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Abstract

Motivation: Our goal was to understand why the PLIER algorithm performs so well

given its derivation is based on a biologically implausible assumption.

Results: In spite of a non-intuitive assumption regarding the PM and MM errors made

as part of the derivation for PLIER, the resulting probe level error function does capture

the key characteristics of the ideal error function, assuming MM probes only measure

non-specific binding and no signal.

Contact: ballman@mayo.edu
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1 Introduction

The PLIER (Probe Logarithmic Intensity ERror) algorithm was developed by Affymetrix

and released in 2004. It is part of several commercially available software packages that

analyze Genechip R© data such as Strand Genomic’s Avadis and Stratagene’s ArrayAssistR©.

The PLIER algorithm produces an improved gene expression value (a summary value for a

probe set) for the GeneChip R© microarray platform as compared to the Affymetrix MAS5

algorithm. It accomplishes this by incorporating experimental observations of feature be-

havior. Specifically, it uses a probe affinity parameter, which represents the strength of

a signal produced at a specific concentration for a given probe. The probe affinities are

calculated using data across arrays. The error model employed by PLIER assumes error is

proportional to observed intensity, rather than to background-subtracted intensity. How-

ever, the derivation of the method also assumes that the error of the mismatch probe is the

reciprocal of the error of the perfect match probe. We find this assumption counter-intuitive.

On the other hand, PLIER definitely performs well. It outperforms MAS5 in terms of

the benchmark data and measures [2, 7] for assessing the quality of the summary statistic

for a probe set. It also does fairly well compared to other methods that are commonly used

to compute gene expression values for GeneChip probeset data. In particular, improvements

over MAS5 include a higher reproducibility (lower coefficient of variation) without loss of

accuracy and higher differential sensitivity for genes with lower expression values. This

inconsistency, good performance of an algorithm derived from a counter-intuitive error

model assumption, prompted us to look more closely at the PLIER algorithm. Specifically,

we looked at the influence function for the algorithm and compared it to that for a more

biologically based one. By examining the behavior of individual probes over a sequence

of spiked-in RNA concentrations of a target gene, characterizations of the PLIER error

function became clearer. The major finding is that the PLIER error model possesses many

of the key characteristics of the ideal error function for fitting individual probe calibration

curves.

2 PLIER Description

This description of the PLIER algorithm is based upon two presentations made by Earl

Hubbell: one at the 2003 Affymetrix GeneChip Microarray Low-Level Workshop held at the

University of California Berkeley campus in August 2003 (a link to the presentation can be

found at www.affymetrix.com/corporate/events/seminar/microarray workshop.aff)

and the other at the Mathematical Biosciences Institute workshop held at The Ohio State

University in October 2004 (mbi.osu.edu/2004/workshops2004.html).

Consider a single probeset on an array and a set of j = 1, 2, . . . , n arrays in the experi-
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ment. We assume the probeset contains i = 1, 2, . . . ,m probe pairs; a probe pair i consists

of a perfect match (PMij) and mismatch probe (MMij). Let pmij and mmij represent the

observed binding intensity for the perfect match and mismatch probe i on array j, respec-

tively. The expected value for the observed binding for the perfect match and mismatch

probes is assumed to be

E(pmij) = µij = aicj + Bij

E(mmij) = Bij (1)

where

• Bij is background binding for probe pair i on array j (background is assumed to be

the same for the PM and MM probes within a pair),

• µij is the binding level of probe i on array j,

• ai is the binding affinity of probe i,

• cj is the concentration of RNA in sample j, which is hybridized to array j.

The quantities Bij, µij, ai, and cj represent the (unknown) true values of the background

binding, probe binding, affinity, and concentration, respectively, whereas pmij and mmij

are the observed intensity values.

It is fairly well established from empirical data that the logarithm (log) of the observed

binding intensities is approximately equivariant; in other words, the error is multiplicative.

This implies the following model

pmij = µijε
P
ij

mmij = Bijε
M
ij

where εP and εM are random terms for the PM and MM probes, respectively, from an

appropriate distribution, a log-normal for instance. Subtracting the observed MM probe

binding intensity from its corresponding PM partner yields,

pmij − mmij = (aicj + Bij)εP
ij − Bijε

M
ij .

The assumption that the perfect match and mismatch error for probe pair i are equal,

i.e. εP
ij = εM

ij = εij , produces

pmij − mmij = (aicj)εij ,

which is the original MAS5 equation. The issues and limitations associated with this error

model, especially for low intensities (low binding), are well known [5, 6]. PLIER does not
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assume that the perfect match and mismatch errors within a probe pair are equal, but

rather assumes that εP
ij = 1/εM

ij . This seems counter-intuitive biologically; especially since

the PM and MM probes within a given probe pair are physically adjacent to each other on

the array. Any local artifact would be expected to affect both probes in the same direction

rather than causing the error of one to increase when the error of the other decreases. Under

the PLIER error assumption, equations (1) can be rearranged as,

εij =
aicj +

√
(aicj)2 + 4pmijmmij

2pmij

=
µ̂ij/pmij +

√
(µ̂ij/pmij)2 + 4(mmij/pmij)

2
(2)

The PLIER algorithm selects a and c such that the average “residual” r = log(ε) equals

zero. Specifically, this is accomplished by minimizing a robust average of the r2 values. The

particular robust M-estimator used (Geman-McClure) is not of particular interest here. If

the mismatch binding MM is zero, then log2(pmij) = log2(µ̂ij) + rij, which shows that the

estimate µ̂ is closely related to the geometric mean of the PM probes. The presence of MM

binding increases the estimate for µ.

To more concretely understand how this algorithm works, consider a case of a single

probeset on a single array. The goal is to obtain an estimate of the gene expression value

for the probeset. For simplicity, assume there are only 3 probe pairs in the probeset.

In this example, we use the first three probes of the U95A probeset 37777 at where the

corresponding gene, protein tyrosine phosphatase receptor B (PTPRB), was spiked into a

background of human pancreas RNA (at a concentration of 32 pM). The observed (pm,mm)

intensity pairs were: (1801,627), (542, 132), and (229, 111). Figure 1 displays the r2 curves

for these probes as a function of the estimate for the true intensity (µij = aicj), as well

as the average error across all three probesets. Average probeset error is minimized by an

estimate of 220 as the the true expression level of this gene. The argument is similar for

the complete probeset of 16 probe pairs; the plot would just be more crowded.

3 The direct argument

3.1 Spike-in data

To better understand why PLIER does well, we begin by examining characteristics of the

Affymetrix data. A spike-in experiment dataset was created by Affymetrix and is publicly

available at their web site www.affymetrix.com; search on the phrase “Latin square data” to

find the link to the page containing a description of the experiment and the downloadable

files of data. In this experiment, mixtures of a common RNA background, in which 16

probesets were spiked in according to 14 different concentrations (0, 0.25, 0.5, 1, 2, 4, . . . ,
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Figure 1: Error curves for various combinations

512, 1024 pM), were hybridized to a set of Affymetrix U95Av2 arrays. In most cases, each

pattern of the 16 probeset concentrations was replicated three times. A cyclic latin square

design was used for the spike-in pattern of the target RNAs. Irizarry et al. [6] provide a more

detailed description of this experiment. Figure 2 contains the plots of the probes within the

first spiked-in probeset 37777 at. Each plot contains the observations of the perfect match

and mismatch probes. The probeset 37777 at was spiked in at 14 different concentrations

(0, 0.5, 1, , . . . , 1024 pM) across a total of 59 arrays. The observed expression values were

plotted on the y-axis and the spike-in concentrations were plotted on the x-axis; both on

a log2 scale. A panel is shown for each probe in the probeset; the perfect match (PM)

and mismatch (MM) values were plotted using different symbols. Fitted S-shaped curves

were superimposed on the data, where the PM function differed from the MM function only

in the location of its inflection point; a paper by Ballman and Therneau [1] contains the

complete set of plots for this and other spike-in experiments. As can be seen in Figure 2,

the S-shaped curves appear to fit the data well.

3.2 Models of the data

From the literature, there are at least two data models appropriate for the Affymetrix data.

One model utilizes Langmuir isotherms. Its appropriateness for modeling Affymetrix data

is described nicely by Hekstra et al. [4]. If the binding to the surface does not change
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Figure 2: The probe pair intensity values versus the spiked concentration of a spiked gene,

probeset 37777 at, from the Affymetrix U95A spike-in experiment. There are 16 probe

pairs. The open circles are the values of the PM probes and the filled squares are the values

of the MM probes. The solid and dashed lines correspond to the fitted logistic calibration

curves for the PM probes and MM probes, respectively.
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the concentration of the target in solution, then the Langmuir adsorption isotherm is an

elementary model of surface adsorption. Let x be the specific target RNA concentration,

then the fraction of occupied probe sites θ is given by (log2 scale)

θ =
2x

2x + K

where K is the concentration at which half the surface sites are occupied, if there were

no non-specific hybridization. Assuming the measured fluorescence intensity to be linearly

dependent on the amount of complementary RNA bound to the probe, we get the following

model for the intensity y

y = b + dθ = b + d
2x

2x + K
(3)

where b and d have units of intensity. The model predicts chemical saturation at b + d for

high concentrations of RNA. It can also be shown that competitive cross-hybridization by

non-specific RNAs in the target solution does not change the functional form of equation 3

but only affects the parameter values.

The second model was described by Finney [3] for behavior of calibration curves of

radioligand assays where x is the log of the (known) dose and y the log of the observed

intensity from the assay. Finney suggested using a logistic function for this type of data.

A logistic function as a model for gene expression data also appears reasonable since the

intensity values span a wide range. As seen in Figure 2, an S-shaped curve such as a

logistic appears appropriate because it captures the effect of background binding and/or

lower limits of detection (i.e. the flat lower portion of the lefthand part of the curve) and

the effect of biochemical saturation and/or the instrumentation (i.e. the upper portion of

the righthand part of the curve).

Is one of these models more appropriate than the other? Figure 3 shows a logistic curve

and Langmuir isotherm curve, both scaled to the range of data values in Figure 2. Clearly,

the two curves are virtually indistinguishable. In light of this, we fit logistic curves to the

PM and MM data in Figure 2. The logistic curves were fit simultaneously where the PM

curve only differed from the MM curves in the location of the inflection point. In other

words, the PM and MM curves have identical shapes but the MM curve is shifted, usually

to the right of the PM curve. As can be seen in Figure 2, the logistic function fits the data

well.

3.3 Graphical comparison of error models

The ideal estimate of gene expression for an experiment would use the probe curves from

Figure 2 directly; which is unfortunately not possible since the curves are unknown. But let

us assume for a moment that the calibration curve is S-shaped, the corresponding ideal error

function for the data will also be S-shaped. All other functions can be compared to this
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Figure 3: A logistic curve and Langmuir isotherm curve.

error function. We compare the error functions under for two different true concentrations

for a probe, µ = 512 and µ = 256 (9 and 8 on the log2 scale, respectively), with a known

binding background level of 64 (6 on the log2 scale). Specifically, we compare the error as

a function of the estimated µ, i.e. µ̂, values under the MAS5 model and PLIER model to

the ideal error curve (from a S-shaped calibration curve). The error functions for MAS5

and PLIER are a function of the observed pm and mm values. The PLIER (and MAS5)

functions presented were applied to non-background adjusted data. However, PLIER (and

MAS5) is applied to global background adjusted data in practice and so we show the error

curve for PLIER applied to background-adjusted data. The global background adjustment

we used was 64, which roughly corresponds to the 0.02 quantile of all the probe values (this

is the default global background correction of MAS5). Figure 4 shows the form of the error

functions on the same plot for different observed values of the pm and mm values. Note

that these error functions are idealized in that they have been shifted so that they all have

the smallest error (zero error if possible) at the true binding intensity value. The amount of

shift necessary differs for the different functions and would be unknown in practice. Hence,

this is a comparison of errors under perfect conditions for each function.

As can be seen from the panel of plots, the implied error function for MAS5 differs

dramatically from the ideal error function. Foremost, the shape of the error function is

concave rather than S-shaped. This explains the poor behavior of MAS5 for estimating

expression values for low RNA concentration levels, which as been cited extensively in the
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Figure 4: The functions for the ideal error (true), the MAS5 error (mas5) , PLIER er-

ror(plier), and PLIER applied to background-adjusted data error(plier-bc). The true gene

intensity (µ) and background (B) and the observed pm and mm values are on each plot.

literature. Also note that there is no curve for the MAS5 model when pm = 256 and

mm = 512. The reason is that when the mm value is larger than the pm value, the

expression value is undefined. This is not technically true for MAS5 because in instances

where pm > mm, the algorithm employs an ideal mismatch value; the ideal mismatch value

is selected such that it is less than the pm value. However, when pm > mm, which occurs

for the majority of the probe pairs, the error functions in 4 are correct.

On the other hand, the implied error curve for the PLIER model has the correct shape for

the left portion of the function. This explains the observation that PLIER yields improved

estimations of expression values for low RNA concentration levels compared to MAS5.

Neither PLIER nor MAS5 error functions have the correct shape for the right-hand portions

of the plots. In practice, the effect of differences from the ideal error for the right portion

of the function is not as serious as differences in the left portion. This is because for

actual experiments employing collected biospecimens of interest (cell lines, animal tissue,

or human tissue), saturation of the probes is rarely reached. However, when the MM

value is far above background, as it is for the spike in experiment when the observed MM

values are greater than 256, the overly high lower threshold of the PLIER error function

can cause overestimation. Finally, PLIER applied to global background adjusted data does

not perform as well as PLIER applied to unadjusted data. There are several variations of
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PLIER, e.g. PLIER+16 and PLIER+32, which add the constants 16 and 32, respectively,

back to global background adjusted data. These constants are on the order of magnitude

of the values that were subtracted for global background adjustment and largely “undo”

the global background adjustment; from above, we see that PLIER performs better on data

that has not been globally background adjusted.

4 Properties of the error function

From the graphical display of the error functions for MAS5 and PLIER, it appears as though

a possible explanation for why PLIER performs so well is that in the crucial part of the

error function, it has characteristics similar to the ideal error curve. What are the general

characteristics of the ideal error function?

Assume that the true assay binding calibration function is a logistic curve, or something

quite like it, so

log(pmij) = f(µij) + εij

with ε from a symmetric distribution, which is equivariant across the range of the data.

The true concentration µij will be estimated with a model of interest such as array + probe

effects. A rational approach for estimating the parameters is to minimize the overall error

E =
∑
ij

[log(pmij) − f(µ̂ij)]
2

≡
∑
ij

e(pm, µ̂, f)

What is the form of this error function e?

Let us assume that f has a lower threshold or background, log2(b), which corresponds

to the scanner effect and non-specific binding when the target gene is not expressed. To the

right of this threshold, assume f is linear or nearly linear on the log2 scale, and is smooth.

Under these conditions, the error function would have the following properties.

1. For µ̂ij small, e → log(pmij) − log(b) = log(pmij/b).

2. For µ̂ij large enough so that f(µ̂ij) is in the linear part of the curve (i.e. sufficiently

larger than log(b)), the derivative of e with respect to µ̂ij will be a constant.

3. The behavior described in 2 is independent of the value of pmij.

For PLIER, we can verify 1 and 2 above, algebraically; this confirms the behavior observed

in Figure 4 for the general case.

For property 1, the error in equation (2) is placed on the log2 scale and multiplied by

−2 to get ε∗,

ε∗ = −2 × log2(ε)
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= −2 × log2

⎡
⎣µij/pmij +

√
(µij/pmij)2 + 4(mmij/pmij)

2

⎤
⎦

As µij → 0 (so µ̂ij → 0), we get

ε∗ → −2 × log2

⎡
⎣0 +

√
0 + 4(mmij/pmij)

2

⎤
⎦

→ log2 (pmij) − log2 (mmij) = log2(pmij/mmij)

Under the Affymetrix assumption, the PM probe measures the target gene concentration

and the MM probe measures the background level. Since pm estimates the signal level and

mm estimates MM, or background, respectively, this satisfies the first property. Note, it

has been established that MM does not measure background alone but also measures signal.

However, as the true concentration level, µ, becomes small, MM becomes a better estimate

of background, i.e. it is less likely to also measure signal. Hence, the PLIER error function

is reasonably consistent with property 1.

For property 2, we again place the error on the log2 scale, drop the subscripts, and we

get

ε∗ = log2

[
µ̂/pm +

√
(µ̂/pm)2 + 4(mm/pm)

2

]

Now we take the derivative with respect to log2(µ̂)

dε∗

d log2(µ̂)
=
(

1
ln 2

)(
1

µ̂/pm +
√

(µ̂/pm)2 + 4(mm/pm)

)(
1

pm
+

µ̂/pm2√
(µ̂/pm)2 + 4(mm/pm)

)(
µ̂

ln(2)

)

If we assume that background is small compared to signal (i.e. as we move away from

background levels) and that mm is a good estimate of background, then (mm/pm) → 0 as

pm increases. Under these assumptions, as pm increases, we get

dε∗

dµ̂
=

(
1

ln 2

)(
1

µ̂/pm +
√

(µ̂/pm)2 + 4(0)

)(
1

pm
+

µ̂/pm2√
(µ̂/pm)2 + 4(0)

)(
µ̂

ln(2)

)

= 1

So again, under somewhat reasonable assumptions, the PLIER error is consistent with the

second property of the ideal error function. In addition, it is also consistent with property

3.

PLIER is of course making the assumption that log(MM) = background + error; in

particular, it assumes that mm does not measure any gene signal. If this assumption is

true, we see from above that the PLIER error model has the characteristics of the ideal

error model, especially in the region of the plot that is the hardest, the low end. This

explains why it does perform better than MAS5. However, the more these assumptions

are violated—i.e. the more signal the observed mm measures in addition to non-specific
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binding, the more the PLIER error function will deviate from the ideal error function. As

mentioned previously, it is fairly well established in the literature that mm does measure

signal in addition to non-specific binding, which may explain why PLIER is not the best

performing algorithm of those entered in Affycomp.

5 Conclusions

In light of the fact that the MM probes are not good estimates for probe background level,

the PLIER algorithm could likely be improved with a better estimate of background binding,

perhaps along the lines of that proposed by Naef et al. [8]. Another question, one which

we did not address here, is whether a robust average, such as that employed by PLIER,

is really necessary. This is based on the fact that on a log scale, the spike-in data appear

relatively equivariant, with few outliers. However, these considerations are of secondary

importance. Of major concern is the fact that the error model is based upon an implausible

assumption regarding the relationship between the error of the PM values and MM values.

Overall, we found that in spite of the non-intuitive assumption regarding the PM and

MM errors made as part of the derivation for PLIER, the resulting model does capture the

key characteristics of the ideal error curve, assuming MM probes only measure non-specific

binding and no signal. Our only explanation for why this should be is good fortune.

This note has only considered the shape of the PLIER influence function for a single

probe. When averaging over multiple probes not only the shape but the relative shifts of

the per probe influence curves from one another will affect the effectiveness of the final

estimate; our paper does not predict how PLIER will fair in comparison to other methods.

In particular, we believe the deviations of the individual influence functions from the ideal

error functions likely will be compounded when performing the averaging across the probes

in a probeset. Our belief is based on the observation that although PLIER performs better

than MAS5, it does not perform as well as other algorithms entered in Affycomp, most of

which are based on more biologically plausible assumptions.
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