D,

 Ja
ck

kn
ife

 A
na

lys
is

175 176 177 178 179

0.
0

1.
0

2.
0

cM

LO
D,

 O
rig

ina
l A

na
lys

is

175 176 177 178 179

0.
0

1.
0

2.
0

1.1 1.3 1.5

0
10

30
50

LOD, 177 cM

Figure 14: Jackknife results for the model sys.avg∼sex + agexam + agexam2 focusing on the region
175 to 179 cM. Each one of the 179 families was removed from the data, one at a time, and the model
was refit. The upper left panel includes the lod results for each deletion. The upper right panel shows
the results from the original model. The lower left figure shows a histogram for position 177 cM, with
a vertical line indicating the result when using all the families at once.
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Figure 15: Bootstrap results for the model sys.avg∼sex + agexam + agexam2 focusing on the location
177 cM. In this approach, families were sampled with replacement, and multic was run 1,000 times.
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Figure 16: Bootstrap results for the model sys.avg∼sex + agexam + agexam2 focusing on the location
177 cM, where the lod scores were saved for each family. In this second approach, family lod scores were
sampled with replacement, and the overall lod score was recalculated 10,000 times.

############################################################################

## Subset IBD to one location

> mlociCut('multicInput/mloci.out', c(177,177), 'multicInput/mloci.cut177')

############################################################################

### APPROACH NUMBER 1 - TRADITIONAL BOOTSTRAP SAMPLING OF THE FAMILIES

## Create a function that is executed for each bootstrap sample.

> tfun <- function(newids)

expand.multic(newids, mloci.out='multicInput/mloci.cut177',

share.out='multicInput/share.out')

newdata <- expand.data(newids,d10)

tmpfit <- multic(sys.avg ~ sex + agexam + agexam^2, data=newdata,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

mloci='mloci.cut177.expanded',

share='share.out.expanded', max.iterations=100)

## store lod, major gene, polygene, and environmental variance estimates

ans <- cbind(tmpfit$log.liks[2,4], tmpfit$major.gene1[1,1,2],

tmpfit$polygenic[1,1,2], tmpfit$environmental[1,1,2])

return(ans)

## Set up an empty matrix to store the results
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> set.seed(1001)

> Nboot <- 1000

> bootresults <- matrix(NULL, nrow=Nboot, ncol=4,

dimnames=list(1:Nboot, c('LOD','mg1','poly','env')))

## Loop through the multiple calls to tfun

> for(i in 1:Nboot)

newids <- sample(unique(d10$famid), length(unique(d10$famid)), replace=T)

bootresults[i,] <- tfun(newids)

## Plot the bootstrap results

> bandwidth <- function(x)

r <- quantile(x, c(.25, .75))

h <- (r[2] - r[1])/1.34

return(4*1.06*min(sqrt(var(x,na.method='omit')), h) * length(x)^-1/5)

> hist(bootresults[,1], 'fd',xlab='Overall LOD', ylab='Density',

xlim=c(-2,6), ylim=c(0,.5), prob=T)

> lines(density(bootresults[,1], width=bandwidth(bootresults[,1])))

> abline(v=sum(lods), lwd=2) ## observed

> abline(v=mean(bootresults[,1]), lty=2, lwd=2) ## mean

> key(corner=c(1,1), lines=list(lty=1:2), text=list(c('Observed','Mean')))

## Summarize the results

> quantile(bootresults[,1],c(.025,.975))

2.5% 97.5%

0.1708 4.1071

For 1000 samples, this first approach took 4 1/2 hours to run. The second approach, shown
below, took only a few minutes.

############################################################################

### APPROACH NUMBER 2 - BOOTSTRAP THE FAMILY LODS AND SUM TOTAL LOD

> origfit <- multic(sys.avg ~ sex + agexam + agexam^2, data=d10,

famid=famid, id=id, dadid=fa, momid=mo, sex=sex,

calc.fam.log.liks = TRUE,

mloci='multicInput/mloci.cut177',

share='multicInput/share.out')

> lods <- origfit$fam.log.liks[,2,2]

## run 10,000 bootstraps for the family lod values

> library(resample,first=T)

> boot.orig <- bootstrap(lods, sum, B=10000)

> plot(boot.orig, main=' ', xlab='Overall LOD')

> summary(boot.orig)

Call:
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bootstrap(data = lods, statistic = sum, B = 10000)

Number of Replications: 10000

Summary Statistics:

Observed Mean Bias SE

sum 1.446 1.439 -0.007091 1.03

Percentiles:

2.5% 5% 95% 97.5%

sum -0.5044 -0.2274 3.176 3.515

BCa Confidence Intervals:

2.5% 5% 95% 97.5%

sum -0.4744 -0.1958 3.211 3.554

9 Time tests

We designed a series of tests to compare the performace of multic using Splus and R and
using two platforms, a Unix Sunfire V440 with four 1.593GHz UltraSparceIIi processors, 8G
of memory, and 2 73G ultra320 SCSI disks versus a Mac OS X version 10.3.9 with a 1.5 GHz
PowerPC G4 processor and 512 MB DDR DSRAM of memory. Several conditions were chosen
for two datasets including:

1. GAW13 simulated data, Chromosome 21, replicate 003

• Large (35-84) member families, 11 families

• Moderate (10-20) member families, 142 families

• Small region: 15 - 30 cM (7 locations)

• Large region: 1 - 58 cM (27 locations, 3.9 as large as the small region )

2. GENOA data, Chromosome 1

• Small (3-16) sibling families, 400 families

• Small region: 80 - 100 cM (24 locations)

• Large region: 1 - 275 cM (328 locations, 13.7 as large as the small region)

Our general conclusions were that platform is the most important factor. Multic run via
Splus or R on the Unix system took a similar amount of CPU. Multic run on the Mac took ≈
35% less time than on our Unix system. The time for 502 subjects from 11 large families was
equivalent to the time for 2382 subjects from 142 medium families. It also appears that running
the correct model with covariates is slightly faster (6%) than a model without covariates. Two
traits took approximately twelve times (6-15 IQR) the CPU that was used for one trait. Three
traits were took approximately 90 times (35-115 IQR) more CPU than one trait. Finally,
the time for 3-trait longitudinal analysis is approximately 85% the time for running a 3 trait
multivariate analysis.

Selected results using Splus are presented in table 1. The final column indicates a ratio of
time compared with the model with no covariates using one trait for a small region with large
families.
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N.traits Region Covar.Used Families Dataset cpu ratio
1 Small No Large GAW14 56 1.0
2 Small No Large GAW14 837 14.9
3 Small No Large GAW14 7382 131.8

1 Small Yes Large GAW14 44 0.8
2 Small Yes Large GAW14 950 17.0
3 Small Yes Large GAW14 5861 104.7
3 Small Longitudinal Large GAW14 4949 88.4

1 Small Yes Small Genoa 86 1.5
2 Small Yes Small Genoa 1548 27.6
3 Small Yes Small Genoa 10796 192.8

1 Large No Large GAW14 582 10.4
2 Large No Large GAW14 3025 54.0
3 Large No Large GAW14 22267 397.6

1 Large Yes Large GAW14 635 11.3
2 Large Yes Large GAW14 4218 75.3
3 Large Yes Large GAW14 20357 363.5

1 Large Yes Small Genoa 850 15.2
2 Large Yes Small Genoa 12598 225.0
3 Large Yes Small Genoa 98647 1761.6

Table 1: Time test results using Splus on the Solaris system. Results using R on the Solaris system
were similar and results on the Mac were approximately 35% less. The column marked ratio provides
some indication of the relative time comparable to the first line in the table.
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10 Future Directions

As is true with most software development, the package is never really completely finished.
We have already started a list of enhancements that we intend to add to the multic library.
There have been several requests to add in two other estimation methods including the Newton-
Raphson Method (using Maxfun already available in the stand-alone version of multic) [46] and
the Expectation-Maximization Algorithm (using code from the EMVC package) [30]. We are
also planning to make the package more flexible by directly importing IBDs calculated from
Merlin, Genehunter, and others. We will investigate the possibility of directly calculating the
IBDs using Splus. In addition to adding in connections to and from other packages, we are
planning to continue working on model diagnostics and helpful summary functions. Other
requests include the ability to specify the model covariance structure for longitudinal data.
Finally, we will investigate the possibility of using parallel processing to improve the analysis
speed.

11 Function helpfiles

multic Create a multic object

Description

Calculate the polygenic and major gene models for quantitative trait linkage analysis using
variance components approach.

Usage

multic(formula, data = sys.parent(), famid, id, dadid, momid, sex,
mloci.out = NULL, share.out = "kinship", longitudinal = FALSE,
subset = NULL, ascertainment = NULL,
control = multic.control(...), ...)

Arguments

formula a formula object, with the traits on the left of a ~ (tilde) operator and
the covariates, separated by + operators, on the right. The traits may
be a single numeric vector or a matrix. Commonly, traits are aggragated
together using the cbind command. See the Examples section for exam-
ples.

famid integer, numeric, or character vector specifying each individual’s family
identifier. Members of the same family must have the same famid and
each family must have a unique famid. Any missing data will result in
an error message and the termination of multic.

id integer, numeric, or character vector specifying each individual’s iden-
tifier. Members of the same family must have a unique id within the
family. id does not have to be universally unique among all individuals.
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Any missing data will result in an error message and the termination of
multic.

dadid integer, numeric, or character vector specifying each individual’s father
identifier. This father identifier must have the same famid as the individ-
ual. Any missing data will result in an error message and the termination
of multic.

momid integer, numeric, or character vector specifying each individual’s mother
identifier. This mother identifier must have the same famid as the individ-
ual. Any missing data will result in an error message and the termination
of multic.

sex integer, numeric, or character vector specifying each individual’s sex. Ac-
ceptable forms of sex-coding are "M", "m", or 1 for male and "F", "f", or
2 for female. Any missing data will result in an error message and the
termination of multic.

data data.frame in which to interpret the variables named in formula, famid,
id, dadid, momid, sex, subset, and ascertainment arguments. If data
is missing, the variables in formula should be in the search path.

mloci.out a character value specifying a path to an mloci.out (or similarly format-
ted) file. Specifying a non-empty mloci.out file will allow multic to calcu-
late sporadic models using the ibd (identity by decent) information in the
mloci.out file. Due to the general size of mloci.out, it is often stored in
.gz format. multic will manage this for the user. Whether the user spec-
ifies an mloci.out file with a .gz suffix or not will not effect how multic
operates on the file. See solar2mloci for more details.

share.out a character value specifying a path to a share.out (or similarly formatted)
file. This file contains the amount of genetic material shared between
each family member pair based on family structure only. It also con-
tains boolean values to indicate whether two familiy members have a
sibling-sibling, parent-parent, or parent-offspring relationships. Due to
the general size of share.out, it is often stored in .gz format. multic will
manage this for the user. Whether the user specifies the file wiht a .gz
suffix format or not will not effect how multic operates on the file. See
phi2share for more details.

longitudinal logical flag: if TRUE, then fomula will be interpreted as a longitudinal
model. In this case, the fomula argument requires special formatting
as described. The number of traits on the left side of the ~ (tilde) is the
number of time-points for multic to analyze. The number of covariates on
the right side of the ~ (tilde) must be a multiple of the number of traits on
the left side. That multiple is the amount of covariates to analyze at each
time-point. All covariates for the first time point must be specified before
any of the second, all second before any third, etc. See the Examples
section for examples.

subset a logical vector specifying which subset of the rows in data to use in the
fit.

ascertainment vector specifying each individual’s ascertainment (effected) status. Ac-
ceptable forms of ascertainment are T, TRUE, or 1 for a proband (effected)
and F, FALSE, or 0 for a non-proband (non-effected person).
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control list of iteration and algorithmic constants. See multic.control for
their names and default values. These can also be given directly as argu-
ments to multic itself, instead of through a multic.control object. If
control is specified, the arguments specified in ... will not be used.

... further arguments passed to multic.control to alter multic’s default
behavior.

Details

See the technical report.

Value

an object of class "multic". See multic.object for more details.

Side Effects

Many temporary files are created during multic’s execution. These files are deleted af-
terwards (by default). If they are not deleted (due to a crash or some other unexpected
action), use the included function clean() to delete them. Also, multic copies, gunzip’s,
and removes the copies of share.out and mloci.out (if specified).

References

Amos, C. I. (1994). ”Robust variance-components approach for assessing genetic linkage in
pedigrees.” American Journal of Human Genetics 54(3): 535-543.

Almasy, L. and J. Blangero (1998). ”Multipoint quantitative-trait linkage analysis in gen-
eral pedigrees.” American Journal of Human Genetics 62(5): 1198-1211.

See Also

multic.object, multic.control, phi2share, solar2mloci, solar2multic, sw2mloci

Examples

# Call multic with a univariate formula with two covariates and no

# markers (no mloci.out argument).

fit.ibd.uni <- multic(k.trig ~ sex.x + agexam,

data = ped.phen.data,

famid, id, fa, mo, sex.x,

share.out = 'multicInput/share.out')

# Call multic with a bivariate formula with three covariates, no

# markers (no mloci.out argument), and calculate the family log

# likelihoods.

fit.ibd.bi <- multic(cbind(k.trig, k.chol) ~ sex.x + agexam + agexam2,

data = ped.phen.data,

famid, id, fa, mo, sex.x,

share.out = 'multicInput/share.out',

calc.fam.log.liks = TRUE)

42



# Call multic with a longitudinal formula with six covariates letting

# the kinship library calculate the share.out argument.

long.fit <- multic(cbind(sbpA, sbpB, sbpC) ~

sexA + ageA + bmiA + generA + ageAg + smkA +

sexB + ageB + bmiB + generB + ageBg + smkB +

sexC + ageC + bmiC + generC + ageCg + smkC,

data = long.data,

famid, id, dadid, momid, sex,

longitudinal = TRUE)

multic.object a multic object

Description

Object of class "multic" returned from the function multic.

Arguments

fam.log.liks the log likelihoods and lod scores for each family at each marker (including
the null hypothesis). fam.log.liks is a 3-dimensional matrix. The first
dimension is indexed by the family identifiers. The second dimension is
indexed by the words "log.lik" and "lod.score". The third dimension
is indexed by the word "null" and the names of the marker file names.
To calculate the family log likelihoods, calc.fam.log.liks = TRUE must
be passed to multic via the ... parameter or a multic.control object.
If fam.log.liks are not calculated, then fam.log.liks is a character
vector providing instructions how to calculate the values.

fixed.effects

the estimate, standard error, t value, and p value of the fixed effects
for the traits and covariates for the null hypothesis and each marker.
fixed.effects is a 3-dimensional matrix. The first dimension is indexed
by the trait and covariate names. The second dimension is indexed by
the words "Estmate", "Std.err", "t.value", and "p.value". The third
dimension is indexed by the word "null" and the marker file names.

polygenic the estimate, standard error, Wald score, Wald score P-value, heritabilty
estimate, standard error of the heritabilty estimate, and heritably esti-
mate P-value for the variance and covariance of the polygenic effect of
the formula for the null hypothesis and each marker. polygenic is a
3-dimensional matrix. The first dimension is indexed by the letter "s"
followed by a 1, 2, etc. for the variance of the first trait, second trait,
and so on or 12, 13, 23, etc. for the covariance between the first and
second traits, first and third traits, second and third traits, and so on.
The second dimension is indexed by the words "Estimate", "Std.err",
"Wald", "W.p.value", "h^2", "se.h^2", and "h.p.value". The third
dimension is indexed by the word "null" and the marker file names.
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major.gene1 the estimate, standard error, Wald score, Wald score P-value, heritabilty
estimate, standard error of the heritabilty estimate, and heritably esti-
mate P-value for the variance and covariance of the major gene effect of
formula for the null hypothesis and each marker. major.gene1 is a 3-
dimensional matrix. The first dimension is indexed by the letters "mg"
followed by a 1, 2, etc. for the variance of the first trait, second trait,
and so on or 12, 13, 23, etc. for the covariance between the first and
second traits, first and third traits, second and third traits, and so on.
The second dimension is indexed by the words "Estimate", "Std.err",
"Wald", "W.p.value", "h^2", "se.h^2", and "h.p.value". The third
dimension is indexed by the word "null" and the marker file names.

environmental the estimate, standard error, Wald score, and Wald score P-value for
the variance and covariance of the environmental effect of formula for
the null hypothesis and each marker. environmental is a 3-dimensional
matrix. The first dimension is indexed by the letter "e" followed by a
1, 2, etc. for the variance of the first trait, second trait, and so on or
12, 13, 23, etc. for the covariance between the first and second traits,
first and third traits, second and third traits, and so on. The second
dimension is indexed by the words "Estimate", "Std.err", "Wald", and
"W.p.value". The third dimension is indexed by the word "null" and
the marker file names.

sibling.sibling

the estimate, standard error, Wald score, and Wald score P-value for the
variance and covariance of the sibling to sibling effect of formula for the
null hypothesis and each marker. sibling.sibling is a 3-dimensional
matrix. The first dimension is indexed by the letters "sib" followed
by a 1, 2, etc. for the variance of the first trait, second trait, and so
on or 12, 13, 23, etc. for the covariance between the first and second
traits, first and third traits, second and third traits, and so on. The sec-
ond dimension is indexed by the words "Estimate", "Std.err", "Wald",
and "W.p.value". The third dimension is indexed by the word "null"
and the marker file names. To receive valuable data, the 5th member
of constraints in the multic.control object must be set to not "F"
(fixed).

parent.parent

the estimate, standard error, Wald score, and Wald score P-value for the
variance and covariance of the parent to parent effect of formula for the
null hypothesis and each marker. parent.parent is a 3-dimensional ma-
trix. The first dimension is indexed by the letter "p" followed by a 1, 2,
etc. for the variance of the first trait, second trait, and so on or 12, 13, 23,
etc. for the covariance between the first and second traits, first and third
traits, second and third traits, and so on. The second dimension is in-
dexed by the words "Estimate", "Std.err", "Wald", and "W.p.value".
The third dimension is indexed by the word "null" and the marker file
names. To receive valuable data, the 6th member of constraints in the
multic.control object must be set to not "F" (fixed).

parent.offspring

the estimate, standard error, Wald score, and Wald score P-value for the
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variance and covariance of the parent to offspring effect of formula for the
null hypothesis and each marker. parent.offspring is a 3-dimensional
matrix. The first dimension is indexed by the letter "q" followed by a 1, 2,
etc. for the variance of the first trait, second trait, and so on or 12, 13, 23,
etc. for the covariance between the first and second traits, first and third
traits, second and third traits, and so on. The second dimension is in-
dexed by the words "Estimate", "Std.err", "Wald", and "W.p.value".
The third dimension is indexed by the word "null" and the marker file
names. To receive valuable data, the 7th member of constraints in the
multic.control object must be set to not "F" (fixed).

log.liks the log likelihood, centimorgan distance, log likelihood status, and lod
score and P-value for the null hypothesis and each marker. log.liks is a
data.frame. The row names are "null" and the markder file names. The
column names are "log.likelihood", "distance", "log.lik.status",
"lod.score", and "p.value". The log likelihood status represents whether
the log likelihood converged before the maximum interations allowed or
not and have the values of either "converg" or "non-converg".

var.fixed the variance of the fixed effects of the traits and covariates for the null
hypothesis and each marker. var.fixed is a 3-dimensional matrix. The
first and second dimensions are indexed by the trait and covariate names.
The third dimension is indexed by the word "null" and the marker file
names.

var.random the variance of the polygenic, major gene, and environmental effects for
the null hypothesis and each marker. var.random is a 3-dimensional
matrix. The first and second dimensions are indexed as described by the
polygenic, major.gene1, and environmental components above. The third
dimension is indexed by the word "null" and the marker file names.

var.sandwich a more precise variance estimator after using a sandwich estimator ap-
proach. This is only calculated if the multic object represents a univariate
model. var.sandwich is a 3-dimensional matrix. The first and second
dimensions are indexed by "s1", "mg1", and "e1". The third dimension
is indexed by the word "null" and the marker file names.

cors the Pearson, Spearman, genetic, environmental, and phenotypic correla-
tions. cors is a list made up of the components "pearson", "spearman",
"genetic", "environment", and "phenotype". Both "pearson" and
"spearman" are their respective correlations between the traits and covari-
ates. They are 2-dimensional matrices indexed by the trait and covariate
names. "genetic", "environment", and "phenotype" are the respective
correlations between the polygenic and environmenal estimates. They
are 2 dimensional matrices. The first dimension is indexed by the word
"null" and the marker file names. The second dimension is indexed as
described by the covariance portions of the polygenic and environmenal
components above.

v.matrices the variance-covariance matrix of the trait (y) that incorporates the poly-
genic, major gene, shared common environment, and error matrices. v.matrices
is a 2-dimensional matrix. The first dimension is indexed by the family
identifier (famid) values. The second dimension is indexed by the word
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"null" and the marker file names. Currently, there are no individual
identifiers on each of the V matrices. If the V matrices are not calcu-
lated, then v.matrices is a character vector providing instructions how
to calculate the values.

residuals the observed values minus the fitted values of the trait (y) divided by
the square root of the V matrix for each family. If the residuals are not
calculated, then residuals is a character vector providing instructions
how to calculate the values.

descriptives the total individuals used, mean, standard deviation, minimum, maxi-
mum, kurtosis, and skewness for each trait and covariate.

counts various counts of the total number of pedigrees, people, females, males,
and so on. This is mostly for passing data for print and summary to
display and is very likely to be not useful to the user community.

call how multic was called. call is a call object.

R.sq the proportion of variance due to the covariates.

metadata a list of useful data like start.time, finish.time, call, epsilon, trait.count,
iterations, null.initial.values, method, etc.

Generation

This class of objects is returned by the multic function to represent a fitted variance
components model.

Methods

Objects of this class have methods for the functions polygene, print, plot, fitted,
residuals, and summary

See Also

multic

multic.control Set control parameters for multic

Description

Allows users to alter the default behavior of multic

Usage

multic.control(epsilon = 1e-5,
max.iterations = 50,
boundary.fix = TRUE,
constraints = c("E", "E", "E", "E", "F", "F", "F"),
initial.values = NULL,
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save.output.files = FALSE,
method = c("multic", "leastsq", "maxfun", "emvc"),
calc.fam.log.liks = FALSE,
calc.residuals = FALSE,
keep.input = calc.residuals)

Arguments

epsilon a numeric value specifying the convergence threshold. When the difference
of an iteration’s loglikelihood and the previous iteration’s loglikelihood are
less than epsilon, the value has ”converged”.

max.iterations

an integer value specifying the maximum number of iterations multic will
take to converge during the polygenic and sporadic model calculations.

boundary.fix logical flag: if TRUE, then the variances generated will be fixed to 0 and
no longer estimated when they become less than 0.00001 (1e-5).

constraints a character vector of length seven (7) specifying the constraints on the
random effects variance components. Each value of the vector needs to
be either "E" - ‘E’stimate the variance and covariance, "C" - estimate the
variance and ‘C’onstrain the covariance, or "F" - ‘F’ix the variance and
covariance to 0. Each index of constraints corresponds to (in this exact
order) mu, polygene, major gene, environment, sibling-sibling, parent-
parent, and parent-offspring.

initial.values

numeric vector: use the specified initial values instead of calculating them
automatically. This vector has a very specific length and order. If n is
the number of traits and m is ( n + (n-1) + (n-2) + ... + 1 ), then the
length must be n + 6 * m. So for one trait (univariate), the length must
be 7, for two traits (bivariate), 20, and so on. The position of the values
in the vector is important as well. The first n terms are the mu starting
values. The next starting values come in chunks of m. The next m values
are the polygenic starting values, followed by major gene, environmental,
sibling-sibling, parent-parent, and parent-offspring starting values. The
metadata$null.initial.values contains the placement of the starting values.
You can use this to verify your order is correct.

save.output.files

logical flag: if TRUE, then the multiple temporary output files multic
generates are not removed. This is mostly for debugging purposes and is
very likely to be not useful to the user community.

method a character value specifying the method to use in fitting the model. Possi-
ble values include "multic" (default), "leastsq", "maxfun", and "emvc"
(all case insensitive).

calc.fam.log.liks

logical flag: if TRUE, then the family log likelihoods will be returned in
the multic object. WARNING: This significantly increases the size of
the returned multic object.
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calc.residuals

logical flag: if TRUE, then the residuals will be calculated and Y beta
differences and V matrix data will be returned in the multic object.
WARNING: This dramatically increases the size of the returned multic
object.

keep.input logical flag: if TRUE, then the traits and covariates will be saved in the
metdata list of the multic object. Since the input is needed during special
residual calculations, its default value is that of calc.residuals.

Value

a list that is designed to be supplied as a control argument to multic. The values for
multic.control can be supplied directly in a call to multic (via the ... parameter).
These values are then filtered through multic.control inside multic.

See Also

multic, multic.object

Examples

## The following calls to multic are equivalent

multic(formula, data, control = multic.control(calc.fam.log.liks = TRUE,

calc.residuals = TRUE))

multic(formula, data, calc.fam.log.liks = TRUE, calc.residuals = TRUE)

print.multic Use print() on a multic object

Description

This is a method for the function print() for objects inheriting from class multic. See print
or print.default for the general behavior of this function and for the interpretation of x.

Usage

print.multic(x, ...)

Arguments

x a multic object

... additional parameters to alter the default behavior of print.multic. Cur-
rently ... only exists to pass ’R CMD check’ tests.
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plot.multic Plot a multic object

Description

This is a method for the function plot() for objects inheriting from class multic. See plot
or plot.default for the general behavior of this function and for the interpretation of x.

Usage

plot.multic(x, ...)

Arguments

x a multic object

... additional arguments like xlim, ylab, etc.

solar2multic Convert SOLAR-formatted output into multic-formatted
mloci.out and share.out

Description

solar2multic is a utility function to convert the ibd and mibd files (identity by descent)
files created by SOLAR into the multic input file mloci.out and convert the phi2 created
by SOLAR into the multic input file share.out.

Usage

solar2multic(phi2, pedigree.file, pedindex.out, pedindex.cde,
ibd.directory, ibd.dist = NULL, output.directory = ".",
delete.fixed.dir = TRUE)

Arguments

phi2 character value specifying a path to a SOLAR-formatted phi2 file. Due
to the general size of a typical phi2 file, it is often stored in .gz format.
solar2multic will manage this for the user. Whether the user specifies
the file with a .gz suffix or not will not effect how solar2multic operates
on the file.

pedigree.file

character value specifying a path to a SOLAR-formatted pedigree struc-
ture file (.ped). This file must have a header of famid, id, fa, mo, and
sex (case insensitive). The file must also be comma separated.
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pedindex.out character value specifying a path to a SOLAR-formatted pedindex.out
file. This file must be the same that was output from SOLAR. It provides
a mapping between the sequential number system assigned by SOLAR
and the original family and individual identifiers.

pedindex.cde character value specifying a path to a SOLAR-formatted pedindex.cde
file. This file must be the same that was output from SOLAR. This
file describes how pedindex.out is organized. This is necessary to read
pedindex.out correctly.

ibd.directory

character value specifying a path to a directory containing SOLAR-formatted
ibd and/or mibd files.

ibd.dist charater value specifying a path to a SOLAR-formatted .dist file that
maps the character marker names to numeric centimorgan values.

output.directory

character value specifying a path to a directory that the output files
(mloci.out and share.out) will be placed. If any of the specified directory
path does not exist, solar2multic will create the necessary directories.

delete.fixed.dir

logical flag: if TRUE (default), then the temporary directory that is created
to hold intermediate files is deleted.

Side Effects

Due to write permissions possibly not allowing the user to gunzip and create files in the
specified directory, solar2multic first copies directory and phi2 to the current direc-
tory. solar2multic then creates a temporary directory to hold the ”fixed,” intermedi-
ate files that will be deleted (by default). Also, solar2multic will overwrite mloci.out,
mloci.out.gz, share.out and share.out.gz if they exist in output.directory.

See Also

solar2mloci, phi2share

Examples

solar2multic(phi2 = "phi2.gz",

pedigree.file = "chrom18.ped",

pedindex.out = "pedindex.out",

pedindex.cde = "pedindex.cde",

ibd.directory = "mibddir",

output.directory = "multicInput",

delete.fixed.dir = FALSE)

solar2multic("solarOutput/phi2",

"solarOutput/chrom10.ped",

"solarOutput/pedindex.out",

"solarOutput/pedindex.cde",

"mibds/chrm10"))
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phi2share Convert a SOLAR-formatted phi2 file into a multic-formatted
share.out file.

Description

phi2share reads in the specified files and generates a multic-formatted share.out file.
share.out contains unique identifiers, expected shared genetic material, and sibling, spousal,
and parent-offspring true/false values.

Usage

phi2share(phi2, pedigree.file, pedindex.out, pedindex.cde,
output.directory=".")

Arguments

phi2 a character value to specify the location of a SOLAR-formatted phi2 (or
similarly formatted) file. Due to the general size of a typical phi2 file, it
is often stored in .gz format. phi2share will manage this for the user.
Whether the user specifies the file with a .gz suffix or not will not effect
how phi2share operates on the file.

pedigree.file

a character value to specify the location of a .ped (or similarly formatted)
file. This file must have a header of famid, id, fa, mo, and sex (case
insensitive). The file must also be comma separated.

pedindex.out a character value to specify the location of a pedindex.out file. This file
must be the same that was output from SOLAR. It provides a mapping
between the sequential number system assigned by SOLAR and the orig-
inal family and individual identifiers.

pedindex.cde a character value to specify the location of a pedindex.cde file. This
file must be the same that was output from SOLAR. This file describes
how pedindex.out is organized. This is necessary to read pedindex.out
correctly.

output.directory

a character value specifying which directory to place the output share.out.
If output.directory (including supporting path) does not exist yet, it
will be created. The default directory is the current directory.

Side Effects

phi2share creates a local copy of, gunzip’s, and removes the copy of phi2. It also will
overwrite share.out and share.out.gz if they exist in output.directory.

See Also

solar2mloci, solar2multic
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Examples

phi2share(phi2 = "phi2",

pedigree.file = "chrom18.ped",

pedindex.out = "pedindex.out",

pedindex.cde = "pedindex.cde",

output.directory = "multicInput")

phi2share("solarOutput/phi2.gz",

"solarOutput/chrom18.ped",

"solarOutput/pedindex.out",

"solarOutput/pedindex.cde")

solar2mloci Convert a directory of SOLAR-formatted ibd and/or mibd files
into a multic-formatted mloci.out

Description

solar2mloci reads all of the ibd and mibd files in the given directory, and creates mloci.out.gz
in the specified output directory.

Usage

solar2mloci(directory, phi2, pedindex.out, pedindex.cde,
ibd.dist = NULL, output.directory = ".",
delete.fixed.dir = TRUE)

Arguments

directory charater value specifying a path to a directory of SOLAR-formatted ibd
and/or mibd files. These files are often kept in .gz format. solar2mloci
will manage this for the user.

phi2 charater value specifying a path to a SOLAR-formatted phi2 file. Due
to the general size of a typical phi2 file, it is often stored in .gz format.
solar2mloci will manage this for the user. Whether the user specifies
the file with a .gz suffix or not will not effect how solar2mloci operates
on the file.

pedindex.out character value specifying a path to a SOLAR-formatted pedindex.out
file. This must be the same file that was output from SOLAR. It provides
a mapping between the sequential number system assigned by SOLAR
and the original family and individual identifiers.

pedindex.cde character value specifying a path to a SOLAR-formatted pedindex.cde
file. This must be the same file that was output from SOLAR. This file
describes the format of pedindex.out. This is necessary to read pedin-
dex.out correctly.

ibd.dist charater value specifying a path to a SOLAR-formatted .dist file that
maps the character marker names of ibd files to their corresponding nu-
meric centimorgan values.
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output.directory

charater value specifying a path to a directory where the output file
mloci.out.gz will be created. If the directory (including supporting path)
does not exist yet, it will be created. Also, solar2mloci will overwrite
mloci.out and mloci.out.gz if they exist in output.directory.

delete.fixed.dir

logical flag: if TRUE, delete the temporary directory used to ”fix” the
SOLAR-formatted ibds and mibd files. This is mostly for debugging
purposes and is very likely to be not useful to the user community.

Side Effects

Due to write permissions possibly not allowing the user to gunzip and create files in the
specified directory, solar2mloci first copies directory and phi2 to the current directory.
solar2mloci then creates a temporary directory to hold the ”fixed,” intermediate files that
will be deleted (by default). Also, solar2mloci will overwrite mloci.out and mloci.out.gz
if they exist in output.directory.

See Also

phi2share, solar2multic

Examples

solar2mloci(directory = "ibddir", phi2 = "phi2",

pedindex.out = "pedindex.out", pedindex.cde = "pedindex.cde",

ibd.dist = "solar.dist", output.directory = "multicInput",

delete.fixed.dir = FALSE)

solar2mloci("mibds/chrm10", "solarOutput/phi2.gz",

"solarOutput/pedindex.out", "solarOutput/pedindex.cde")

sw2mloci Convert SimWalk IBD files into a single mloci.out.

Description

sw2mloci converts all IBD files in a given directory into a sinlge mloci.out needed my multic,
altering the centimorgan values if a map argument is provided.

Usage

sw2mloci(directory, map="", output.directory=".")
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Arguments

directory a character object specifying the name of the directory that contains the
SimWalk IBD files. This can be an absolute or relative path.

map a character object specifying the name of a .map file to be used to modify
the centimorgan values in the mloci.out file. This can be an absolute
or relative path and does not have to be in the same directory as the
parameter directory.

output.directory

a character object specifying the name of the directory to put the finished
mloci.out.gz. This can be an absolute or relative path. If the directory
does not exist, it will be created.

Value

a character object specifying the name of the file created. In general, this will be ”mloci.out.gz”.

Side Effects

If a file named ”mloci.out” or ”mloci.out.gz” already exist in the current directory, sw2mloci
will move them to ”mloci.out.before” or ”mloci.out.before.gz” respectively before doing any
calculations. sw2mloci also copies the IBD files and map file (if it is specified) to a temp
space. This is done to bypass any write permission issues. This temp space is deleted when
the function is finished. It also creates a temp space to hold the intermediate mibd files.
These also will be deleted at the end of the function.

See Also

There are similar functions to deal with SOLAR mibds, see phi2share, solar2mloci, and
solar2multic.

Examples

sw2mloci("../otherInput/sw18", "../otherInput/sw18/c18.map")

sw2mloci("sw18")

sw2mloci(".", "sw18/c18.map", output.directory = "multicInput")

addGE Assess combinations of univariate multic objects

Description

Determine whether there is any evidence that running a multivariate multic model will
significantly increase the evidence of a genetic effect.
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Usage

addGE(multic.objs, combine=2, plotit=FALSE, ibd.dist, statistic=c("lrt",
"wald"), legend=TRUE, ...)

Arguments

multic.objs A list of 1-trait multic objects.

combine Indicate how many traits should be examined together. The program will
then look at all N traits choose ’combine’.

plotit Logical, default=FALSE. If TRUE, a LOD plot is generated with a sep-
arate line for each combination of traits.

ibd.dist The default is to use the distances from the first multic object. This
options allows the user to provide a different set of distances.

statistic Character, default=”lrt”. This determines whether the Wald statistic
(MG/SE) or the LRT is used when combining the traits.

legend Logical, default=TRUE. If TRUE and if plotit=TRUE then a legend is
automatically provided.

... Allows for graphical parameters to be passed to the plot function (only
applicable when plotit=TRUE).

Value

A data frame is returned if the function is assigned to new object. Included are the various
combinations (listed in order 1-N), the Chi-square statistic, the p-value, the distance, and
the LOD score.

Side Effects

If plotit=T, a plot is generated on the current graphical device.

References

M. de Andrade, C. Olswold, J.P. Slusser, L.A.Tordsen, E.J. Atkinson, K.G. Rabe, and
S.L.Slager. Identification of genes involved in alcohol consumption and cigarette smoking.
BMC Genetics, 6:S112, 2005.

See Also

multic, gene.eff

Examples

add2 <- addGE(list(bmi10, dia10, sys10), combine = 2, plotit = T, ylim=c(0,8), legend=F)

add3 <- addGE(list(bmi10, dia10, sys10), combine = 3, plotit = F)

lines(add3$cM, add3$lod, col=4, lwd=2, lty=4)

key(corner=c(0,1), lines=list(lwd=2, col=1:4, lty=1:4),

text=list(c('BMI-Dia','BMI-Sys','Dia-Sys','BMI-Dia-Sys'), col=1:4))
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expand.multic Create ”bootstrapped” versions of mloci.out and share.out for
multic

Description

expand.multic is a utility function to create ”bootstrap”ed versions of mloci.out and share.out

Usage

expand.multic(famids, mloci.out=NULL, share.out=NULL)

Arguments

famids famids is a character or integer vector that specifies the family order in a
”bootstrapped” fashon. Each index of famids is the famid (family iden-
tifier) from the original dataset not the index of the family. An example
famids argument would be famids <- sample(famid, length(unique(famid)),
replace = TRUE). IMPORTANT NOTE: This sequence of famids must
be the same as that passed to expand.data. If they are not, the dataset
and the external data will not match.

mloci.out a character value specifying the name of an mloci.out file. This file needs
to have the famid portion (i.e., the characters before the hyphen [-]) of
the unique id for each entry.

share.out a character value specifying the name of an share.out file. This file needs
to have the famid portion (i.e., the characters before the hyphen [-]) of
the unique id for each entry.

Value

a list of two elements. The first is the name of the new mloci.out file. The second element
is the name of the new share.out. Either element may be NULL if the respective input was
NULL.

Side Effects

the output files are created in the current directory. If either of the input files (mloci.out
or share.out) were gzip’ed, expand.multic will gunzip them. Currently, this is done in their
own directory. However, in the future, this can be done in a temporary. Also, a directory
named ”loci” is temporarily craeted to hold split mloci.out file.

See Also

expand.data
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Examples

famids <- sample(famid, length(unique(famid)), replace = TRUE)

new.files <- expand.multic(famids, "input/mloci.out", "input/share.out")

mult.obj <- multic( -- your formula, data, famid, etc. here --

mloci.out = new.files$new.mloci.out,

share.out = new.files$new.share.out)

expand.data Create a ”bootstrapped” version of a dataset to be used in multic.

Description

When using multic to bootstrap over families, an appropriate data set is needed. By
providing a random set of famids, expand.data creates such a dataset.

Usage

expand.data(famids, d.frame)

Arguments

famids famids is a character or integer vector that specifies the family order in a
”bootstrapped” fashon. Each index of famids is the famid (family iden-
tifier) from the original dataset not the index of the family. An example
famids argument would be famids <- sample(famid, length(unique(famid)),
replace = TRUE). IMPORTANT NOTE: This sequence of famids must
be the same as that passed to expand.multic. If they are not, the dataset
and the external data will not match.

d.frame the data.frame that holds the family structure and phenotype data. This
should be the dataset that was used to sample famid.

Value

a data.frame that contains the bootstrapped version of the input dataset

See Also

expand.multic

Examples

famids <- sample(famid, length(unique(famid)), replace = TRUE)

expaned.ped.phen <- expand.data(famids, ped.phen)

12 Acknowledgements

We would like to acknowledge the GAW grant, GM31575, for use of the Simulated data from
GAW 13.

57



References

[1] D. B. Allison, M. C. Neale, R. Zannolli, N. J. Schork, C. I. Amos, and J. Blangero. Testing
the robustness of the likelihood ratio test in a variance-component quantitative trait loci
(qtl) mapping procedure. Am J Human Genetics, 65:531–545, 1999.

[2] D. B. Allison, B. Thiel, P. Jean, R. C. Elston, M. C. Infante, and N. J. Schork. Multiple
phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am
J Human Genetics, 63:1190–1201, 1998.

[3] L. Almasy, , T. D. Dyer, and J. Blangero. Bivariate quantitative trait linkage analysis:
Pleiotropy versus co-incident linkages. Genetic Epidemiology, 14:953–958, 1997.

[4] L. Almasy and J. Blangero. Multipoint quantitative-trait linkage analysis in general pedi-
grees. An J Human Genetics, 62:1198–1211, 1998.

[5] C. I. Amos. Robust methods for detection of genetic linkage for data from extended families
and pedigrees. PhD thesis, Louisiana State University, 1988.

[6] C. I. Amos. Robust variance-components approach for assessing genetic linkage in pedi-
grees. Am J Human Genetics, 54:535–543, 1994.

[7] C. I. Amos, M. de Andrade, and D. Zhu. Comparison of multivariate tests for genetic
linkage. Human Heredity, 51:133–144, 2001.

[8] C. I. Amos, R. C. Elston, G. E. Bonney, B. J. B. Keats, and G. S. Berenson. A multivariate
method for detecting genetic linkage with application to the study of a pedigree with an
adverse lipoprotein phenotype. Am J Human Genetics, 47:247–254, 1990.

[9] C. I. Amos, D. Zhu, and E. Boerwinkle. Assessing genetic linkage and association with
robust components of variance approaches. Annals of Human Genetics, 60:143–160, 1996.

[10] B. Basrak, C. A. J. Klaassen, M. Beekman, N. G. Martin, and D. I. Boomsma. Copulas
in qtl mapping. Behavior Genetics, 34:161–172, 2004.

[11] W. C. Blackwelder and R. C. Elston. A comparison of sib-pair linkage tests for disease
susceptibility loci. Genetic Epidemiology, 2:85–97, 1985.

[12] J. Blangero and L. Almasy. Solar: sequential oligogenic linkage analysis routines. Popula-
tion Genetics Laboratory 6, Southwest Foundation for Biomedical Research, San Antonio,
TX 78228, 1996.

[13] J. Blangero and L. Almasy. Multipoint oligogenic linkage analysis of quantitative traits.
Genetic Epidemiology, 14:959–964, 1997.

[14] J. Blangero, J. T. Williams, and L. Almasy. Variance components methods for detecting
complex trait loci. Advances in Genetics, 42:151–181, 2001.

[15] D. I. Boomsma and C. V. Dolan. A comparison of power to detect a qtl in si b-pair data
using multivariate phenotypes, mean phenotypes, and factor scores. Behavior Genetics,
28:329–340, 1998.

[16] M. de Andrade, C. Amos, and T. J. Thiel. Methods to estimate genetic components of
variance for quantitative traits in family studies. Genetic Epidemiology, 17:64–76, 1999.

58



[17] M. de Andrade, B. Fridley, E. Boerwinkle, and S. T. Turner. Diagnostic tools in linkage
analysis for quantitative traits. Genetic Epidemiology, 39:1–38, 2003.

[18] M. de Andrade, R. Gueguen, S. Visvikis, C. Sass, G. Siest, and C. Amos. Extension of
variance components approach to incorporate temporal trends and longitudinal pedigree
data analysis. Genetic Epidemiology, 22:221–232, 2000.

[19] M. de Andrade, J. Krushkal, L. Yu, and C. Amos. Act - a computer package for analysis
of complex traits. Am J Human Genetics, 63:A287, 1998.

[20] M. de Andrade, C. Olswold, J.P. Slusser, L.A.Tordsen, E.J. Atkinson, K.G. Rabe, and
S.L.Slager. Identification of genes involved in alcohol consumption and cigarette smoking.
BMC Genetics, 6:S112, 2005.

[21] M. de Andrade, T. J. Thiel, L. Yu, and C. I. Amos. Assessing linkage in crhomosome 5 using
components of variance approach: univariate versus multivariate. Genetic Epidemiology,
14:773–778, 1997.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. jrssb, 39:1–38, 1977.

[23] P. J. Diggle, K. Y. Liang, and S. L. Zeger. Analysis of longitudinal data. Clarendon Press,
Oxford, 1995.

[24] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. Chapman and Hall, New
York, 1993.

[25] R. C. Elston, S. Buxbaum, K. B. Jacobs, and J. M. Olson. Haseman and elston revisited.
Genetic Epidemiology, 19:1–17, 2000.

[26] R. A. Fisher. The correlation between relatives on the supposition of mendelian inheritance.
Transactions of the Royal Society - Edinburgh, 52:399–433, 1918.

[27] J. K. Haseman and R. C. Elston. The investigation of linkage between a quantitative trait
and a marker locus. Behavior Genetics, 2:3–19, 1972.

[28] J. L. Hopper and J. D. Mathews. Extensions to multivariate normal models for pedigree
analysis. Annals of Human Genetics, 46:373–383, 1982.

[29] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions.
In Fifth Berkeley Symp on Math Stat Probab, volume 1, pages 221–233, 1967.

[30] S. J. Iturria and J. Blangero. An em algorithm for obtaining maximum likelihood estimates
in the multi-phenotype variance components linkage model. Annals of Human Genetics,
64:349–369, 2000.

[31] R. E. Jennrich and M. D. Schluchter. Unbalanced repeated-measures models with struc-
tured covariance matrices. Biometrics, 42:802–802, 1986.

[32] N. M. Laird. Computation of variance components using the em algorithm. J Stat Comp
Sim, 14:295–303, 1982.

[33] E. L. Lehman. Nonparametrics: Statistical Methods Based On Ranks. Holden-Day, San
Fransisco, CA, 1975.

59



[34] A. L. Louis. Finding the observed information matrix when using the em algorithm. jrssb,
44:226–233, 1982.

[35] X.-L. Meng and D. B. Robin. Using em to obtain asymptotic variance-covariance matrices:
The sem algorithm. jasa, 86:899–909, 1991.

[36] M. C. Neale and L. R. Cardon. Methodology for genetic studies of twins and families.
Kluwer Academic Publishers, Dordrecht, 1993.

[37] M. A. Province and D. C. Rao. A new model for the resolution of cultural and biologi-
cal inheritance in the presence of temporaltrends: application to systolic blood pressure.
Genetic Epidemiology, 2:363–374, 1985.

[38] M. A. Province and D. C. Rao. Familial aggregation in the presence of temporal trends.
Statistics in Medicine, 7:185–198, 1988.

[39] D. C. Rao, N. E. Morton, and S. Yee. Analysis of family resemblance. ii. a linear model
for familial correlation. American Journal of Human Genetics, 26:331–359, 1974.

[40] S. Schmitz, S. S. Cherny, and D. W. Fulker. Increase in power through multivariate
analyses. Behavior Genetics, 28:357–363, 1998.

[41] S. R. Searle. Matrix Algebra Useful for Statistics. Wiley, New York, 1982.

[42] S. R. Searle, G. Gasella, and C. E. McCulloch. Variance Components. Wiley & Sons, New
York, 1992.

[43] S. G. Self and K. Y. Liang. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard condtitions. jasa, 82:605–610, 1987.

[44] P. C. Sham and S. Purcell. Equivalence between haseman-elston and variance-components
linkage analyses for sib pairs. American Journal of Human Genetics, 68:1527–1532, 2001.

[45] E. Sobel and K. Lange. Descent graphs in pedigree analysis: applications to haplotyping,
location scores, and marker-sharing statistics. Am J Human Genetic, 58:1323–1337, 1996.

[46] A. J. M. Sorant and R. C. Elson. A subroutine package for function maximization (a user’s
guide to MAXFUN version 6.0): S.A.G.E. documentation, 1994.

[47] E. A. Thompson and R. G. Shaw. Pedigree analysis for quantitative traits: Variance
components without matrix inversion. Biometrics, 46:399–413, 1990.

[48] S. T. Turner, T. R. Rebbeck, and C. F. Sing. Sodium-lithium countertransport and prob-
ability of hypertension in caucasians 47 to 89 years old. J Hypertension, 20(6):841–850,
1992.

[49] S. T. Turner and C. F. Sing. Erythorocyte sodium transport and the probability of having
hypertension. J Hypertension, 14(7):829–837, 1996.

[50] S. T. Turner, W. H. Weidman, V. V. Michels, T. J. reed, C. L. Ormson, T. Fuller, and C. F.
Sing. Distribution of sodium-lithium countertransport and blood pressure in caucasians
five to eighty-nine years of age. Hypertension, 13:378–391, 1989.

[51] J. T. Williams, P. Van Eerdewegh, L. Almasy, and J. Blangero. Joint multipoint linkage
analysis of multivariate qualitative and quantitative traits. i. likelihood formulation and
simulation results. Am J of Human Genetics, 65:1134–1147, 1999.

60


