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Introduction 
 
The study of the association of genetic markers with complex traits has generated a wide 
range of statistical methods, particularly those that are based on transmission-
disequilibrium. Understanding the relationships of new and old ideas has been a real 
challenge, since it seems that a cottage-industry has emerged in the production of new 
methods for transmission-disequilibrium. This technical report provides a review of 
methods in this area through approximately 1999. It was originally intended for this 
report to be a book chapter, although the complete book was never completed. None the 
less, this review is fairly comprehensive through 1999, and will serve as a good basis for 
future updated editions. 
 
 

Association and Linkage Disequilibrium 

The genetic variants related to a disease can be evaluated in multiple ways, such as by 
functional cloning (identification of the defective protein first, which then leads to the 
defective gene), positional cloning (using genetic markers and genome-wide screens), or 
evaluation of candidate genes (genes with known function as likely candidates related to 
the disease).  Association studies - often used to evaluate candidate genes - typically are 
based on the case-control study design with unrelated subjects.  The finding of a greater 
frequency of a marker allele among affected subjects compared to unaffected subjects is 
suggestive of a functional relationship of the marker with disease.  But, because 
genetically unrelated subjects do not provide information on inheritance, any observed 
association can be attributed to both genetic and non-genetic causes.  Relevant genetic 
causes are either that the genetic marker plays a functional role in the disease process, or 
that the marker and disease susceptibility loci are in close proximity on the same 
chromosome and their alleles are statistically associated at the population level, due to 
common ancestry.  The statistical dependence of alleles at two loci has been called 
linkage disequilibrium, gametic disequilibrium, and allelic association.  To avoid 
ambiguity, allelic association shall be used to represent the dependence of alleles at two 
loci for any reason, but linkage disequilibrium will be reserved for the more restrictive 
case when both genetic linkage exists (i.e., the meiotic recombination fraction, θ , is less 
than ½),  and the alleles at the two loci are associated.  Linkage disequilibrium (LD) is 
typically measured as the deviation of the relative frequency of a haplotype from its 
equilibrium value. If P D( )  and P M( )1  represent the frequencies of alleles D and M1 at 
the susceptibility and marker loci, respectively, and P D M( )- 1  represents the frequency 
of the D M- 1 haplotype, then a measure of LD is δ = −P D M P D P M( ) ( ) ( )- 1 1 .  Linkage 
disequilibrium occurs when a new allele at a locus arises by mutation on a unique 
chromosomal background, characterized by the pattern of alleles at other loci on the same 
chromosome.  This unique chromosomal pattern is transmitted en bloc from generation to 
generation, until recombination between loci randomly shuffles alleles, diminishing the 
association of alleles between loci.  Although LD diminishes over generations due to 
recombination, the loci that are closest to the locus with the mutant allele are less likely 
to experience recombination events, hence maintaining the strongest association.  If LD 
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exits, it can offer valuable information to refine the location of disease susceptibility 
genes, taking advantage of few ancestral recombinations. 
 
However, other non-genetic causes of association, such as population stratification, 
admixture, or small sample variation, can mislead epidemiologic investigations of disease 
etiology.  Causal inferences based on case-control studies can be difficult to interpret, 
particularly when cases and controls are sampled from a heterogeneous population.  If a 
population is stratified according to multiple ethnic subgroups (i.e., without random 
mating among the various subgroups), then any disease that occurs at a higher frequency 
in a subgroup will be positively associated with any allele that happens to be more 
frequent in that group.  A classic example is the association of haplotype of the Gm 
marker with non-insulin- dependent diabetes mellitus (NIDDM) among American Pima 
Indians.  This group has both Indian and Caucasian ancestors, and the amount of 
admixture varies among subjects.  The prevalence of NIDDM increases as the amount of 
Indian heritage increases, and certain Gm haplotypes are associated with Indian ancestry.  
Ignoring the admixture of subjects leads to a strong association of Gm haplotypes with 
NIDDM, yet stratifying on an index of Indian heritage (reported heritage of the parents’ 
grandparents) removes this confounding.  For further details of this example, see Khoury, 
et al. (Khoury et al. 1993, p. 133-135) and Knowler, et al. (Knowler et al. 1988).  Another 
example for which population stratification has been speculated to play a role is the 
association of the A1 allele of the dopamine D2 receptor gene with alcoholism (Parsian et 
al. 1991; Gelernter et al. 1993; Pato et al. 1993).  Meta-analyses have shown that this 
association varies significantly among different populations, and that the variation of the 
A1 allele has been greater among different studies than between alcoholics and controls.  
This type of bias has motivated investigators to match cases and controls by their 
neighborhood of residence, or by ethnic background.  However, it is difficult to measure 
ethnicity.  Ethnicity encompasses not only common ancestry, but also shared social, 
religious, environmental, and cultural backgrounds.  Furthermore, ethnicity is not the 
same as nationality.  Although country of origin of parents, or grandparents, of cases and 
controls is commonly used as an index of ethnicity, this is still a crude measure, which 
may not capture all the genetic variation in a heterogeneous country (Senior and Bhopal 
1994).  Furthermore, in heterogeneous populations like the United States, it is not unusual 
to find fewer than four grandparents from the same country, leading to cases and controls 
with mixed nationality.  Because of these difficulties in defining an appropriate control 
group, the relatives of cases may be an ideal source of controls that are matched on 
genetic ancestry.  
 
 
Haplotype Relative Risk 

Falk and Rubinstein (Falk and Rubinstein 1987) proposed using the parental alleles not 
present in the affected child (i.e., the case) as a control sample.  This novel method 
requires measurement of the genetic marker for the case and both of its parents, in order 
to compare the frequency of carriers of a particular allele between cases and the controls.  
For example, let M1 denote the allele of interest, and M2 denote all other alleles.  If an 
affected child has the genotype M1/M2 , and its parents have genotypes M1/M2  and 
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M2 /M2 , then the alleles not transmitted from these parents to the child are used to create 
a pseudo-control.  Since an M2  allele is not transmitted from each parent, the artificial 
“genotype” for the pseudo-control is M2 /M2 .  Then, the frequency of cases that carry the 
M1 allele can be compared with the same frequency among the pseudo-controls by 
creating a 2x2 table, with rows representing the cases and controls, and columns 
indicating carrier status.  Traditional methods can be used to analyze this 2x2 table, such 
as Pearson’s chi-square contingency statistic and the usual cross-product odds ratio.  This 
method, known as the Haplotype Relative Risk (HRR), will produce unbiased estimates 
of the conventional relative risk under certain conditions.  First, the usual assumption of a 
rare disease is needed for the odds ratio to approximate the relative risk.  But, it is also 
necessary for the two non-transmitted parental alleles to be representative of a random 
sample of alleles from the population at large.  This requires no inbreeding among 
parents, no correlation of parental phenotypes, single ascertainment of families, no 
differential fertility of the disease phenotypes, and no recombination between the disease 
and marker loci (θ = 0). When recombination occurs (θ > 0), the non-transmitted alleles 
are not a random sample from the population, causing the HRR to underestimate the 
relative risk for the susceptibility locus (Knapp et al. 1993).  Without linkage ( 0.5θ = ), 
HRR shrinks to 1.  It is worthwhile to emphasize that the relative risk from a case-control 
study with unrelated subjects is different from 1 whenever there is allelic association 
(δ ≠ 0), no matter what causes the association, but HRR differs from 1 only when there 
is both linkage and linkage disequilibrium.  The null hypothesis that HRR is equal to 1  is 
equivalent to the compound null hypothesis δ θ( )1 2 0− = , which mathematically states 
that absence of linkage ( 0.5θ = ) or absence of association (δ = 0), or both, will cause 
the expected value of HRR to be unity. 
 
Note that the HRR method is used to compare the frequencies of genotypes (grouping 
homozygous and heterozygous carriers), so that N cases are compared with N pseudo-
controls, for a total sample size of 2N.  But, under the null hypothesis of no allelic 
association, the transmitted and non-transmitted alleles of each parent are independent, 
and the transmission of alleles is independent between parents (Ott 1989).  This implies 
that all 4 alleles of the parents of a case are independent, so that it is possible to use a 
total sample size of 4N alleles, instead of 2N genotypes, for more powerful statistical 
testing.  This is achieved by first creating a 2x2 table of allele counts, where the rows 
classify the parental alleles as transmitted and non-transmitted, and the columns indicate 
the presence or absence of the allele of interest, and then applying Pearson’s contingency 
statistic, which has a chi-square distribution with 1df  (Terwilliger and Ott 1992).  This 
approach, which uses as controls those parental alleles never transmitted to one or more 
affected offspring, has been referred to as affected family-based controls (AFBAC) 
(Thomson 1995).  Although this method leads to a valid test of allelic association, it is 
not a valid method to test for linkage in the presence of association, because when allelic 
association exists - say due to population stratification, the transmitted and non-
transmitted alleles are no longer independent, even when the loci are not linked ( 0.5θ = ) 
(Ott 1989).  This dependence of alleles is not taken into account when using Pearson’s 
contingency statistic, which can lead to inflated Type I error rates when using this 
method as a test for linkage (Ewens and Spielman 1995).  
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Transmission/Disequilibrium Test 
 
To develop a test specific for linkage in the presence of association, Spielman et al. 
(Spielman et al. 1993) considered the transmission of marker alleles from heterozygous 
parents to their affected child.  Each pair of alleles from a heterozygous parent is 
considered a matched pair, and these alleles are scored as transmitted or non-transmitted 
to the affected child, as illustrated in Table 1 for the evaluation of allele M1 versus all 
other alleles, M2.  When there is no LD, the two parental alleles have an equal chance of 
being transmitted to the affected child. In contrast, the presence of LD distorts this 
equality, so that the frequency of allele M1 will differ between transmitted and non-
transmitted alleles.  But, because we condition on the marker genotype of a parent, say 
M1M2, the transmission of these two alleles are perfectly negatively correlated, because 
knowing which allele is transmitted gives information on which allele is not transmitted. 
McNemar’s chi-square statistic for matched pairs, which accounts for this correlation, 
offers a valid method of comparison.  Based on the notation in Table 1, McNemar’s chi-
square statistic , called the transmission/disequilibrium test (Spielman et al. 1993), is 
TDT b c b c= − +( ) / ( )2 .  For a large number of discordant pairs, ( )b c+ , this statistic has 
an approximate chi-square distribution with 1 df.  Alternatively, for small sample sizes, 
exact probability values can be computed based on the binomial distribution with sample 
size ( )b c+  and probability ½.  As with traditional matched studies in epidemiology, the 
ratio r b c= /  estimates a relative risk, which in this case is the relative risk per allele.  
Note that homozygous parents (cells a and d in Table 1) do not contribute information, 
and hence are not used for the TDT.  An advantage of the transmission disequilibrium 
method is that it does not require a genetic model for disease transmission, which can be 
difficult to specify for complex traits.  Furthermore, several advantages are gained by 
conditioning on parental marker genotypes: the influence of non-genetic associations due 
to population structure is eliminated; allele frequencies are not required; any dependence 
of parental marker genotypes due to non-random mating (e.g., assortative mating) is 
eliminated.  
 
The fact that the TDT can detect linkage only in the presence of association can be 
understood as follows.  When sampling a diseased child and its parents, the linkage phase 
of the parents is unknown.  Linkage phase refers to which alleles at the disease and 
marker loci occur together on each of the two haplotypes of a parent.  For example, if a 
 
 

Table 1. Counts of transmitted/non-transmitted marker allele pairs for 2N parents 
of N affected children: two marker alleles M1 and M2 . 

 
 Non-transmitted Allele 

Transmitted 
Allele 

M1 M2  Total 

M1 a b a+b 
M2  c d c+d 

Total a+c b+d 2N 
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parent has the disease genotype D/N and marker genotype M M1 2/ , the D can occur on a 
haplotype with either M1 or M2 , resulting in the parent’s linkage phase as either 
D M N M- -1 2/  or D M N M- -2 1/ .  A recombinant child under one phase is non-
recombinant under the other phase.  Now, first consider when linkage exists, but there is 
no allelic association. In this case, the parent’s two linkage phases are equally likely, so 
approximately one-half of these types of parents will have the D M- 1  haplotype, and one-
half the D M- 2  haplotype.  Without linkage phase information, and a single affected 
child, there is no information to classify the child’s unobserved meiotic event as 
recombinant or non-recombinant.  This will cause the parental marker alleles to appear to 
segregate randomly to their children, and hence the TDT statistic will not detect a signal.  
In contrast, linkage information would exist if multiple affected children were sampled, 
and allele sharing within families were evaluated.  Now consider when there is no 
linkage, but population association exists.  Because of the association, the parent's two 
phases are not equally likely, but since there is no linkage, the recombinant and non-
recombinant meioses are equally likely, implying random segregation of the parental 
marker alleles, and hence the TDT will not detect a signal.  It is only when both linkage 
( 0.5θ < ) and allelic association (δ ≠ 0) coexist that the apparent transmission of alleles 
from heterozygous parents will deviate from the Mendelian 1:1 chance segregation.  For 
these reasons, the TDT is used to test the compound null hypothesis H0 1 2 0: ( )δ θ− = .  
Note that when sampling families with a single affected child, the parameters for linkage 
(θ ) and LD (δ ) are completely confounded, meaning that we cannot obtain separate 
estimates of them.  Nonetheless, the TDT can be used either to test for linkage in the 
presence of association, or to test for association in the presence of linkage, which can be 
useful for fine localization of disease genes once linkage to a chromosomal region is 
detected. 
 
A limitation of the TDT method is that it does not use a control group, but rather relies on 
Mendelian segregation (i.e., 1:1) of marker alleles under the null hypothesis.  If the 
segregation of marker alleles in a random person is distorted from Mendelian 
transmission for any reason, then results from the TDT can be misleading.  An example 
of segregation distortion is provided by Drosophila melanogaster, in which the 
Segregation distorter gene causes segregation distortion in males but not in females, due 
to the influence of this gene on sperm dysfunction (Hartl and Hiraizumi 1976).  In 
humans, evidence of segregation distortion has been detected for a genetic marker near 
the insulin gene (Eaves et al. 1999).  Another example of deviation from Mendelian 
segregation would be if a marker were in LD with a gene that causes early fetal death. 
The segregation of such a  marker will deviate from Mendelian segregation, so that the 
TDT can lead one to wrongly conclude that there is linkage disequilibrium of this marker 
with other traits.  To avoid this problem, Mendelian segregation of markers can be tested 
on a random sample of offspring.  If Mendelian segregation is questionable, the 
frequency of transmission of alleles from heterozygous parents can be compared between 
affected and unaffected siblings, because under the null hypothesis, the segregation of 
parental alleles does not depend on affection status, even if Mendelian segregation does 
not hold.  This analysis can be conducted  by creating a 2x2 table, with the rows 
representing affected and unaffected offspring, and the columns the transmitted alleles 
(Spielman et al. 1993), although care should be taken to perform an analysis stratified on 
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sibships whenever population heterogeneity is believed to exist (Schaid and Rowland 
1998b).  
 
Even when a marker segregates according to Mendelian probability, using information 
from both affected and unaffected children can sometimes increase the power over using 
only affected children.  This is because when the penetrance of the underlying gene is 
relatively large, the marker allele that is frequently transmitted to affected offspring will 
be less frequently transmitted to unaffected offspring.  Using this logic, a pooled TDT 
statistic that uses affected and unaffected children can be created by simply reversing the 
roles of which alleles are scored as transmitted and non-transmitted for the affected and 
unaffected children.  For example, if a parent has alleles M1 and M2  and among affected 
offspring M1 is scored as transmitted ( M2  not transmitted), then among unaffected 
offspring M2  would be scored as transmitted ( M1 not transmitted).  (Lazzeroni and 
Lange 1998).  However, caution should be taken when using unaffected offspring, 
because if the penetrance is low, the transmission of alleles to unaffected offspring will 
not deviate much from Mendelian segregation.  This can cause the unaffected children to 
contribute little to the numerator of the TDT, yet still contribute to the variation in the 
denominator of the TDT, leading to diminished power compared to using only affected 
children (Boehnke and Langefeld 1997).  
 
 
Multiple Marker Alleles 
 
When there are K >2 alleles for a given marker locus, the TDT can be applied by 
comparing the transmission of each allele versus all others combined, resulting in K 
statistical comparisons.  The largest of these K statistics, denoted maxTDT,  can be used 
as a summary statistic.  To avoid inflated Type-I error rates by multiple testing, the 
Bonferroni correction can be applied, which tends to be conservative, or empirical p-
values can be computed (Schaid 1996; Morris et al. 1997).  Empirical p-values are easy 
to compute: 1) create a new genotype for each affected child by randomly choosing, with 
equal probability, an allele from each of its parents; 2) recompute the statistic for this new 
dataset; and 3) repeat this process a large number of times to enumerate the distribution 
of the test statistic.  The fraction of simulated statistics greater than or equal to the 
observed statistic is the empirical p-value.  The advantage of using the maxTDT is its 
simplicity, and it can be more powerful than other methods when only one marker allele 
is in strong LD with a disease allele (Schaid 1996).  But, when LD does not favor a single 
allele, this approach can lose information by grouping together alleles that are positively 
and negatively associated with disease. 
 
Several alternative methods that consider all K alleles simultaneously are based on 
expanding the 2x2 table of transmitted/non-transmitted alleles to a KxK table that 
distinguishes the different alleles – see Table 2.  When the analysis is restricted to  
heterozygous parents, the diagonal elements of Table 2, nii , are all zero; otherwise the 
statistical methods remove these non-informative contributions from homozygous 
parents.  Under the null hypothesis, Table 2 is expected to be fully symmetric.  That is, if 
a parent is heterozygous for alleles i and j, then the number of times that this parent   
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Table 2. Counts of transmitted/non-transmitted marker allele pairs for 2N 
parents of N affected children: K marker alleles, labeled as 
M M MK1 2, ... . 

 
 Non-transmitted Allele  

Transmitted 
Allele 

M1 M2  ⋅ ⋅ ⋅ MK  Row 
Total 

M1 n11 n12  ⋅ ⋅ ⋅ n K1  n1•  
M2  n21  n22  ⋅ ⋅ ⋅ n K2  n2•  
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

MK  nK1  nK 2  ⋅ ⋅ ⋅ nKK  nK•  
Column Total n•1 n•2  ⋅ ⋅ ⋅ n K•  n N•• = 2  

 
 
transmits allele i should equal, on average, the number of times that this parent transmits 
allele j.  This expectation  can be written as E n E nij ji[ ] [ ]= , where nij  are the cell counts 
in Table 2, and E[] denotes large sample expectation.  To test for complete symmetry, a 
chi-square statistic can be applied, T n n n nc sym ij ji

i j
ij ji−

<

= − +� ( ) / ( )2 , which has an 

approximate chi-square distribution.  The degrees of freedom are the number of types of 
heterozygous parents, (i.e., the number of terms for which ( )n nij ji+ > 0), which can be 
as large as K(K-1)/2.  However, this approach has weak power to detect important LD, 
because of the many degrees of freedom.  Also, it may not be unusual for some of the 
nijvalues in Table 2 to be small, resulting in poor approximation of p-values by the chi-
square distribution. Permutation methods can be used to circumvent the use of the chi-
square distribution (Lazzeroni and Lange 1998), but the complete symmetry hypothesis is 
still likely to have weak power.  As a rough guide, simulations suggest that the test of 
complete symmetry has little power when the number of marker alleles exceeds 5 (Cleves 
et al. 1997). 
 
A more powerful approach than testing for complete symmetry is to test for marginal 
homogeneity, which states that the total number of times that an allele is transmitted is 
expected to equal the total number of times it is not transmitted.  In terms of the row and 
column totals in Table 2, this implies that the differences in the marginal totals, 
d n ni i i= −• • , are expected to be zero.  However, these differences are correlated, which 
must be taken into account by computing the covariance matrix for the vector of 
differences.  A chi-square statistic to test marginal homogeneity can be computed as 
T d V dm sym−

−= ′ , where d denotes the vector of differences, ′d  its transpose, V the 
covariance matrix of d, and V −  a generalized inverse of the matrix V.  A generalized 
inverse can be useful to evaluate the instability of the matrix V when attempting to 
compute its inverse, due to unexpected dependencies, and to determine the appropriate 
degrees of freedom; the degrees of freedom is no larger than (K-1), but can be smaller, 
depending on the pattern of heterozygous parents (Schaid 1996).  For example, if the data 
set is composed of only parental mating types 1/2 x 3/4, then even though there are 4 
alleles, the degrees of freedom is 2 and not 3.  This is because we can only compare the 
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preferential transmission of allele 1 versus 2, with one df, and the preferential 
transmission of allele 3 versus 4, with one df.  Several authors have considered similar 
multivariate chi-square statistics, but differed regarding how the covariance matrix is 
computed: V can be computed in its most general form allowing the alternative 
hypothesis to be true, which is called Bhapkar’s statistic (Jin et al. 1994), or by assuming 
marginal homogeneity to be true, which is called Stuart’s statistic (Bickeböller and 
Clerget-Darpoux 1995).  Stuart’s statistic is more restrictive, requiring fewer terms to 
compute the covariance matrix V, making it more stable and probably more powerful. It 
can also be shown that Stuart’s statistic is the score statistic for a genetic model in which 
the alleles act in a multiplicative fashion on the genotype odds ratios, which is appealing 
from the view of logistic regression modeling (Schaid 1996).  But, because these methods 
require inversion of a matrix, the even more restrictive assumption that n nij ji+  is 
constant for all values of i and j in Table 2 makes the inversion algebraically feasible, 
resulting in  

T K K n n n n nSE i i
i

i i ii= − − + −• • • •�[( ) / ] ( ) / ( )1 22 ,     

as proposed by Spielman and Ewens (Spielman and Ewens 1996).  This statistic, which 
removes the contribution from homozygous parents by the term −2nii , is analogous to 
adding the individual TDT statistics to create a total summary statistic, and is simple to 
compute.  It generally has an approximate chi-square distribution with (K-1) degrees of 
freedom, although there are situations where the degrees of freedom will actually be 
fewer (see above example), making the statistic conservative.  One advantage of the more 
complicated Stuart’s statistic is that the appropriate degrees of freedom can be computed 
by numerical methods that examine the linear dependencies inherent in the covariance 
matrix.  But, for sparse data, the chi-square approximation can be invalid, with an inflated 
rate of false-positive findings when the number of marker alleles is small, yet 
conservative when the number of marker alleles is large.  Alternatively, either simulated 
or exact methods to compute p-values tend to be more reliable for small sample sizes 
(Cleves et al. 1997) .  
 
Multiple affected siblings can be included in analyses simply by treating each affected 
offspring and its parents as independent trios, provided that the affected siblings are 
independent, given their marker genotypes and their parents' marker genotypes.  This 
independence is true when there is no linkage, but it is not true when linkage exists.  So, 
it is valid to include multiple affected siblings in tests for linkage when association exists, 
but it is not valid to include multiple affected siblings in tests for association when 
linkage exists.  More discussion of these issues  is provided in a later section regarding 
sibling controls. 
 
Although the chi-square statistics presented in this section are simple to compute, other 
likelihood-based methods of assessing transmission/disequilibrium are worth discussing 
because of the powerful statistical tools and intuitive understanding they provide.  Two 
different logistic regression models are presented in the next two sections - an allele 
transmission model and a genotype model with pseudo-sib controls. 
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Logistic Allele Transmission Model 

The allele transmission model considers the pairing of each heterozygous parent with its 
affected child.  If both parents are heterozygous, then each parent is paired with the 
affected child (i.e., two pairs).  The two alleles of a heterozygous parent are considered a 
matched pair, and conditional logistic regression methods can be used to model the 
probability of their transmission.  Let pijdenote the probability that allele i is transmitted 
and allele j is not transmitted for a parent with genotype i/j.  The corresponding 
conditional logistic regression model considers which parental allele is transmitted, 
conditional on the parent’s genotype, and can be written as  

log( / )p pij ji i j ij= − +α α β ,   for i < j.     
Because only one allele is transmitted, p pij ji+ = 1.  The parameter α i  represents the log 
odds ratio for the main effect of allele i on the transmission probability.  When α i > 0, 
the corresponding allele is preferentially transmitted, indicating a positive LD with 
disease.  A strong negative association also indicates LD, but the marker allele may not 
be causative. Because these are odds ratio parameters, the number of α i  parameters that 
can be independently estimated is (K-1).  So, out of the total K(K-1)/2 degrees of freedom 
used to test complete symmetry,  (K-1) can be used to evaluate the main effects of alleles. 
The remaining degrees of freedom (K K2 2 3 2 1/ /− + ) can be used to evaluate the β ij   
interaction parameters.  The interaction parameter β ij  represents the situation when the 
odds that allele i is transmitted depends on which allele is not transmitted. Jin et al. (Jin et 
al. 1994) provide a more thorough discussion of this fully parameterized logistic 
regression model.  Under the null hypothesis of complete symmetry, all α i  and β ij  
parameters are zero, so that a likelihood ratio statistic can be constructed to test this 
hypothesis.  
 
When a marker is highly polymorphic, with many alleles, the number of interaction terms 
is large, diminishing the power of the global likelihood ratio statistic.  Alternatively, it 
can be assumed that there are no interactions, equivalent to assuming that the effects of 
alleles are multiplicative on the genotype odds ratios, and a likelihood ratio statistic can 
be used to test whether the main effects, α i , are all zero.  This restricted likelihood ratio 
statistic has an approximate chi-square distribution with (K-1) df. Two methods to 
implement this restricted likelihood ratio statistic for marginal homogeneity have been 
proposed.  One is based on the summary counts provided by Table 2, and called the 
ETDT (extended  TDT, to K>2) (Sham and Curtis 1995).  Another equivalent method 
uses widely available software for conditional logistic regression for matched pairs 
(Harley et al. 1995).  Each heterozygous parent and affected child contributes a matched 
pair of observations.  The “case”, with dependent variable y=1, is the transmitted allele, 
and the “control”, with dependent variable y=0, is the non-transmitted allele.  Then, 
covariates are created to compare particular types of alleles between cases and controls. 
For each case and control, the i th  allele is scored 1 or 0, according to whether it is present 
or absent. Because odds ratios are computed, one allele value is considered the 
“baseline”.  This coding will generate a covariate vector of length (K-1) for each 
observation.  An example of this coding is presented in Table 3 for an affected child with 
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genotype 1/4, maternal genotype 1/2, and paternal genotype 3/4.  This example assumes 
that some allele value larger than 4 is used as the baseline.  It is worthwhile to recognize 
that not only can this model be fit with software for conditional logistic regression, but 
also software for standard (unconditional) logistic regression.  The trick to use standard 
logistic for matched pairs is to reduce each pair to a single observation by creating a new 
covariate from the covariate difference between cases and controls (e.g., 
x x xcase control= − ), creating the outcome y=1 for all pairs, and then fit the logistic model 
without an intercept. It is worthwhile to note that the score test from this logistic 
regression model is the same as Stuart's chi-square statistic to test marginal homogeneity.  
Hence, Stuart's statistic and the likelihood ratio statistic for the main effects of allele 
transmission are likely to have similar power, particularly for small values of α i . 
 
A strength of logistic regression is the ability to evaluate heterogeneity in allelic 
transmission to affected offspring.  Heterogeneity can be caused by multiple factors, such 
as heterogeneity in risk associated with different marker alleles, parent-of-origin effects, 
a mixture of genetic and sporadic cases in the sample, or gene x environment interaction.  
To assess allelic heterogeneity, a step-wise selection process can be used to sequentially 
remove from the logistic model any marker alleles whose risk does not differ statistically 
from that of the baseline allele, and hence create a more parsimonious model.  This can 
be helpful to group alleles with similar effects.  Heterogeneity can also be caused by 
interactions, such that the strength of genetic evidence for particular alleles varies 
according to other covariates, such as age at disease onset, affection status of parents, 
strength of family history, ethnic background of the family, or exposure to environmental 
factors.  To evaluate interactions, simply include an interaction term between the non-
genetic covariate and the covariate representing the allele(s) of interest.  For example, if  
Ai  codes the presence/absence of a particular allele i among the transmitted and non-
transmitted alleles, and E codes the presence/absence of an environmental exposure, then 
the logistic regression model that includes the interaction parameter β Int  is 

log( / ) ( )p p A A Eij ji i i Int i= +α β .    (1) 
 
 

 
 
Table 3. Coding for logistic allele transmission modeling for a child with 

genotype 1/4,  maternal genotype 1/2 and paternal genotype 3/4. 
 

  Allele: 
  1 2 3 4 
maternal contribution: “case” 1 0 0 0 
 “control” 0 1 0 0 
paternal contribution: “case” 0 0 0 1 
 “control” 0 0 1 0 

 
case = transmitted allele 
control = non-transmitted allele 
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Harley et al. (Harley et al. 1995) used this approach to evaluate the differential effect of 
gender of the affected child on the transmission probability of particular alleles, as well 
as the differential effect of gender of the parent.  They also considered the interaction of 
alleles from two marker loci by this approach.  This method has also been used to 
evaluate interactions of genes with race, family history, maternal smoking and type of 
cleft for children with oral clefts (Maestri et al. 1997), with significant evidence of 
interaction between maternal smoking and markers near transforming growth factor 
genes.  The availability of step-wise selection and model diagnostics available with most 
conditional logistic regression software packages makes this general approach of logistic 
transmission modeling a very powerful analytic method. 
 
Although logistic allele transmission modeling offers a number of critical advantages, it 
does have several limitations.  First, the main effects of covariates specific to the child 
cannot be estimated, because these factors are identical for each matched pair of parental 
alleles. In a sense, the case and control alleles are perfectly matched on all factors except 
the allele of interest.  Second, because we are modeling transmitted alleles, and not 
genotypes, the logistic model in expression (1) requires the assumption of multiplicative 
effects of alleles, which can lead to dramatic odds-ratios for cases that are homozygous 
for the “high-risk” allele and exposed to an environmental factor.  To see this, note that 
r ei

i= α  is the odds ratio for cases that are unexposed to the environmental factor and 
have one copy of allele i.  By the assumed multiplicative effects, unexposed homozygous 
i/i cases have an odds ratio of ri

2 .  The effect of exposure on allele i is r ee
Int= β , so that 

exposed cases with one copy of allele i have an odds ratio of  r ri e , and exposed 
homozygous cases have an odds ratio of r ri e

2 2 .  This approach can lead to bias if the 
assumption of multiplicative effects is not true.  Alternative odds ratio models that do not 
require the assumption of multiplicative allelic effects are discussed in the next section.  
Third, there is an implicit assumption that for each pairing of the diseased child and one 
of its parents, the environmental factor and the genotype of the child are independent, 
conditional on the genotype of the parent.  Further discussion of this type of conditional 
independence is given in the next section. 
 
 
Logistic Genotype Model with Pseudo-sib Controls 
 
Some of the limitations of logistic allele transmission modeling can be overcome by 
considering the genotypes of both parents simultaneously, providing more general 
models of genotype odds ratios.  This method takes advantage of the fact that when the 
disease is rare, the distribution of the genotypes of the cases depends on the genotype 
relative risks, as long as we condition on the genotypes of the parents.  Using the results 
outlined by Self et al. (Self et al. 1991), let gc  be the marker genotype of a case, and gm  
and g f  be those of the case's mother and father.  The genotype of the case can be coded 
numerically using the vector Z, offering many options to model the genotype odds ratios. 
For example, odds ratios specific to each genotype can be modeled by the use of indicator 
variables in the vector Z that indicate which genotype the case possesses; dominant 
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effects can be modeled by indicating whether the case possesses either one or two copies 
of the allele of interest; recessive effects can be addressed by indicator variables for 
homozygous genotypes; multiplicative effects of alleles can be modeled by counting the 
number of alleles (e.g., 0, 1, or 2) of a particular type (Schaid 1996).  See Table 4 for 
examples of these coded vectors.  
 
Self et al. (Self et al. 1991)  have shown that conditional on the genotypes of the parents, 
and given that offspring are sampled because they have disease, the contribution of a 
diseased case and its parents to the likelihood is 

L
Z

Z
i

j
g Gj

  
exp( )

exp( )
=
�

γ
γ

ε

,     (2) 

where Zi  is the numerically coded genotype for the case, γ  is a vector of log-odds ratios 
which approximate the log genotype relative risks, G  is the set of the four possible 
offspring genotypes that the parents can produce, and g j  represents one of these four 
genotypes with its corresponding numerical code given by Z j .  For example, if M1 and 
M2  are the two alleles of the mother of the case, and F1 and F2  those of the father, then 
G = {M F1 1, M F1 2,M F2 1,M F2 2  }.  Note that the likelihood in equation (2) is the same form 
as a conditional logistic regression model such that each case is matched to three 
hypothetical siblings.  This method has been referred to as "pseudo-sib" controls. 
Standard software for either conditional logistic regression or Poisson regression 
(Weinberg et al. 1998) can be used to fit the logistic genotype model. 
 
The general likelihood with pseudo-sib controls simplifies when there are only two 
alleles at the marker, resulting in three genotypes and two odds ratio parameters.  For this 
  

 
Table 4. Examples of numerical coding of genotypes when there are 3 alleles, labeled 

1, 2, and 3. 
 
 

 

  
Dominant  

allele 
indicators b 

 
Recessive 

allele 
indicators b 

 
 

Allele  
counts b 

Genotype Genotype 
indicatorsa 

2  3 2  3 2  3 

1/1 0 0 0 0 0 0  0 0  0 0  0 
1/2 1 0 0 0 0 1  0 0  0 1  0 
1/3 01 0 0 0 0  1 0  0 0  1 
2/2 0 0 1 0 0 1  0 1  0 2  0 
2/3 0 0 0 1 0 1  1 0  0 1  1 
3/3 0 0 0 0 1 0  1 0  1 0  2 

 
a) Genotype 1/1 is used as baseline for odds-ratios 
b) Allele 1 is used as baseline for odds-ratios 
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situation, hypotheses regarding the odds ratios can be tested with score tests (Schaid and 
Sommer 1993)  and parameters can be estimated by maximum likelihood methods 
(Knapp et al. 1995); alternatively, simpler, but less efficient non-iterative methods can be 
used to estimate odds ratios (Khoury 1994; Flanders and Khoury 1996; Sun et al. 1998). 
 
An advantage of this conditional likelihood framework is that the baseline risk can vary 
from family to family, or from case to case, yet the genotype odds ratios remain unbiased 
as long as the measured marker genotypes have a multiplicative effect on the baseline 
risk.  An interpretation of this is that the affected case and its pseudo-sib controls are 
perfectly matched for all factors not related to the marker locus.  Note that this logistic 
regression method compares the frequency of the genotypes of the cases relative to their 
expected Mendelian frequency; deviations from Mendelian expectations are captured by 
the genotype odds ratio parameters, γ .  When there is no association between the marker 
genotypes and disease, i.e., γ =0, the offspring genotype frequencies are determined by 
Mendelian segregation frequencies.  As typical with many applications of the logistic 
regression model, the odds ratios estimated by the conditional logistic genotype 
likelihood are good approximations of the genotype relative risks whenever the disease is 
rare.  When the disease is not rare, the odds ratios are biased toward unity, because it is 
implicitly assumed that the pseudo-sib controls would not have been diseased.  If the 
population baseline rate of disease is known, this information can be used to correct the 
likelihood to obtain unbiased estimates of genotype relative risks (Witte et al. 1999).  
 
Although the perfect matching of the case and pseudo-sibs prevents assessment of the 
main effects of non-genetic covariates, it is possible to use the conditional logistic model 
to evaluate interaction of the marker genotypes with environmental covariates.  To do so 
simply requires the inclusion of an interaction covariate (i.e., the product of the genetic 
marker covariate and the environmental covariate) in the logistic regression model.  But, 
the validity of this method requires that the genotype and environmental covariate are 
independent, given the parents' genotypes.  This independence  of gene and 
environmental factors is similar to that required for the study of gene x environment 
interaction in the case-only study design (Khoury and Flanders 1996), although in our 
situation the assumed independence is less restrictive, because we require independence 
conditional on the parental genotypes.  An excellent example (Thomas 2000) is the study 
of the interaction between the BRCA1 susceptibility gene for breast cancer and oral 
contraceptive use.  Because the decision to use oral contraceptives may depend on a 
woman's family history of breast cancer, and family history of breast cancer is associated 
with the BRCA1 gene, family history can cause confounding by inducing a population 
association between the BRCA1 carrier status and oral contraceptive use.  Now, consider 
a family-based study in which cases are selected because they have breast cancer. If oral 
contraceptive use among cases depends on the family history of breast cancer among 
their relatives, then whether independence between BRCA1 and oral contraceptive use is 
true depends on the type of relative (ascendant versus descendent).  If the relatives are 
ascendants (e.g., mother, grand-mother, sister, aunt, niece), then by conditioning on the 
genotypes of the case's parents, the case's genotype and the genotypes of the ascendant 
relatives are independent, which then causes independence between the case's genotype 
and oral contraceptive use.  Hence, for this example it would be valid to use logistic 



 15 

regression to evaluate interaction.  In contrast, if family history is based on descendents, 
such as daughters of the case, then the case's genotype and oral contraceptive use are not 
independent, making logistic regression invalid.  The dependence is induced through a 
series of dependencies: the genotype of the case influences the genotype of the daughter, 
which influences the disease status of the daughter, which influences the mother's 
decision to use oral contraceptives.  This emphasizes the need for careful evaluation of 
the assumption of conditional independence between genotype and environmental 
exposures. 
 
 

Comparison of Logistic Models: Allele Transmission versus Genotype 

Up to now we have discussed two logistic models:  1) the logistic allele transmission 
model with case and control defined as the transmitted and non-transmitted alleles, 
respectively, and 2) the logistic genotype model that considers genotype odds ratios and 
uses pseudo-sib controls.  These two methods condition on different information, causing 
subtle differences in their statistical properties.  If the maternal and paternal genotypes 
are associated with each other in the general population, which can occur when there is 
population stratification or assortative mating, the transmission of maternal and paternal 
alleles are not independent of each other.  But, conditioning on the joint genotypes of the 
parents causes the transmission of parental alleles to be independent (Lazzeroni and 
Lange 1998).  This is the advantage of the logistic genotype model with pseudo-sib 
controls. In contrast, the logistic allele transmission model requires the transmission of 
maternal and paternal alleles to be independent, which may not be true.  If independence 
fails, then the variance estimates of the regression parameters will be invalid, leading to 
incorrect confidence intervals.   
 
However, the logistic allele transmission model is a special case of the logistic genotype 
model whenever the effects of marker alleles on the genotype odds ratio are 
multiplicative.  To see this, consider a parent with marker genotype i/j, a second parent 
with marker genotype k/l, and an affected child with genotype i/k.  For the genotype odds 
ratio model, let γ ik  be the log odds-ratio for the genotype i/k.  Then, the likelihood 
contribution for this trio is 

L
e

e e e e

ik

ik il jk jl
=

+ + +

γ

γ γ γ γ .     (3) 

 Now, if allelic effects are multiplicative (i.e.,  log-additive), then γ α αik i k= + , where 
α i  represents the main effect of allele i.  After substituting this additive model into 
expression (3), the likelihood factors into the allelic transmission contributions from each 
parent,  

L
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e e
e

e e
L L

i

i j

k

k l
=

+
�
��

�
�� +
�
��

�
�� =

α

α α

α

α α 1 2 ,     

where L1  and L2  are the likelihood contributions to the logistic allele transmission model 
from the first and second parents, respectively.  This factorization of the likelihood 
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emphasizes that the transmission of maternal and paternal marker alleles to an affected 
child are independent of each other whenever the effects are multiplicative on the 
genotype odds ratios.  A special case occurs under the null hypothesis (i.e., either .05θ =  
or  δ = 0), which emphasizes that it is valid to treat maternal and paternal allelic 
transmissions as independent when performing transmission/disequilibrium testing 
(Whittaker et al. 1997). But, when linkage ( .05θ < ) and association both exist, parental 
contributions are not independent unless the effects of the marker alleles are 
multiplicative.  This multiplicative assumption can be tested by including interaction 
parameters in the logistic genotype odds ratio model.  However, for highly polymorphic 
markers, there can be many genotypes, leading to many pair-wise interaction terms, and a 
large number of degrees of freedom to test the multiplicative assumption, and 
consequently weak power.  
 
 
A potential disadvantage of many of the transmission disequilibrium methods, including 
the logistic allele transmission model, is that they treat heterozygous parents as 
independent.  If a child and both of its parents have the same heterozygous genotype, 
then methods that consider parents independently can lose power, because the 
transmission of a marker allele from one parent cancels the non-transmission of the same 
allele from the other parent. In contrast, the logistic genotype model with pseudo-sib 
controls offers more flexible modeling of genetic effects by considering the joint 
transmission of both parental alleles, and any deviation of the offspring genotype counts 
from Mendelian expectation influences the genotype odds ratios.  When there are only 
two alleles at the marker locus, say alleles M1 and M2 , there are three genotypes M1/M1, 
M1/M2, and M2/M2.  If allele M1 is considered the high-risk allele, and genotype M2/M2 
the baseline, there are two genotype odds ratios, r1 1,  and r1 2, .  If it can be assumed that 
these two odds ratios depend on a single parameter that captures the effect of the high-
risk allele, then a likelihood ratio statistic with 1 df can be used to test the null 
hypothesis.  Some examples of such odds ratio models, with the dependent parameter 
denoted γ , are dominant (r r1 1 1 2, ,= = γ ), recessive (r1 1, = γ ; r1 2 1, = ), or multiplicative 
(r1 1

2
, = γ ; r1 2, = γ ).  Alternatively, the two odds ratios can be estimated without 

restrictions, leading to a likelihood ratio statistic with 2 df.  Simulations have shown that 
this unrestricted likelihood ratio statistic is fairly robust for different genetic mechanisms, 
and can offer greater power than the TDT, particularly for recessive effects (Schaid 1998; 
Weinberg et al. 1998).  However, this general approach loses its appeal when evaluating 
a highly polymorphic marker, due to the large number of possible genotypes, and hence 
large number of degrees of freedom.  If there exists a priori knowledge of the likely 
genetic mode of inheritance of the disease, then this information can be used to create a 
more powerful statistical test.  For example, when the true mode of inheritance is 
recessive, and the marker genotypes are coded appropriately to allow for this, the score 
statistic from the logistic genotype model can be substantially more powerful than the 
various "TDT methods" that consider the independent transmission of parental alleles 
(Schaid 1996).  But, without this prior knowledge, it seems most reasonable to first 
evaluate the transmission of alleles, either by logistic allelic transmission modeling, or by 
chi-square statistics for marginal homogeneity.  Then, after statistically significant alleles 
are identified, more refined models using logistic genotype regression models with 
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pseudo-sib controls can be used to further evaluate the influence of the various alleles, 
and their interaction with non-genetic factors, on the genotype odds ratios. 
 
In summary, an advantage of the allele transmission model is that it can be used even 
when one parent is missing (provided bias is avoided - see section below on Missing 
Parents), whereas the logistic genotype model requires both parents.  But, the allele 
transmission model can fit only multiplicative allele effects, causing discard of triads that 
have the same heterozygote genotype.  The logistic genotype model is more flexible, 
allowing for genotype odds ratio models that differ from multiplicative effects.  A few 
additional points to consider for logistic regression modeling are that sparse data may 
require exact logistic regression methods, and when evaluating many marker alleles by 
stepwise methods, forward selection may be more reliable than backward selection 
because of dependencies among alleles. 
 

 

Relationship of Marker and Susceptibility Genotype Odds Ratios 

Although we have focused on the effects of the marker locus, independence of parental 
contributions can also be stated in terms of the underlying susceptibility locus.  Assuming 
Hardy-Weinberg equilibrium, random mating, and equal recombination rates for males 
and females, independence of parental transmissions occurs when the penetrance of the 
susceptibility genotype is multiplicative – that is, when the penetrance for genotype i/j 
has the form f f fij ii jj=   (Knapp et al. 1993; Bickeböller and Clerget-Darpoux 1995; 
Whittaker et al. 1997).  A special case is a recessive disease without phenocopies (Ott 
1989).  The relationship between the marker genotype odds ratio and the susceptibility 
genotype odds ratio is complex when the marker is not the causative gene.  The marker 
genotype odds ratios depend on the frequencies of the parents’ two-locus haplotypes, 
where the haplotypes are composed of the marker and susceptibility alleles.  These 
haplotype frequencies in turn depend on the amount of LD and the frequency of the 
susceptibility allele.  The marker genotype odds ratios also depend on the probability that 
recombination occurs between the two loci, and on the penetrance of the underlying 
susceptibility genotypes.  It can be shown that the marker genotype odds ratios are closer 
to unity than the susceptibility genotype odds ratios whenever recombination between the 
marker and susceptibility loci occurs, or when LD is not complete (Schaid 1996).  By 
complete LD, we mean that a susceptibility allele and marker allele only occur together 
on the same haplotype. 

 
Imprinting: Modeling Parent-of-origin Effects 
 
There is a large body of evidence that the expression of some genes depends on the 
parent from whom they were inherited, so that the disease risk to a child depends not only 
on the child’s genotype, but also on whether the inherited allele originated from the 
mother or father (Hall 1990).  This type of deviation from Mendelian inheritance has 
been called imprinting.  Although imprinting may affect an individual’s phenotype, the 
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process does not appear to cause a permanent alteration in the DNA, but rather a 
modification of its expression.  Methylation may be one of the molecular mechanisms 
involved in causing parent-of-origin effects, but other still unknown mechanisms are 
likely to be involved (Hall 1990).   
 
The logistic genotype model can account for parent-of-origin effects by including 
covariates in the logistic regression model that indicate whether the alleles were 
transmitted from the mother or father.  This can be accomplished by first choosing a 
method to code the child’s genotype (see examples in Table 4).  Then, for alleles that are 
not considered the baseline allele, covariates can be created to indicate whether the alleles 
originated in the mother or the father.  Extending the example given in Table 4 for which 
genotype indicators were used, we present in Table 5 the possible coded vectors when the 
parent-of-origin is included in the logistic model.  Note that the child’s genotype is 
ordered according to the maternal/paternal origin of alleles.  This does not affect the 
numerical coding of the child’s genotype, but it does affect the coding of the indicator 
variables for the maternal and paternal origin.  Using this setup, conditional logistic 
regression with pseudo-sib controls can be used.  One limitation is when the origin of 
parental alleles cannot be assigned, which occurs when the parents and the child all have 
the same heterozygous genotype.  In this case, we can view the parental origin of alleles  
as missing data, and use the expectation-maximization (EM) algorithm to estimate the 
parameters (Weinberg et al. 1998).  Standard conditional logistic regression software can 
be adapted to implement this EM approach (Horton and Laird 1998).  Caution is 
warranted when recombination can occur between the marker and susceptibility loci (i.e., 
 
 

Table 5. Examples of numerical coding of a child’s genotype to account for 
parent-of-origin effects. 

Genotype ordered 
by origin 

(materal/paternal) 

 
Genotype 
indicatorsa 

Maternal 
Origin 

Indicators b 
2 3 

Paternal 
Origin 

Indicators b 
2 3 

1/1 0 0 0 0 0 0  0 0  0 
1/2 1 0 0 0 0 0  0 1  0 
2/1 1 0 0 0 0 1  0 0  0 
1/3 01 0 0 0 0  0 0  1 
3/1 01 0 0 0 0  1 0  0 
2/2 0 0 1 0 0 1  0 1  0 
2/3 0 0 0 1 0 1  0 0  1 
3/2 0 0 0 1 0 0  1 1  0 
3/3 0 0 0 0 1 0  1 0  1 

    
 

a) Genotype 1/1 is used as baseline for child’s genotype odds-ratios 
b) Allele 1 is used as baseline for parent-of-origin odds-ratios 
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the marker is not causative, but rather in LD with the underlying susceptibility locus).  
When recombination is possible, the transmission of parental alleles are not statistically 
independent between two heterozygous parents unless the marker allele effects are 
multiplicative on the odds ratio.  This dependence can invalidate the likelihood ratio 
statistic when testing for parent-of-origin effects, in the presence of known transmission 
disequilibrium.  More refined methods for testing parent-of-origin effects can be found 
elsewhere (Weinberg 1999b).  
 
 
Parental Genotype Effects 
 
For some disorders, the parent’s genotype may influence the risk to the child, regardless 
of which alleles were transmitted from the parents to the child.  This can occur, for 
example, when the mother’s genotype influences the risk of birth defects for the fetus, 
due to the influence of the maternal genotype on the environment of the fetus.  It has been 
speculated that the risk of neural tube defects in a child could be due to the mother’s 
genotype (van der Put et al. 1996).  One way to evaluate the influence of maternal 
genotype is to obtain genotype information from her parents, in order to evaluate whether 
the transmission of grandparental alleles to the mother deviate from Mendelian 
transmission (e.g., apply the TDT to the triad of mother and her parents) (Mitchell 1997).  
Although this approach requires only that the maker be transmitted in Mendelian fashion, 
it can be difficult to obtain samples from the grandparents.  An alternative approach is to 
evaluate the relative frequency of all three genotypes of the case and its parents.  If a 
mother’s genotype influences the disease risk to her child, but the father’s genotype and 
the child’s genotype do not influence the child’s risk, then we would expect to observe 
parental matings such that the mother is more likely to have the high-risk genotype than 
the father, yet the transmission of alleles from parents to child are random.  If there were 
no maternal effect, the maternal and paternal genotype frequencies would be symmetric 
within each mating type.  Although this approach uses information between families by 
considering the relative frequency of the different triads, and the logistic genotype model 
uses information within families by considering parental transmission of alleles, the two 
approaches can be combined by using Poisson regression to simultaneously estimate the 
effects of the mother’s genotype, the child’s genotype, and parent-of-origin of alleles 
(Weinberg et al. 1998; Wilcox et al. 1998).  Note that the information for parental 
genotype effects comes from the asymmetric frequencies of maternal and paternal 
genotypes within the different mating type strata.  It should be recognized that any factors 
that cause asymmetry of parental genotypes within the mating type strata will be 
attributed to the influence of parental genotypes on the child’s disease risk, even if this is 
not true.  For example, if a person’s survival to parenthood depends on both gender and 
their genotype, then this can cause unequal maternal and paternal genotype frequencies 
within the different parental mating type strata.  So too can mate selection that depends 
on particular combinations of genotypes, such as when mothers that come from a 
population with a high frequency of a particular genotype tend to marry fathers that come 
from a different population with a low frequency of the same genotype.  Hence, the 
application of these methods requires attention to possible biases. 
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Missing Parents 
 
The greatest limitation of transmission disequilibrium methods is the need for parental 
genotypes.  A number of methods have been developed to account for missing parents, 
such as analyzing only the sub-sample of complete data, reconstructing the missing 
parental genotype(s), using “informative” parent-child pairs, enumeration of all possible 
genotypes for the missing parents along with their corresponding relative probabilities, or 
even using unaffected siblings as controls - in place of the parental information.  Each of 
these approaches will be discussed.  But, it should be recognized that without parents, 
there is often a loss of information, and more assumptions are required in order to avoid 
bias. 
 
Excluding cases when one or both parents are missing results in loss of information, 
although the statistical test remains valid.  This exclusion can also result in a set of cases 
that are not representative of the total sample, particularly if the reason parents are 
missing is related to their genotypes (Witte et al. 1999).  To prevent information loss, it is 
tempting to include families with a single observed parent whenever the parent-child pair 
appears “informative” for the TDT.  However, there is a potential bias that must be 
avoided.  To illustrate this bias, consider a marker with two alleles, A and B, and suppose 
that the observed parent has marker genotype AB.  The affected child can have either the 
AA or AB genotype.  When the affected child has the AB genotype, it is not clear whether 
the A or B allele was transmitted from the observed parent, so this parent-child pair is 
uninformative.  When the affected child has the AA genotype, the observed parent must 
have transmitted the A allele and not the B allele, giving the impression that this 
“informative” pair can be used in analyses.  But, if the B allele is rare in the population, 
the missing parent most likely has the AA genotype.  For this situation, an observed AB 
parent transmits the B allele to a case with the AB genotype (declared uninformative), and 
an A allele to a case with the AA genotype.  If there is no association, these two 
transmission scenarios are equally likely, yet discarding uninformative pairs will 
selectively remove meioses for which allele B was transmitted, making it appear that 
allele A is preferentially transmitted, and hence biasing the TDT.  To avoid this kind of 
bias, the only type of child-single-parent pairs that should be used in analyses are those 
for which the parent and the child are both heterozygotes, yet of different genotypes 
(Curtis and Sham 1995).  Application of this rule for markers with two alleles indicates 
that all cases with one observed parent should be excluded. 
 

When one or both parents are frequently missing, alternative methods are needed to avoid 
discarding much of the data.  One approach is to reconstruct the missing parental 
genotype(s) using only unaffected siblings, and then apply the usual transmission 
disequilibrium methods to the affected offspring.  When one parent is missing, its 
genotype can be reconstructed whenever there are two alleles among the offspring that 
did not originate in the observed parent.  When both parents are missing, both parental 
genotypes can be reconstructed whenever four alleles are observed among their offspring 
such that these four alleles are not identical-by-descent (IBD).  For example, although 
offspring with AA and BB genotypes represent 2 alleles similar in state, they actually 
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represent 4 alleles that are not IBD, implying that both parents must have the AB 
genotype.  Note, however, that if affected offspring are used to reconstruct the missing 
parental genotypes, and then these parental genotypes are scored for transmission to the 
same affected offspring, then this circular algorithm does not have the same statistical 
properties as when the parents are actually observed.  To see this, consider the example 
with both parents missing and the offspring with genotypes AA and BB. Given these two 
offspring genotypes, both parents must have the AB genotype.  Under the null hypothesis, 
these two offspring genotypes are equally likely, which implies that the mean and 
variance of the number of A alleles in the affected offspring are both 1 [the mathematical 
proof is provided as follows: mean = ( ). ( ).2 5 0 5AA BB+ ; variance = 
( ) . ( ) .2 1 5 0 1 52 2

AA BB− + − ; where the subscript indicates the genotype which is counted 
for A alleles, and the fractions are probabilities of the different genotypes].  In contrast, 
when both parents are known to be AB, we do not need to condition on the types of 
offspring that they have - because we do not need to use offspring to reconstruct the 
parents.  In this case, the mean of the number of A alleles is the same as when parents 
were reconstructed, but the variance is half as large [mathematical proof: mean = 
( ). ( ). ( ).2 25 1 5 0 25 1AA AB BB+ + = ; variance = 
( ) . ( ) . ( ) . .2 1 25 1 1 5 0 1 25 52 2 2

AA AB BB− + − + − = ].  If parental reconstruction were ignored, 
then the Type-I error of the statistical test would be inflated for this example.  Knapp et 
al. (Knapp 1999) provide further details on how to correct the mean and variance of the 
statistical methods when parental genotypes are reconstructed from their affected 
offspring, as well as how to combine these corrected statistics with both the usual TDT 
when both parents are available and the S-TDT statistic (discussed below) for when sib-
controls are used because parental genotypes could not be reconstructed. 
 
The above approach to parental reconstruction requires that there is only one genotype 
per parent consistent with the offspring’s genotypes, otherwise there would be ambiguity 
regarding transmission of alleles.  An alternative method that accounts for this ambiguity 
is to consider all possible genotypes of the missing parent(s), given the information 
available for the nuclear families, and then perform some kind of averaging over the 
missing data in order to estimate parameters and test hypotheses.  The available 
information to impute the missing genotypes might include the genotypes of an observed 
parent, the affected child, and perhaps additional offspring.  Although it may not be 
difficult to enumerate all possible genotypes for missing parents (e.g., using genotype 
elimination algorithms (Lange and Goradia 1987)), it can be difficult to reliably estimate 
the relative probabilities of these enumerated genotypes.  One approach is to assume a 
homogeneous randomly mating population in Hardy-Weinberg equilibrium, and use 
marker allele frequencies and Mendelian segregation probabilities to compute the 
probabilities for the enumerated parental genotypes (Martin et al. 1998).  But, several 
concerns arise.  First, this method provides a valid test of association, but not linkage, 
because it is sensitive to any cause of association, including population stratification.  
Recall that population stratification is often the prime motivator to consider parental 
controls in the first place!  Although this approach can be used for families that have 
already demonstrated linkage in order to evaluate whether association exists as well, 
there is still a problem because siblings are not independent when linkage exists.  Second, 
the analyses are now dependent on allele frequencies, which leads to biased tests and 
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parameter estimates if these frequencies are misspecified (e.g., underestimation of allele 
frequencies can lead to falsely inflated information on LD).  Third, the above method to 
compute the probabilities of the missing parental genotypes is based on the assumption of 
no association of the marker alleles with disease, which can diminish power.  Although 
statistical methods can account for these latter two difficulties by simultaneous estimation 
of both allele frequencies and relative risk parameters (Schaid and Li 1997), the 
assumption of a homogeneous population remains a problem.  
 
To avoid the tenuous assumption of a homogeneous random mating population, an EM 
algorithm can be used.  If there were no missing parents, the likelihood for the observed 
data can be maximized to jointly estimate the parental mating type probabilities and the 
genotype odds ratios, yet without requiring Hardy-Weinberg genotype proportions and 
random mating.  When some parents are missing, the two-step iterative EM procedure 
begins with a set of initial values for the parameters, and uses them to fractionate the 
observed data according to the expected counts for the missing data; these expected 
counts are then used to compute updated estimates of the parental mating type 
probabilities and the genotype odds ratios.  Iteration continues until convergence. To see 
how this works, suppose that there are two alleles A and B.  Without considering order of 
the parents, there are 6 mating types (AA x AA, AA x AB, AA x BB, AB x AB, AB x BB, 
and BB x BB); denote the probability of the i th mating type as pi .  If a mother and child 
both have genotype AA, yet the father is missing, then the father can have genotype AA or 
AB, implying two possible mating types: AA x AA and AA x AB .  Since we know that 
there are only these two possibilities, the probability of the first mating type is 
p p p1 1 2/ ( )+ , and the probability of the second mating type is p p p2 1 2/ ( )+ .  These 
mating type probabilities are used to fractionate the observed mother-child pair into two 
components,  which are then used for the EM procedure.  This approach can be 
implemented by use of a log-linear model that includes a parameter for each parental 
mating type, and captures much of the missing information when there are only two 
marker alleles (Weinberg 1999a).  When there are more than two marker alleles, the 
number of possible parental mating types increases dramatically - for K alleles, the 
number of mating types is [ ( ) ( )] /K K K K2 21 2 1 8+ + + .  This can cause sparse data, 
making it difficult to reliably estimate all the parameters representing the mating type 
probabilities.  Hence, it may be necessary to compare each allele versus all others by 
performing a series of bi-allelic analyses.  The advantage of the EM approach is that it 
uses all the data, and could even include cases without both parents, if these are not 
frequent.  But, the EM approach does require specialized software.  
 
The most general method to test for linkage in the presence of association that can 
account for a mixture of types of families (trios, nuclear families, sibships, etc.), some of 
which may have missing genetic data among the parents, is provided by a method called 
Family Based Association Tests (FBAT) (Rabinowitz and Laird 1999; Laird et al. 2000).  
This approach evaluates the correlation of the trait and genetic marker for an offspring, 
but computes this correlation by conditioning on appropriate information within each 
family to avoid biases caused by population stratification. 
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It is worth noting that a  non-iterative approach to estimating the relative risk parameters 
and their variances has been proposed, which also accounts for when a single parent is 
missing (Sun et al. 1998).  This differs from the TDT method, in two ways:  1) two 
relative risks are estimated for a bi-allelic marker (relative risks for heterozygous and 
homozygous carriers), and 2) observed parents that are homozygous are included when 
the other parent is missing, which allows for the possibility that the missing parent could 
be heterozygous.  This approach does not require Hardy-Wienberg equilibrium nor 
random mating.  Although  this method  offers non-iterative simple formulas, it is not as 
efficient as likelihood methods. 
 
 
Sib Controls 
 
For diseases that initiate at older ages, it is nearly impossible to obtain parental 
genotypes, and a large amount of work is required to obtain a sufficient number of 
offspring to reconstruct the missing parental genotypes.  For example, in order to have at 
least a 50% chance to reconstruct both parents’ genotypes (i.e., determine whether they 
are heterozygous carriers for a particular allele of interest) at least 5 offspring are needed 
when both parents have the same heterozygous genotype, at least 4 offspring are needed 
when both parents are different heterozygotes but share one allele in common, and at 
least 3 offspring are needed when both parents are different heterozygotes and share no 
alleles in common (using results in Table 1 from (Knapp 1999)).  A reasonable 
alternative to using parental genotype data is to use unaffected siblings as controls.  Note 
that the use of true sib controls differs from the concept of pseudo-sib controls discussed 
above.  Pseudo-sib controls are a theoretical construct that represent Mendelian 
expectations based on measured parental genotypes, and hence there is no random 
variation for the pseudo-sib control genotypes.  Rather, the random variation is associated 
with the case’s genotype.  In contrast, true sib controls have two sources of variation.  
First, the genotypes of sib controls represent a realization of a random process – the 
random segregation of alleles from their parents.  Second, because parents are missing, 
there is additional variation due to the different random genotypes the parents could 
possess, which are consistent with their offspring’s genotypes.  This second source of 
variation causes correlation of alleles among siblings, even under the null hypothesis.  
But, this correlation can be taken into account by a matched analysis that compares the 
allele frequencies between affected offspring and their matched unaffected siblings, as 
discussed in the next section. 
 
Some important considerations when choosing sib controls are:  1) older sib controls may 
be better than younger, because younger sib controls may not remain free of disease until 
the age at which the case was diagnosed; 2) secular trends may confound older siblings, 
because siblings cannot be matched on birth dates; 3) recall bias may occur whenever the 
time interval from exposure to interview differs among siblings (Witte et al. 1999).  
Alternatively, cousins could be selected as controls, which may make it easier to match 
closer on birth date and gender.  But, cousins do not provide absolute protection against 
the effects of population stratification, because cousins each have one parent that did not 
descend from a common ancestor.  Furthermore, as in any case-control study design, 


