
 
 

Evaluating Methods of Symmetry 
 

Jayawant N. Mandrekar, Sumithra J. Mandrekar, Stephen S. Cha 
 

Division of Biostatistics, Mayo Clinic, Rochester MN 55901 
 
 
 

Abstract 
 

Skewness indicates a lack of symmetry in a distribution. Knowing the symmetry of the 

underlying data is important for parametric analysis, fitting distributions or doing 

transformations to the data. The coefficient of skewness is the commonly used measure to 

identify a lack of symmetry in the underlying data, although graphical procedures can 

also be effective. We evaluate five different methods to assess skewness: traditional 

coefficient of skewness index (S1), skewness index based on the L-moments discussed by 

Hosking1 (S2, ), the Quartile (S4) and the Octile (2S′ 4S′ ) skewness coefficients proposed 

by Hinkley2, the asymptotic test of symmetry (S3) developed by Randles et al.3, and 

finally a novel intuitive approach based on the property of symmetric distributions (S5). 

We have also developed a comprehensive and efficient SAS® macro for computing the 

various skewness measures and the appropriate power transformation, if one exists, to 

make an asymmetric distribution symmetric.4  
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1 Introduction 

The first step in any statistical analysis includes summarizing the characteristics of the 

underlying data. All standard statistical packages routinely provide the summary statistics 

information, and this often includes a sample skewness score, which is a measure of 

symmetry. Symmetry is a rather complex property of probability distributions and it is 

difficult to identify deviations from it in a small number of observations. Broadly 

speaking, a dataset or a distribution is said to be symmetric if it looks same to the right 

and left of the center point. One of the numerous reasons for checking symmetry in a 

given data set is because many statistical tests rely strongly on the assumption of 

normality, which in turn relies on symmetry. Thus, a skewness measure can provide 

valuable information on issues such as data transformation, outlier detection, distribution 

fitting etc. so as to ensure that an appropriate analysis procedure (parametric versus non-

parametric) is employed.   

In this report, we present a novel approach to assessing symmetry, which is 

simple and computationally less complex in comparison to the asymptotic distribution-

free test of symmetry developed by Randles et al.3 This approach rests on the inherent 

characteristic of a symmetric distribution: the corresponding upper and lower percentiles 

are equidistant from its median (Section II). In section III, we introduce the other 

skewness measures namely the traditional coefficient of skewness index, skewness index 

based on the L-moments discussed by Hosking1, the Quartile and the Octile skewness 

coefficients proposed by Hinkley2, and the symmetry test developed by Randles et al.3  In 

the past, several skewness indices have been explored individually and in this report we 

evaluate these competitors using extensive simulations (Section IV). We discuss the pros 

 2



and cons of the different approaches and introduce our comprehensive SAS® macro 

(appendix I) that can perform these computations efficiently (Section V).  

II. Proposed Measure of Symmetry 
 
Hines and Hines4 proposed a graphical power law transformation for transforming an 

asymmetric distribution symmetric based on the fundamental property of a symmetric 

distribution. Our method, described below, to assess the skewness in a given data set uses 

the same property of symmetric distributions.  

Let x(1), x(2), …, x(n) be the ordered random sample of size n from a distribution of 

the random variable X with mean µ and variance σ2. As the first step, calculate the 

following: 

xM=median of the data set, i.e., 50th percentile 

100-iUx = upper percentiles of the data set (i = 0, 1, 2 …49) 

iLx = lower percentiles of the data set (i = 0, 1, 2 …49) 

Under symmetry, the corresponding upper and lower percentiles are equidistant from the 

median, i.e., 

i 100-i

i 100-i

L U
M L U M M

x +x
x  - x = x - x x = , i = 0,1,2,...,49

2
⇒  

Thus, we obtain 50 estimates (Yi) of the observed median, xM, for any given data set. The 

number of percentiles can be chosen depending on the type of the data, and the sample 

size.  Let m be the bound defined by 1.96×S.E.(X) , where S.E.(X) is the standard error 

of the distribution of the original observations. Define: 
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Thus, p is an estimate of the proportion of times the calculated median, Yi, is close to 

the observed median, xM, with a precision determined by m. Higher the value of p, the 

more symmetric is the underlying data. A reasonable ad hoc guideline for judging the 

symmetry in the underlying data set based on this approach is as follows: 

• If p ≥ 0.9, data is symmetric (i.e., only at most 10% of the original observations 

may be deviant) 

• If 0.8 ≤ p < 0.9, possibility of a few outliers in the data (i.e., 10% to 20% of the 

original observations may be deviant) 

• p < 0.8, data is not symmetric and further investigation is needed (i.e., more than 

20% of the original observations are deviant) 

These cut offs can be fine tuned depending on how critical the assumption of symmetry is 

for the subsequent analyses. We evaluate the above cut offs by comparing them with the 

results from the symmetry test and other skewness measures section IV. One can also use 

the test of proportions to formally test and assess symmetry using our approach however 

that would require the choice of a null proportion for which the above guidelines can be 

used.  

Previous work by Gastwirth5 and Bhattacharya et al.6 have looked at tests for 

symmetry based on modifications of the sign test and Wilcoxon tests. Our present 

approach is similar in principle to the above two methods in that it is also completely data 

driven, but is different in that it is based only on the property of a symmetric distribution. 
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In the remainder of this report, we will however focus only on some of the more 

commonly used skewness measures, the symmetry test and our proposed measure.  

III. Skewness Indices 

In this section, we will give a brief description of four different procedures used to 

compute skewness. We only present the formulae necessary to compute these indices / 

test statistics and the readers are referred to Hosking1, Hinkley7and Randles et al.2 for 

further details about the theoretical background.  

The coefficient of skewness is defined as: 

S1 = 
( )

n
r

i
3 i=1

r3/2
2

(x -x)
m , where m = 

nm

∑
. 

Here, mr is the rth sample moment about the sample mean. For symmetrical distributions, 

S1 has expectation 0, i.e., when the data is symmetric, the sample skewness coefficient is 

near zero. If S1 > 0, then the distribution is asymmetric with a positive skew and if S1 < 0, 

then the distribution is asymmetric with a negative skew. The larger the absolute value of 

S1, the more asymmetric is the distribution. (See Gupta7 for a test based on this sample 

skewness coefficient).  

The estimates of the sample L-skewness is given by the following:1  

S2 = 3

2

l
l

 

where,  

2 2l = 2w - x , 3 3 2l = 6w - 6w + x , 

n

(i)
i=2

2

(i-1) x
w  = 

n (n-1)

∑
,

n

(i)
i=3

3

(i-1) (i-2) x
w  = 

n (n-1) (n-2)

∑
, –1 < S2 < 1.   
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An alternative L-skewness index, 2
2

2

1 + SS  = 
1 - S

′ , has also been defined by Hosking1 and its 

properties have been discussed. 1,8 The index 2S′  is easier to interpret than S2, as it is the 

ratio of the length of the upper tail to the lower tail in samples of size 3.  therefore 

ranges from 0 to ∞ and values of 1, > 1 and < 1 indicate symmetric, positively skewed 

and negatively skewed distributions. In the case of S2, a value of 0 indicates symmetry, 

and –1 < S2 < 0 indicates a negatively skewed distribution and 0 < S2 < 1 indicates a 

positively skewed distribution. 

2S′

The Quartile (S4) and the Octile ( 4S′ ) skewness coefficients proposed by Hinkley2, 

given by:  

S4 = 0.25 0.5 0.75

0.75 0.25

Q  - 2Q  + Q
Q  - Q

, 0< S4 < ∞ 

4S′  = 0.125 0.5 0.875

0.875 0.125

Q  - 2Q  + Q
Q  - Q

, 0< 4S′  < ∞ 

For both (S4) and ( ), values of 0, > 0 and < 0 indicate symmetric, positively skewed 

and negatively skewed distributions. 

4S′

S1, S2 ( ), and S4 ( ) are measures of skewness (whose numerical values 

quantifies symmetry or asymmetry as the case may be), with no widely used test statistics 

associated with them. The distribution-free test of symmetry, however, tests if a 

univariate distribution is symmetric about some unknown value against a broad class of 

symmetric distribution alternatives.   

2S′ 4S′

To discuss the test statistic proposed by Randles et al.3 based on the n unordered 

observations of X, first consider every triple (Xi, Xj, Xk), 1 ≤ i < j < k ≤ n (all the 
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notations used in this paper are consistent with the discussion given in Wolfe and 

Hollander9). A set of three distinct observations is called a right triple when the middle 

observation is closer to the smallest than to the largest (and hence is skewed to the right) 

and is called a left triple when the middle observation is closer to the largest than to the 

smallest (and hence is skewed to the left). Define f*(Xi, Xj, Xk) = [sign(Xi + Xj - 2Xk)] + 

[sign(Xi + Xk - 2Xj )] + [sign(Xj +Xk - 2Xi)], where sign(y) = -1, 1, 0 if y is less than, 

greater than or equal to 0 respectively. If f*(Xi, Xj, Xk) = 1, it is a right triple, it is a left 

triple if its value is -1 and it is neither a left nor a right triple if its value is 0. (Note that 

the test statistic is well-defined when zeros occur in the computation of (Xi + Xj - 2Xk; ∀i, 

j, k).) We then compute the following for the entire data set: 

T = [number of right triples] - [number of left triples]. 

For each fixed t = 1…n, let 

Bt = [number of right triples with Xt] - [number of left triples with Xt] 

and for each fixed pair (s; t); 1 ≤ s < t ≤ n, let 

Bs,t = [number of right triples with Xs, Xt] - [number of left triples with Xs, Xt]. 

The test statistic is based on the above combinations of the number of right and left 

triples in the entire data set and when n is large, its distribution is well approximated by 

the normal distribution. In particular, the test statistic S3 is given by:  

3
TS =
s

 

where, 

n n-1 n
2 2 2

t s,t
t=1 s=1 t=s+1

(n-3)(n- 4) (n-3) n(n-1)(n-2) (n-3)(n- 4)(n-5)s  = B  + B  +  - 1- T
(n-1)(n-2) (n- 4) 6 n(n-1)(n-2)

⎡ ⎤⎧ ⎫
⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

∑ ∑ ∑ 2 . 
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Out of a sample of size n, there are  distinct triples, and if the null hypothesis 

of symmetry holds, then we expect half of them to be right triples and half of them to be 

left triples. Roughly speaking, any substantial deviation in either direction (either more 

number of right triples or more number of left triples) is indicative of asymmetry in the 

underlying population.  The null hypothesis of symmetry against the general alternative 

of asymmetry at a specified level of significance, α and large n, is rejected if | S3| ≥ Zα/2. 

Appropriate one-sided tests can be done to check for specific deviations (right or left 

skewness) from symmetry (see Wolfe and Hollander9 for further details). Although 

computationally intensive, the results from this test are accurate even for small sample 

sizes and displays good power in detecting asymmetric distributions as compared to 

sample skewness measures.3  

2
nC

IV Simulations 

We generated 1000 iterations of random samples of sizes 25, 50, and 100 from the 

following symmetric and positively skewed distributions: standard normal (mean=0, 

variance=1), and standard Cauchy (location=0, scale=1); Gamma (shape=8, rate=1), and 

Log Normal (mean=0.5, variance=1). The results are presented in Tables 1-3. There are 

variations in the results obtained from the summary skewness measures. A major issue 

with all the summary measures is quantification and the fact that there is a lack of 

consistency across the different skewness indices in terms of conclusions of asymmetry. 

We refer the readers to our previous work for other identified issues in these measures.10  

We will focus on the comparison of the symmetry test with our proposed measure 

in the rest of this section.  The symmetry test is a well defined test statistic that is 

accurate even for small sample sizes and displays good power in detecting asymmetric 
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distributions as compared to sample skewness measures.3 We will use a cutoff of 0.1 or 

higher to indicate symmetry, with values greater than 0.5 to indicate strong evidence of 

symmetry. Our proposed measure of symmetry also has guidelines for quantifying 

symmetry or asymmetry as the case may be (see section II).  

In the case of the normal distribution, both the symmetry test and our proposed 

measure agree in that regardless of the sample size, the underlying distribution is 

symmetric. In the case of the Gamma distribution, although for N=25 and 50, the 

symmetry test p-values suggest symmetry (p=0.37, 0.25) based on a cutoff of 0.1, the 

values of 0.88 and 0.84 from our proposed measure indicates presence of possible 

asymmetry in the data as can be seen from  Figure 1. In the case of N=100, both of them 

indicate asymmetry. In the case of the log normal distribution, both the symmetry test and 

our proposed method provide sufficient evidence for asymmetry in the distribution, 

although this is somewhat borderline for N=25 (see Table 1). The p-value from the 

symmetry test (0.12) and the estimated p from our measure (0.81) indicate possible 

asymmetry, which is expected as this data is generated from a positively skewed 

distribution. Figure 2 gives a representative plot of 5 samples generated from a log 

normal distribution of size N=25 with mean=0.5 and standard deviation=1.  Clearly, even 

with such a small sample size, we see that the distribution is right tailed, i.e., positively 

skewed and both of the above approaches suggest possible asymmetry. However, based 

on Figures 1 and 2, we note that it is difficult to definitively conclude asymmetry or 

symmetry as the case may be, with such small sample sizes.  

We discuss the case of the Cauchy distribution separately. The symmetry test 

suggests a strong evidence of symmetry (p-values ~0.5), whereas our proposed method 
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gives values < 0.9 for N=25 and 50. To investigate this apparent disagreement further, we 

decided to tabulate the percentage of p-values ≥ 0.05, and ≥ 0.10 obtained from the 1000 

iterations for the symmetry test and compare it with the estimated proportion from our 

approach (Table 4). Clearly, we can see that about 12% to 14% of the p-values from the 

symmetry test were in fact < 0.10, which is not captured by the average p-value. 

Although superficially the results from the two approaches appear contradictory, a more 

thorough analysis suggests that they are in fact consistent. It is therefore fair to conclude 

that the results from our proposed measure and the symmetry test in fact agree for the 

Cauchy distribution as well.  

Hence, based on the simulation results, our proposed method is robust and 

provides a reasonable indication of symmetry or asymmetry even with small sample sizes. 

Moreover, the results from our approach are in agreement with the results from the 

symmetry test. 

V Discussion 

Accuracy and Interpretability The sample skewness coefficient and the Quartile and 

Octile skewness coefficients are sensitive to even small changes in the tail of the 

distribution, whereas the L-skewness, symmetry test and our approach are sensitive to 

changes in the shape of the main portion (in the middle as opposed to the tail). The 

sample skewness coefficient and the Quartile and Octile skewness coefficient is 

susceptible to moderate outliers in the sample since cubes of extreme deviations are 

highly influential. Royston8 further demonstrated that the sample skewness coefficient is 

a poor estimator of skewness in skew distributions and suffers from several theoretical 

and practical disadvantages as compared to the L-skewness measure. The symmetry test 
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is not effective at identifying asymmetry when sample sizes are small (< 20) 11, however 

using a Monte Carlo study, Randles et al.2 showed that the symmetry test is superior to 

the test based on the sample skewness index. Our approach as well as the symmetry test 

and the L-skewness can provide a measure of relative skewness, whereas the other two 

skewness coefficients are less interpretable in terms of the distribution features.  

Complexity The sample skewness coefficient is the easiest to compute, followed 

by the L-skewness, the Quartile/Octile coefficients, our approach and the symmetry test 

statistics. The L-skewness measure and our approach require the data to be sorted in an 

increasing order, whereas the symmetry test requires considering every triple of 

observations for computing the test statistic. When the sample size is large, although the 

symmetry test displays good power, it is computationally intensive compared to our 

approach.  

Accessibility The sample skewness coefficient is part of many standard statistical 

packages and hence is accessible and also efficient in terms of time required for 

computation. Our readily available SAS® macro makes it feasible to compute all the other 

skewness measures discussed in this report, however there are tradeoffs between 

computational time versus power for the symmetry test, when the sample size is large.  

The big question is: Which measure is appropriate? It probably suffices to say that 

this is situation dependent, particularly on how important the symmetry of the underlying 

data is for the purposes of the study. The first step would still be to do a quick plotting of 

the data to get a sense of its distribution. As we have shown, several factors like sample 

size, interpretability, complexity, and accessibility play a vital role in the selection of the 

skewness measure. Each measure has its own share of positives and negatives. The 
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sample skewness coefficient, the L-skewness and the Quartile/Octile skewness measures 

are readily available (although not all of them are routinely produced as part of a 

statistical output, but can be coded easily and quickly) and computationally less intensive 

compared to the symmetry test. Between them, it has been shown that the L-skewness is 

more interpretable and less sensitive to extreme deviations in the tails. The symmetry test 

displays good power in detecting asymmetry against a broad class of symmetric 

distribution alternatives. Our novel approach to assessing symmetry is based on the 

fundamental property of a symmetric distribution. The test of proportions can be applied 

to our approach if a rigorous statistical hypothesis testing (and p-values) is required. A 

significant advantage of our method over the symmetry test is that it is intuitive, simple, 

and computationally easy, and yet provides results consistent as that of the 

comprehensive, computationally intensive symmetry test. If complexity and 

computational time are not constraints (mainly in case of large sample sizes), then the 

symmetry test is probably a good choice, however for a quick, practical and accurate 

assessment of symmetry, our proposed method is considerably better.  

Our SAS® macro (see appendix I) provides a menu of options to perform all of 

the above computations efficiently and in addition also suggests an appropriate power 

transformation, if one exists, to make a data symmetric.1 This latter part is noteworthy in 

that we not only address the problem i.e., identify whether a given data set has an 

underlying symmetric distribution, but also provide a solution i.e. an appropriate power 

transformation, if one exists, to make the asymmetric data symmetric.  
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Appendix I 

Two slightly different versions of a macro are available for checking for symmetry.   
 
1) %symmchk(ds = , chkvar = ); 
 

ds =  name of the dataset 
chkvar = variable to be checked for symmetry 

 
The above macro computes the different symmetry measures discussed in this technical 
report and suggests the best power transformation, if one exists, to make an asymmetric 
distribution symmetric.  
 
 
2) %symm(ds = , var = ); 
 

ds =  name of the dataset 
var = variable to be checked for symmetry 

 
The above macro only computes the different symmetry measures discussed in this 
technical report for a given variable.   
 
Example 
 
Between January 1974 and May 1984, Mayo Clinic conducted a double-blinded 
randomized trial in primary biliary cirrhosis of the liver (PBC), comparing the drug D-
penicillamine (DPCA) with a placebo.12 We consider the variable, triglycerides (mg/dl), 
to illustrate the use of our macro. A histogram of this data (see below) reveals that this 
data is positively skewed.  
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The various skewness measures computed using the %symmchk() macro support our 
visual observation of asymmetry. See below for the macro call and the sample SAS 
output for this data. 
 
%symmchk(ds = data, chkvar = trigly); 
 
         Var                 = TRIGLY                                              
                                  N                    =        282                                          
                                  S1: Sample Skewness  =  2.5104576                                          
                                  S2: L-Skewness I     =  0.2769045                                          
                                  S2':L-Skewness II    =  1.7658862                                          
                                  S3: Np Symmetry Test =  9.1331897                                          
                                  S3:         P-value  =     0.0000                                          
                                  S4: Quartile Skewness=  0.2835821                                          
                                  S4':Octile Skewness  =  0.3333333                                          
                                  S5: New Method       =  0.4200000                                          
                                                                                                             
                                                                                                            
                                                                                                            

Our macro then automatically performs several power transformations and checks for 
symmetry for the transformed data. The results are given in Table A.  Looking at the p-
values from the symmetry test and the new method, it appears that the log transformation  
makes the distribution of triglyceride variable symmetric (see table A for other suggested 
transformations). The histogram of the log transformed variable given below indicates a 
symmetric distribution as well.    
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Table A: Results from the Different Power Transformations  
 
 

                               S1 :         S2 :          S2':        S3: NP     S3           S4:        S4:         S5 : New               
                              Sample     L-Skewness    L-Skewness    symmetry    P-value    Quartile     Octile       Method        
       Obs    Tranform EQ    Skewness         I            II          Test           Skewness    Skewness                
                                                                                                                                      
         1    Original         2.5105      0.27690        1.7659       9.1332    0.00000     0.28358     0.33333      0.42            
         2    Square           6.8667      0.50375        3.0302      16.8925    0.00000     0.41467     0.54167      0.50            
         3    3rd power       11.4697      0.70467        5.7722      24.6288    0.00000     0.53196     0.70134      0.70            
         4    4th power       14.1747      0.85013       12.3445      32.0662    0.00000     0.63301     0.81322      0.84            
         5    square root      1.2176      0.16225        1.3873       5.3239    0.00000     0.21413     0.21462      0.46            
         6    3rd root         0.8931      0.12442        1.2842       4.0766    0.00005     0.19056     0.17359      0.52            
         7    4th root         0.7453      0.10561        1.2362       3.4613    0.00054     0.17871     0.15288      0.56            
         8    log              0.3582      0.05168        1.1090       1.6396    0.10110     0.14424     0.09245      0.86            
         9    1/square rt      0.3185      0.05618        1.1190       2.1163    0.03432    -0.07272     0.03274      0.82            
        10    1/3rd root       0.1030      0.02071        1.0423       0.8386    0.40170    -0.09663    -0.00896      0.98            
        11    1/4th root      -0.0075      0.00278        1.0056       0.2163    0.82877    -0.10856    -0.02985      0.98            

        14    1/3rd power      5.1402      0.50854        3.0695      21.0387    0.00000     0.27443     0.56901      0.54            

        12    1/original       0.9611      0.15926        1.3789       5.9872    0.00000    -0.00096     0.15596      0.66            
        13    1/square         2.5696      0.34762        2.0657      13.8746    0.00000     0.14039     0.38286      0.54            

        15    1/4th power      8.5350      0.64053        4.5637      27.3451    0.00000     0.39701     0.70920      0.60            
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Table 1: Simulation Results (N=25, Iterations = 1000) 

 
 
 

Distribution 

 
 
 

S1 

 
 
 

S2 
( 2S′ ) 

 
 

Symmetry  
test (S3) 

(stat /  
p-value) 

 
 
 

S4 
( 4S′ ) 

 
 

Proposed Measure 
(prop. of times within

the bound, m*) 

Normal 
(mean=0, std=1) 

0 0 
(1.02) 

0.007 
(0.53) 

0 
(0) 

0.93 

Cauchy 
(location=0,scale=1) 

-0.1 -0.02 
(2.95) 

-0.05 
(0.5) 

-0.01 
(-0.01) 

0.87 

Gamma 
(shape=8, rate=1) 

0.53 0.11 
(1.27) 

1.01 
(0.37) 

0.07 
(0.11) 

0.88 

Log Normal 
(mean=0.5, std=1) 

1.08 0.22 
(1.61) 

2.08 
(0.12) 

0.14 
(0.24) 

0.81 

* m = 1.96×S.E.(X)   
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Table 2: Simulation Results (N=50, Iterations = 1000) 

 
 
 

Distribution 

 
 
 

S1 

 
 
 

S2 
( 2S′ ) 

 
 

Symmetry  
test (S3) 

(stat /  
p-value) 

 
 
 

S4 
( 4S′ ) 

 
 

Proposed Measure 
(prop. of times within

the bound, m*) 

Normal 
(mean=0, std=1) 

0 0 
(1) 

-0.008 
(0.52) 

0 
(0) 

0.93 

Cauchy 
(location=0,scale=1) 

-0.23 -0.03 
(2.73) 

-0.05 
(0.47) 

0 
(-0.01) 

0.89 

Gamma 
(shape=8, rate=1) 

0.61 1.11 
(1.26) 

1.57 
(0.25) 

0.07 
(0.12) 

0.84 

Log Normal 
(mean=0.5, std=1) 

1.34 0.24 
(1.64) 

3.35 
(0.03) 

0.17 
(0.26) 

0.72 

* m = 1.96×S.E.(X)   
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Table 3: Simulation Results (N=100, Iterations = 1000) 

 
 
 

Distribution 

 
 
 

S1 

 
 
 

S2 
( 2S′ ) 

 
 

Symmetry  
test (S3) 

(stat /  
p-value) 

 
 
 

S4 
( 4S′ ) 

 
 

Proposed Measure 
(prop. of times within

the bound, m*) 

Normal 
(mean=0, std=1) 

 0 0 
(1) 

-0.002 
(0.51) 

0 
(0) 

0.92 

Cauchy 
(location=0,scale=1) 

-0.18 -0.01 
(2.28) 

-0.02 
(0.48) 

-0.002 
(0.002) 

0.91 

Gamma 
(shape=8, rate=1) 

0.67 0.11 
(1.27) 

2.40 
(0.09) 

0.08 
(0.13) 

0.77 

Log Normal 
(mean=0.5, std=1) 

1.49 0.24 
(1.64) 

5.02 
(0.001) 

0.17 
(0.28) 

0.64 

* m = 1.96×S.E.(X)   
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Table 4: Comparison of the Simulation Results for the Cauchy distribution 
(location=0, scale=1) 
 

 
 
 

Sample size 

 
 

Symmetry 
test 

(percent p-
values ≥ 0.05)

 
 

Symmetry 
test 

(percent p-
values ≥ 0.10)

 
 

Symmetry 
test 

(stat /  
p-value) 

 
 

Proposed Measure 
(prop. of times 

within the bound, 
m*) 

25 91.6% 86% -0.05 
(0.5) 

0.87 

50 91.9% 85.8% -0.02 
(0.48) 

0.89 

100 93.1% 88.3% -0.05 
(0.47) 

0.91 

* m = 1.96×S.E.(X)   
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Figure 1: Probability density plot of five replications generated from a gamma 
distribution (shape=8, rate=1) of size 25 (x axis = vector of points at which the density 
is estimated, y axis = density estimate at each x point) 
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Figure 2: Probability density plot of five replications generated from a log normal 
distribution (mean=0.5, std=1) of size 25 (x axis = vector of points at which the density 
is estimated, y axis = density estimate at each x point) 
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	Bt = [number of right triples with Xt] - [number of left tri

