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ABSTRACT 

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry 

(ESI-FT-ICR-MS) is a potentially superior biomarker discovery platform because it offers 

high mass-measurement accuracy and high mass-measurement precision as well as 

high resolving power over a broad mass-to-charge (m/z) range.  The electrospray 

ionization of large molecules is characterized by multiple charge states for each 

molecular species, which is advantageous for mass calibration and peak detection.  

Herein, we describe and evaluate a simultaneous mass-calibration and peak-detection 

algorithm that exploits resolved isotopic peak-spacing information as well as space-

charge frequency shifts across isotopic clusters that represent the same molecular 

species but differ in charge states by integer values.  The algorithm is performed on un-

windowed spectra in the frequency domain, where both peak shape and peak width are 

known, thus requiring fewer and more stable parameters in comparison to modified data.  

Furthermore, un-windowed frequency data are uncorrelated and equivariant and thus 

preferred for modeling fitting.  Previous calibration work has focused on the importance 

of incorporating internal calibrants in every sample, using external calibrants, or a 

combination of both with the goal of improving mass-measurement accuracy and mass-

measurement precision.  Our work suggests that a single external calibration sample is 

sufficient for data with high mass resolving power and an ionization process that allows 

large molecules to be characterized by multiple charge states.  
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General Notation 
c = number of ions (j = 1,…,c) 
d = number of zero fills prior to FFT 
f = cyclotron frequency 

k = number of neutrons 
m = mass 
n = number of sample points (i = 1,…,n) 
p = number of possible charge states (h = 1,…,p) 
s = isotopic cluster 
t = time 
z  = charge on the molecular ion 
 

1. INTRODUCTION 

Protein mass spectrometry (MS) is becoming a popular tool for biomarker discovery, 

and in particular, for the early detection of cancer and for understanding disease 

prognosis and progression.  MS allows one to directly assess protein expression as 

opposed to inferring protein expression from mRNA expression profiles.  MS consists of 

a diverse range of technologies and techniques and our efforts are directed towards 

accurately characterizing complex mixtures, e.g., the plasma proteome which requires 

high-end instrumentation.  Characterizing the plasma proteome is a challenging 

problem and review papers by Diamandis [1] and Anderson and Anderson [2] delineate 

that not only is the plasma proteome complex, it spans a wide dynamic range (>1010).  

For example, prostate specific antigen exists at approximately 1 4,000,000  the 

concentration of albumin and approximately 1 300  of other common protein biomarkers 

such as C-reactive protein.  As a result, it is difficult to detect and identify low-

abundance proteins in plasma even though these ultimately may be the most 

informative molecules for biomarker discovery.  However, with continued improvements 

in mass-spectrometry technology, the potential is being more fully realized.  A critical 
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issue that remains is the ability to analyze these complex datasets with sophisticated 

algorithms because it is not feasible to interpret the data manually.   

 

Data reduction methods for MS data are an active area of research and one that we 

pursue here.  In particular, an algorithm to reduce an individual MS spectrum that 

consists of about one-million data points down to a set of biologically-meaningful peaks 

while simultaneously performing mass calibration is presented.  This work is motivated 

by data that utilizes electrospray ionization Fourier transform ion cyclotron resonance 

mass spectrometry (ESI-FT-ICR-MS).  Here, components are charged using ESI [3-4], 

a technique that attaches one or more charges to each molecular species such that the 

average number of charges is related to the size of the component with a general rule 

for peptides being one charge per 1000 Daltons.  The mass analyzer is based on FT-

ICR technology [5-6] that has the advantage of extremely high resolving power, high 

mass-measurement accuracy, high mass-measurement precision, and wide dynamic 

range.  The proposed algorithm is able to utilize these qualities to approach mass 

calibration and peak detection simultaneously.   

 

The proposed algorithm is based on work by Horn et al. [7], who took advantage of the 

high-resolving power of ESI-FT-ICR-MS data and developed an automated peak-

detection algorithm called thorough high resolution analysis of spectra by Horn 

(THRASH).  Our proposed algorithm differs from THRASH in two primary respects.  

First, it is implemented entirely in the frequency domain where both peak shape and 

peak width are known to follow a sinc function [9].  Second, mass calibration is 
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combined with the peak-detection process by taking advantage of the individual peaks 

that comprise an isotopic cluster as well as the presence of multiple charge states for 

each molecular species as a direct result of the ESI process.  The benefits of multiply 

charged molecules for mass calibration have also been discussed by Bruce et al. [8].  

Bruce and colleagues developed DeCAL, a calibration procedure that estimates space-

charge effects by alternating between frequency space and m/z space to estimate a 

weighted average space-charge effect across molecular species with multiple charge 

states.  In contrast, our algorithm estimates space-charge effects using un-windowed 

and zero-filled FFT data by means of a nonlinear model.  By taking a modeling 

approach all necessary mass-calibration parameters, in addition to space-charge effects, 

are estimated concurrently and classical statistical techniques are applicable.   

 

2. BACKGROUND 

FT-ICR Background 

The overall signal from an ICR cell is a sum of sinusoids, 

         
1

( ) cos[2  ( )] ( )
c

i j j i j i
j

y t t tα π γ δ ε
=

= − +�       (1) 

where ( )iy t  is the transient signal at time it , i = 0,1,…,n-1, n is the number of sample 

points collected across the sampling interval, c is the number of ions in the sample, jα  

is the abundance (amount) of ion j, jγ  is the cyclotron frequency (typically expressed in 

Hz = cycles/second) of rotation of ion j, jδ  is the phase offset of ion j, and ( )itε  is the 

random error.  The values jα  and jγ  are the primary quantities of interest, whereas the 

phase offset jδ  merely reflects that ion j was not directly under the detection plate at 



 7 

time zero.  For computational ease, the number of sample points n is typically a power 

of two. 

 

The analysis of FT-ICR data proceeds by taking the discrete Fourier transform (DFT) of 

the transient signal ( )iy t  in equation 1, most commonly using the fast-Fourier transform 

(FFT), 

 1 2
1

[ ( )] ( ) [ cos(2  ) sin(2  )]
c

i i i i i i i i
j

DFT y t W f f t f tφ π φ π
=

= = +� .    (2) 

The FFT returns the cosine and sine coefficients, 1iφ  and 2iφ , respectively, for a set of 

frequency values if i= ,  0,1,..., 1i n= − , where the if  are in units of total cycles.  The 

coefficients of the FFT in equation 2 represent the covariance of each probe frequency 

if  with the true signal, i.e., 

1 cos(2 ),cos(2  ( ))i i i j i jCov f t tφ π π γ δ� �= −� �  and  

2 sin(2 ),cos(2  ( ))i i i j i jCov f t tφ π π γ δ� �= −� �,        (3) 

and are used to transform the abundance coefficients from the time domain to the FFT 

domain.  Typically the data are zero filled before implementing the FFT to improve local 

resolution.  Assuming n is a power of two, if the data are zero filled d times then 

(2 1)d n−  zeros are placed at the end of the transient and the corresponding frequencies 

are (2 )d
if i=  where 0,1,..., ( 2 ) 1di n= − .  For example, if the data are zero filled 2d =  

times, then 3n zeros are placed at the end of the transient and the frequencies are 

equal to 0,  1 4,  1 2,  3 4,  1,...,  1f n= − .   
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Figure 1a displays the FFT of a FT-ICR mass spectrum.  Since the cyclotron frequency 

of a species in the ICR cell is inversely proportional to the mass-to-charge (m/z) ratio of 

the ion in question, each peak (vertical line) in the figure corresponds to a distinct m/z 

ratio.  Figure 1b expands the 219.5 to 220.5 kHz region, which displays one isotopic 

cluster of a doubly charged species.  In Figure 1b, A denotes the monoisotopic peak 

and adjacent peaks in the figure differ in mass by one neutron, corresponding to the 

replacement of one 12C by one 13C isotope, or one 1H � 2H, 14N � 15N, etc.  Note that 

because of the inverse relationship between frequency and mass, the peak with the 

largest mass, A+4 , corresponds to the smallest frequency.     

 

The FFT transform of each of the c ions (j=1,…,c) in equation 1, ignoring the phase 

information, is the sinc function displayed in Figure 2 [9].  The overall FFT is the sum of 

sinc functions,  

( )
( )

1 ( )

sin[ ( )]
( ) ( )

( )

c
i j s

i j s i
j i j s

f
Y f f

f

π γ
α ε

π γ=

−
= +

−�
�

�
      (4) 

where 2 2
1 2( )i i iY f φ φ= +  denotes the FFT abundance at frequency if , ( )j sα  denotes the 

abundance of ion j nested within isotope cluster s and ( )j sγ�  denotes the frequency of ion 

j nested within cluster s.  Note that the if  returned from the FFT in equation 2 are in 

terms of total cycles and the jγ  in equation 1 are in cycles-per-second, so there is minor 

conversion ( ( )
j

j s

n

r

γ
γ =� ) in transferring from one to the other, where r denotes the 

number of sample points collected per second.  The nested notation ( )j s , used from 

here on, is incorporated due to the fact that the FFT signal contains isotopic clusters 
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and each cluster is made up of multiple peaks (ions).  For a point of reference, Figure 2 

displays the fit of the sinc function against un-windowed observed FFT data with d=2 

zero fills. 

 

If the true frequency ( )j sγ�  for a particular ion were an integer value and the FFT were 

not zero filled, then the FFT data would consist of a single non-zero peak at ( )j sγ�  since 

the sinc function is equal to zero at integer spacings from the true frequency of the ion.  

Savitski et al. [10] used this fact to fit the sinc function to un-windowed and non zero-

filled FFT data in a particular way.  By pre-multiplying the transient data by exp( )iν−  

before applying the FFT, one obtains the discrete Fourier transform for the set of 

cyclotron frequencies h ν+ ,  h = 0,1,…,n-1.  Savitski and colleagues proposed doing 

this for a large number of offsets ν , and then ultimately chose the if h ν= +  from that 

image that is closest to being a single isolated peak.  Because windowing broadens 

peaks and compromises mass resolution [10], we also propose performing peak 

detection on un-windowed FFT data.  We use a more computationally efficient method 

of directly estimating ( )j sγ�  through the use of a sinc function.   

 

Mass Calibration as a Function of Mass 

The rational frequencies ( )j sγ�  for each ion are of course not of specific interest, but 

instead serve as a marker of the mass.  Zhang et al. [11] showed that frequency is 

inversely proportional to m/z, 

 0 1
argch e

z
f

m zm
β β ε

� �
= + +� 	� 	+
 �

       (5) 
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where f  refers to the cyclotron frequency of an ion as obtained from a FFT, 0β is an 

unknown intercept parameter, 1β  is an unknown slope parameter that is proportional to 

the magnetic-field strength, m  is the mass of an ion, z  is the number of charges, argch em  

is the mass of the charge carrier (~ 1.0073 Daltons) and � is the error term.  The 

unknown calibration parameters 0β  and 1β  are most commonly estimated using either 

internal or external calibrants.  Typically, the mass of the charge carrier is included in 

the mass of an ion and equation 5 is simplified to 0 1( / )f z mβ β ε= + + .  However, we will 

always separate the mass of the charge carrier from the mass of the ion. 

 

A more accurate form of equation 5 was recently proposed [12],  

0 1 2 3
arg

Total Ion
ch e

z
f A A

m zm
β β β β ε

� �
= + + + +� 	� 	+
 �

,      (6) 

which incorporates additive effects for ion abundance ( IonA ) and the total charge 

content in the ICR cell ( TotalA ).  McIver et al. [13] showed experimentally that the total 

charge content in the ICR cell for all ions exerts a linear decrease in all cyclotron 

frequencies.  Muddiman and Oberg [12] later proposed the transformation defined in 

equation 6.  

 

2. METHODS 

We assume that the errors ( )itε  in the raw data, i.e. the digitized transient signal 

represented in equation 1, are uncorrelated and have constant variance over the time of 

acquisition.  Both are reasonable assumptions given our knowledge of the physical 
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system that creates the transient signal.  Because the discrete Fourier transformation 

corresponds to multiplication of the data by an orthogonal matrix, un-windowed FFT 

data are also uncorrelated and equivariant.  However, this is not true of windowed FFT 

data, which have a more complex correlation structure.  This is also not true of data 

after transformation from frequency to m/z scale using any of equations 5-6.  Thus, from 

a statistical standpoint it is advantageous to do data fitting using only the transient data, 

or the un-windowed FFT data, as the covariance structure remains unaltered.  For this 

reason, the proposed procedure utilizes un-windowed FFT data for mass calibration and 

peak detection purposes. 

 

Mass Calibration as a Function of Frequency 

In the frequency domain we propose that the set of peaks corresponding to a molecular 

species can be jointly fit.  As such, it is not necessary to transform to the m/z domain for 

peak detection.  Specifically, equation 5 can be transformed such that the calibration 

equation is a function of 0f , the frequency of one of the peaks that comprise a species, 

instead of mass.  In doing so, it is assumed that the resolving power of the mass 

analyzer (e.g., FT-ICR) is such that isotopic clusters are resolved and at least a subset 

of the abundant species exists at multiple charge states, as is the case with ESI.  

Provided these assumptions hold, consider a single isotopic cluster that has 

charge 0z and denotes a molecular species of interest.  Let 0f  be the frequency of any 

identified peak (ion) in the isotopic cluster, 0m  the corresponding mass, and 0k  the 

number of neutrons present in that ion.  Assume that, at least locally, equation 5 holds.  
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Then, the frequency ,k zf  of another ion in a cluster, one with k neutrons and charge z , 

is 

 , 0 1 ,
0 arg 0( )k z k z

ch e neutron

z
f

m zm k k m
β β ε

� �
= + +� 	� 	+ + −
 �

,     (7) 

where neutronm  represents the mass difference between 12C and 13C (~1.0034 Daltons). 

Equation 7 implies that if the mass ( 0m ) for any single peak in an isotope cluster is 

known and the corresponding frequency location and charge can be estimated from the 

spectrum, than the expected frequency locations for all other peaks in the cluster is a 

simple calculation because the peaks differ only by the mass of a neutron ( neutronm ). 

 

Reformulating equation 7 to be a function of 0f  instead of 0m  results in 

1

0 arg 0
, 0 ,

0 0 0 1 0

( ) ( )1
  ch e neutron

k z k z

z z m k k mz
f

z f z
β ε

β β

−− + −� �� �
= + + +� 	� 	−
 �
 �

.  (8) 

Briefly, to obtain equation 8 we have simply transformed a well-understood linear 

calibration transformation that is a function of mass (equation 5) into a nonlinear 

calibration transformation that is a function of frequency.  The motivation for obtaining 

an equation that is a function of frequency was to be able to perform mass calibration 

without calibration information.  Thus, equation 8 utilizes frequency information from 

individual ions that comprise isotopic distributions (determined by the mass of a 

neutron) in addition to molecular species that exist at multiple charge states (determined 

by the mass of the charge carrier) for mass calibration.  To verify the utility of the 

calibration parameters in this setting, we examined the resulting frequency shifts that 

were associated with changing each of parameter estimates (Table 1).  Table 1 shows 
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that changes in 1β  affect overall peak spacing while changes in 0β  primarily result in 

charge-state frequency shifts (shifts due to space-charge effects).  This implies that 1β  

can be estimated from molecules that exist at only a single charge state, whereas 0β  

requires the existence of molecules that are present at multiple charge states.  Lastly, 

note that 0z would be completely aliased with 1β  were it not known that 0z  is an integer 

� 1.   

 

To estimate the calibration parameters in equation 8 requires the use of a numerical 

procedure (e.g., Nelder-Mead Simplex, Gauss-Newton, Newton-Raphson) [14].  With 

respect to estimation, equation 8 is less problematic than using equation 7.  Equation 7 

is a function of mass ( 0m ); yet, mass is a function of the calibration parameters.  As a 

consequence of the poorly parameterized model, the numerical procedure will have 

difficulties converging to the correct parameter estimates.  For poorly parameterized 

models, Seber and Wild [14] state that changing the parameterization of the model can 

have a marked effect on the performance of the algorithm.  Thus, equation 8 is a re-

parameterized version of the model, which is a function of frequency instead of mass.   

 

Provided that there is justification, additional effects are easily incorporated into the 

reformulated calibration equation defined in equation 8.  For example, the linear 

calibration equation defined in equation 6 is also easily reformulated to be a function of 

0f  instead of 0m , 
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,

,

1

0 arg 0

, 0 2 3 ,

0 0 0 2 3 1 0

( ) ( )1
  

k z

k zo o

ch e neutron

k z Total f k z

Total f

z z m k k mz
f A A

z f A A z
β β β ε

β β β β

−

− + −
= + + + + +

− − −

� �� �
� 	� 	� 	
 �
 �

  

(9) 

where 
,k zfA  denotes the abundance of peak ,k zf , and, 0z  and 0k  is the charge and the 

number of neutrons for peak denoted as 0f . 

 

Modeling Isotopic Distributions 

To model isotopic distributions, a template is built based on averagine, an average 

amino acid that was developed specifically for modeling isotopic distributions [15].  

Table 2 presents the isotopic decomposition, based on averagine, for a molecular 

species of mass 906.6723 Daltons.  The expected number of extra neutrons for an ion 

is a function of the number of isotopes present and the corresponding natural 

abundance.  Because the sum of Poisson densities is itself a Poisson density, the joint 

isotopic distribution for all single (+1) isotopes follows a Poisson distribution with shape 

parameter ( 1)λ + , where ( 1)λ +  denotes the expected number of extra neutrons for all +1 

isotopes.  Likewise, the joint isotopic distribution for the +2 isotopes is two times a 

Poisson random variable with shape parameter ( 2)λ +  and the joint distribution for the +3 

isotopes is three times a Poisson random variable with shape parameter ( 3)λ + .  The 

theoretical isotopic distribution for the combination of +1, +2, and +3 isotopes is the 

convolution of the three aforementioned Poisson random variables. 
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Rockwood and Van Orden [16] developed an algorithm to compute the expected 

isotopic distribution based on a Fourier convolution.  For the data presented in this 

paper, we used an approach that is less computationally intensive.  Table 2 suggests 

that the isotopic distribution is dominated by single isotopes, and in particular, by 13C.  

Thus, the joint distribution is close to a single Poisson density with shape parameter 

( 1) ( 2) ( 3)2 3mλ λ λ λ+ + += + + .  Figure 3 displays observed FFT data (vertical lines), the 

theoretical fits (x) based on the convolution, and an approximation (o) using the Poisson 

approximation.  The Poisson approximation has somewhat too narrowed a distribution 

in comparison to the theoretical fit; however, the observed data is even narrower.  For 

the data presented, low-abundant ions are not as well detected in the ICR cell as high-

abundant ions and thus a single Poisson distribution provides an adequate fit to the 

data.  In fact, mλ  is a nuisance parameter in the proposed algorithm and adjusts to the 

local variations in 13C frequencies for each molecule.  Only a reasonable starting 

estimate is needed for mλ  in the algorithm, as the final estimate is obtained from the 

fitting routine that provides the best fit to the observed data for each molecular species.   

 

Simultaneous Mass-Calibration & Peak-Detection Algorithm 

By taking advantage of the reformulated calibration transformations described in 

equations 8-9, mass calibration and peak detection are approached simultaneously in 

the frequency domain.  For an identified peak, 0f , that denotes an ion that belongs to 

cluster 0s  of charge 0z , there are four realized parameters in the algorithm: (i) space-

charge parameter 0β , (ii) peak-spacing parameter 1β , (iii) Poisson parameter mλ , and 
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(iv) peak abundances ( )j sα .  It turns out that estimation of the peak abundances 

requires only a single parameter per charge state and is a simple calculation given the 

other three parameters.  With regard to choosing an 0f , utilizing a top-down approach 

where the most abundant peak is chosen is sufficient and computationally appealing.  

However, the algorithm only requires that a peak be identified and thus any peak in the 

cluster will suffice.    

 

The proposed algorithm consists of a step-wise process that entails three key steps.  

First, Part 1 chooses a peak, 0f , and subsequently determines the charge state of the 

isotopic cluster that contains the identified peak 0f .  Second, Part 2 locates all other 

peaks in the corresponding isotopic cluster as well as peaks for other charge states of 

the same molecular species.  Using averagine to estimate the isotopic distribution, Part 

2 estimates peak heights and a set of specie-dependent calibration parameters. Note 

that by utilizing equation 8, calibrants are not necessary to obtain estimates of the 

calibration parameters.  Remember that 1β  is estimated using peak spacing information 

and 0β  is estimated from charge spacing information.  Parts 1-2 are repeated until all 

molecular species are located, or similarly, until all peaks that have abundances larger 

than some pre-determined signal-to-noise threshold have been accounted for.  Lastly, 

Part 3 estimates an overall set of calibration parameters using information from all 

molecules.  The algorithm is described in detail in the Appendix. 

 

3. APPLICATION 
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The proposed algorithm was evaluated in terms of mass-measurement precision (MMP) 

and mass-measurement accuracy (MMA) using a series of mass spectra of ammonium-

adducted polypropylene glycol that were initially presented in Muddiman and Oberg [12].  

Ten analysis samples were prepared (though only nine were utilized), each with varying 

amount of analyte (i.e., a range of TotalA ).  Muddiman and Oberg reported the theoretical 

mass for nine of the singly-charged oligomers and these nine oligomers were used to 

assess the performance of the proposed algorithm.  Herein, all analyses were done on 

un-windowed FFT data that were zero-filled twice. 

 

Equation 8 was used to detect the largest L=40 molecular species in each spectrum and 

the Nelder-Mead Simplex was used to estimate the calibration parameters for each 

molecular species.  Subsequently, taking into account previous calibration work [12-13], 

an overall set of calibration parameters were estimated using equation 9 that accounts 

for the fact that the total charge content in the ICR cell exerts a linear decrease in all 

cyclotron frequencies.  The total charge in the ICR cell, TotalA , was computed as the 

sum of all FFT abundances in the spectrum that existed within appropriate ranges of the 

data (arbitrary units).  Utilizing equation 9 resulted in a median MMP of 1.80 parts-per-

million (ppm) and a minimum and maximum MMP of 0.01 and 32.98, respectively.  

MMP was defined as the standardized difference between the measured mass ( m̂ ) and 

the average measured mass across the nine spectra ( m ) for each molecular species 

( 6ˆ
10

m m
MMP

m
−= ⋅ ).  To estimate the average measured mass across the nine spectra, 

species were matched across spectra using complete-linkage clustering [17].   
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As evidenced by the high MMP, the proposed algorithm has the ability to match 

equivalent species across spectra, which is essential in studies where the objective is to 

estimate differential expression across treatment or disease groups.  After obtaining a 

list of molecular species that are differentially expressed across two groups of interest, 

the second goal is identification, which requires high MMA.  MMA was evaluated using 

the nine known oligomers that were recorded in Muddiman and Oberg [12].  The 

median absolute MMA for the nine ologomers was 62.51 ppm, with corresponding 

minimum and maximum MMA of 51.04 and 98.47, respectively.  MMA was defined as 

the standardized difference between the measured mass and the theoretically known 

mass ( Tm ) for each of the nine oligomers ( 6ˆ
10T

T

m m
MMA

m
−= ⋅ ).    

 

Unfortunately, MMA of 62.51 ppm is not adequate for comprehensive identification.  

Figure 4a displays the mass-measurement errors ˆ( )Tm m−  versus the theoretically 

known masses ( Tm ).  The numbers in Figures 4a and 4b denote spectra, such that 1 

denotes the spectrum with the smallest total charge ( TotalA ) and 9 denotes the spectrum 

with the largest total charge.  The negative slope implies that the measurement errors 

are primarily a function of mass; however, a smaller component of the error is due to 

total charge.  Because the magnetic-field parameter is the only parameter that is a 

function of mass (similarly, frequency), this implies that the magnetic-field parameter 1̂β  

is not estimated accurately using the proposed approach.  In fact, the sensitivity 

analysis provided in Table 1 provides evidence that obtaining an accurate estimate of 
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the magnetic-field parameter is difficult when using the proposed nonlinear model that is 

a function of frequency.  However, this is not true for calibration models that are a 

function of mass. 

 

To obtain an accurate estimate of the magnetic-field effect, we investigated the benefits 

of a single external calibration sample.  Ideally, we would prefer not to include internal 

calibrants, particularly in biomarker-discovery experiments, due to the possibility of 

contaminating potential biomarkers of interest and thus external calibrants are favored.  

Additionally, because the magnetic-field strength remains relatively constant suggests 

that an external calibration sample only needs to be run as often as the magnetic-field 

strength is expected to vary, e.g., on a weekly or monthly basis.  To verify the benefits 

of a single external calibration sample, we assigned the first sample that was run by 

Muddiman and Oberg [12] to be the external calibration sample and the remaining eight 

spectra were used to estimate MMA.  Using the nine known oligomers in our external 

calibration sample, we used a simple linear regression model to estimate the calibration 

parameters. The dependent variable was the observed cyclotron frequencies and the 

independent variables were the known m/z and the observed ion abundances. This 

resulted in the following regression model, 

4.3191 150,005,961( / ) 0.0321 Ionf z m A= − + + . 

Note that we did not include an effect for total charge because it is completely 

confounded with the intercept term.  The parameter estimates above do not exactly 

match the estimates found in Table 2 (spectrum #1) of Muddiman and Oberg [12] for 

two reasons: (1) we model frequency in total cycles, whereas [12] uses cycles-per-



 20 

second, and (2) the observed frequencies and ion abundances were measurements 

and thus will be slightly different across estimation procedures. 

 

An overall set of calibration parameters was estimated a second time using equation 9 

and this time the magnetic-field parameter was held constant using the estimate from 

the external calibration sample ( 1̂ 150,005,961β = ).  This resulted in a median absolute 

MMA of 2.80 ppm, an improvement from 62.51 ppm.  Figure 4b displays the updated 

mass-measurement errors versus the theoretically known masses. The negative slope 

that was present in Figure 4a was eliminated; however, a small error due to total charge 

still exists.  The error is a result of TotalA  being a measured value and thus an imprecise 

variable.  Measurement error is often disregarded; however, when the goal is to obtain 

parts-per-million or even parts-per-billion MMA measurement error can cause 

considerable error.   

 

4. DISCUSSION 

We have described a procedure that combines mass calibration and peak detection into 

a single algorithm and is able to achieve < 2 ppm mass-measurement precision and < 3 

ppm mass-measurement accuracy with only a single external calibration sample.  This 

is achieved by changing the parameterization of a well-understood linear calibration 

equation that is a function of mass into a nonlinear equation that is a function of 

frequency.  Performing fitting routines in the un-windowed frequency domain is 

appealing because peak shape and peak width are known, thus requiring fewer and 

more stable parameters in comparison to the m/z domain.  Furthermore, un-windowed 
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FFT data are uncorrelated and equivariant, which are important qualities with respect to 

model fitting.   

 

Moreover, because we have proposed a modeling approach, familiar model-fitting 

diagnostics are encouraged and simple to apply.  For example, residual diagnostics 

should be incorporated to assess model fit and to determine if additional effects are 

necessary to improve the MMP and MMA.  Similarly, well known statistical tests can be 

incorporated to formally test the significance of effects in the nonlinear model.  Thus, we 

have demonstrated that mathematical modeling requires fewer parameters in the un-

windowed frequency domain and allows for mass calibration to be combined with the 

fitting routine. 
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APPENDIX: Algorithm 

PART 1: Charge-State Determination 

For a single spectrum, the algorithm to determine 0z   is as follows: 

1. To begin, consider equation 8 (later, we will show how to incorporate the 

improved version shown in equation 9) throughout Part 1.  Thus, obtain 

starting estimates for the calibration parameters 0β  and 1β , either from 

previous calibration work, or if available, from the manufacturer’s software. 

2. Find the frequency location 0f  of the most abundant peak in the FFT signal 

that is assumed to belong to an isotopic cluster and whose abundance is 

larger than signal-to-noise threshold.  Note that any procedure that is capable 

of locating a single peak in the spectrum will suffice and the most abundant 

peak is simply used out of convenience here. 

3. For each plausible charge z do the following: 

a. Estimate 0m  using the starting estimates for the calibration parameters. 

b. As a starting estimate, set the Poisson parameter equal to 

0 1 2 3( 2 3 )m mλ λ λ λ= + +  using the abundance values in Table 2 to 

estimate 1 2 3,   and λ λ λ . 

c. Approximate cluster 0s  using a Poisson density with mean mλ  and 

retain all peaks where the Poisson probability is larger than a scaled 

version of the signal-to-noise threshold.  Denote the estimated Poisson 

probabilities for each of the retained j ions as 
0( )ˆ P

j sα . 
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d. Estimate ,k zf  for each retained peak, where z  equals the current 

plausible charge. 

e. Estimate a predicted FFT signal *ˆ ( )z iY f  for charge z  using the sinc 

function in equation 4, where 
0( ) ( )ˆ P

j s j sα α=  are the Poisson probabilities 

from step (c) above and ( )j sγ� are the ,k zf  from step (d).  Note that the 

Poisson probabilities provide only the general shape of cluster 0s .  To 

obtain correct peak heights *ˆ ( )z iY f  is multiplied by a constant; however, 

only the general shape is required at this stage and thus the derivation 

of the constant (peak-height parameter) is addressed in the next 

section. 

f. Calculate the correlation of the observed FFT abundances ( )iY f  with 

the predicted abundances *ˆ ( )z iY f . 

4. Retain the charge z  that produces the largest correlation, here after referred 

to as 0z . 

5. Lastly, the algorithm determines if the current molecule exists at any other 

charge states.  All other charge states that produce ,k zf  in the observed 

cyclotron frequency range and that have abundances larger than the signal-

to-noise threshold are retained.  Note that clusters denoting the same 

molecular species have the same Poisson mean mλ .   
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PART 2: Specie-Dependent Mass Calibration & Peak Detection 

The simultaneous mass-calibration and peak-detection algorithm estimates 0β , 1β , mλ , 

and the overall peak-height parameter utilizing a nonlinear optimizer that minimizes 

mean-squared error (MSE).  Switching to matrix notation, let Y  be the 1n×  vector of 

observed FFT abundances and ˆ *Y  the n p×  matrix of predicted signals, such that the p 

columns of ˆ *Y  denote the predicted abundances for each of the p charge states the 

molecule exists at.  Then, 

 ˆ ˆˆ ˆ( ) ( )TMSE = − −* *Y �Y Y �Y  

where 1ˆ ˆ ˆ ˆ( )
T T−= * * *

� Y Y Y Y  is the vector of peak-height parameters for each of the 

associated charge states.   

 

The algorithm as described is essentially a three-step procedure; however, the first two 

parts could be combined.  Theoretically, 0z  could be estimated in part 2 from the 

nonlinear optimizer as well and simply rounded to the nearest integer.  However, the 

nonlinear optimizer will encounter local maxima in determining 0z  and thus will have 

difficulty converging.  Furthermore, nonlinear optimizers are computationally time 

consuming and hence it is more efficient to determine 0z  first and then set it as a fixed 

parameter in the nonlinear fitting routine.   

 

Lastly, the mass-calibration and peak-detection algorithm involves a fitting routine and 

as a result, errors are expected and residual peaks are inherent.  To reduce the chance 

of obtaining residual peaks, we suggest the following solution.  Choose two thresholds 
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1τ  and 2τ , where 1τ  denotes machine uncertainty and 2τ  denotes uncertainty in the 

peak-detection algorithm.  Let ˆˆ ˆ
cum

r

=� *
r rY � Y  denote the 1n×  vector of accumulative 

predicted signals across the detected molecular species.  Then, in step 2 of the charge-

state determination, find the frequency location f0 of the most abundant peak subject to 

the following constraints, 1
ˆ τ− >cumY Y  and 2

ˆ
ˆ τ− >cum

cum

Y Y
Y

.    

  

PART 3: Overall Set of Calibration Parameters 

The ultimate goal is to estimate a single set of calibration parameters across all 

molecular species from which to obtain high mass-measurement accuracy.  An overall 

set of calibration parameters are obtained using the most abundant L molecular species 

in every spectrum.  To do so, parts 1 and 2 as described above are initially applied to 

only the L largest species in each spectrum, which includes all charge states that 

correspond to the L species.  Equation 9 is used to estimate a single set of calibration 

parameters and the estimated frequencies are assumed to be the “true” frequencies 

and are included as the dependent variable in equation 9.  Peak locations and 

abundances from these largest species in each spectrum will be sufficient to estimate 

an overall set of calibration parameters provided that they represent an adequate range 

of frequencies, charge states and abundances.  After estimating a single set of 

calibration parameters, the simultaneous mass-calibration and peak-detection algorithm 

is implemented once again on all spectra to identify all species that are above the 

signal-to-noise threshold; however, this time setting the calibration parameters as fixed 

values in the nonlinear fitting routine.  As a result, in this phase the only realized 
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parameters in the nonlinear routine are the peak-shape parameter and a peak-height 

parameter for each charge state. 
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Table 1: A sensitivity analysis of the calibration parameters in equation 8. The data 
presented represents a hypothetical molecular species that exists at two charges states 
( z =1,2) and each charge state is comprised of four isotopic peaks (k=0,1,2,3). The 
bolded column denotes the reference column, where ,k zf  was calculated using 5

0 10f = , 

0 1z = , 0 0k = , 0 3β = − , and 8
1 1.45 10β = × . The objective was to verify the utility of the 

calibration parameters. The first column following the reference column reflects a 100% 
increase in 0β  and a comparison with the reference columns shows that changes in 0β  
primarily result in charge-state frequency shifts. The second column following the 
reference column reflects a 0.7% increase in 1β  and a comparison with the reference 
column shows that changes in 1β  result in overall peak spacing shifts.   
 

z  k , 0k zf f−  , 0 0( | 6)k zf fβ = − −  8
, 1 0( | 1.46 10 )k zf fβ = ⋅ −  

1 0 0 0 0 
1 1 -69.16 -69.16 -68.68 
1 2 -138.22 -138.23 -137.27 
1 3 -207.18 -207.19 -205.77 
2 0 99,864.15 99,867.14 99,865.10 
2 1 99,726.03 99,729.01 99,727.92 
2 2 99,588.10 99,591.07 99,590.94 
2 3 99,450.36 99,453.33 99,454.13 
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Table 2: Expected number of isotopes, natural abundances, and expected number of 
extra neutrons for a protein of mass 906.6723 Daltons (oligomer 16A in Muddiman and 
Oberg [12]). The abundance distributions are derived from Senko et al. [15] using 
averagine, an average amino acid that is defined to have a molecular formula of 
C4.9384H7.7583N1.3577O1.4773S0.0417 and an average molecular mass of 111.1254 Daltons.  
  

Element Stable 
Isotope Number Natural 

Abundance 

Expected number of +k isotopes 
( ( )kλ + ) 

( = Number × Natural Abundance) 
2H +1 63.3 0.000115 0.0073 

13C +1 40.3 0.010700 0.4312 
15N +1 11.1 0.003680 0.0408 
17O +1 12.1 0.000380 0.0046 
33S +1 0.4 0.007600 0.0030 

    (+1)�  = 0.4869 
     

18O +2 12.1 0.002050 0.0248 
34S +2 0.4 0.042900 0.0172 

    (+2)�  = 0.0420 
     

35S +3 0.4 0.000200 0.0001 
    (+3)�  = 0.0001 



Figure 1: FT-ICR spectrum for (a) the 200 to 300 kHz range and (b) expands the 
219.5 to 220.5 kHz range. The isotopic cluster in (b) represents an ionized-
molecular specie of charge 2z = , where A denotes the monoisotopic mass, A+1 
has one 12C replaced by one 13C isotope, A+2  has two 12C replaced by two 13C 
isotopes, etc. 
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Figure 2: An expanded view of the largest peak in Figure 1b. Circles represent 
the observed DFT frequency data (kHz) and the line represents the fitted sinc 
function from equation 4. The frequency of the largest peak is denoted as ( )j sγ�  in 
equation 4. 
 
 

A
m

pl
itu

de

0
10
20
30
40
50
60
70
80
90

100
110

Frequency (kHz)
220.294 220.298 220.302 220.306 220.310

 
 



Figure 3: Isotopic distribution for isotope 15A in Muddiman and Oberg [12], which 
has a mass of 906.6723 Daltons, where vertical lines represent the observed 
distribution, (×) represents the theoretical fit that is a convolution of Poisson 
distributions, and (o) represents the single Poisson approximation. 
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Figure 4: Mass-measurement error ˆ( )Tm m−  versus the theoretical mass ( Tm ) 
after applying the simultaneous mass-calibration and peak-detection algorithm 
(a) without incorporating calibrant information and (b) using a single external 
calibration sample. The numbers in the figures denote spectra, where 1 denotes 
the spectrum with the smallest total charge (i.e., TotalA ) and 9 denotes the 
spectrum with the largest total charge. Number 2 does not exist in Figure 2a 
because it was used as the external calibration sample. Furthermore, a number 
will appear more than once if the species was present at more than one charge 
state in the corresponding spectrum. In these data, species were present at 
charge states of one or two. 
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