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ABSTRACT 

Motivation: An important underlying assumption of any experiment is that the 

experimental subjects are similar across levels of the treatment variable, so that changes 

in the response variable can be attributed to exposure to the treatment under study. This 

assumption is often not valid in the analysis of a microarray experiment due to systematic 

biases in the &easured expression levels related to experimental factors such as spot 

location (often referred to as a print-tip effect), arrays, dyes, and various interactions of 

these effects. Thus, normalization is a critical initial step in the analysis of a microarray 

experiment, where the objective is to balance the individual signal intensity levels across 

the experimental factors, while maintaining the effect due to the treatment under 

investigation. 

Results: Various normalization strategies have been developed including log-median 

centering, analysis of variance modeling, and local regression smoothing methods for 

removing linear andor intensity-dependent systematic effects in two-channel microarray 

experiments. We describe a method that incorporates many of these into a single strategy, 

referred to as two-channelfusrlo, and is derived from a normalization procedure that was 

developed for single-channel arrays. The proposed normalization procedure is applied to 

a two-channel dose-response experiment. 

Availability: The SAS macro for two-channelfasrlo is available from the authors and the 

data used to test the methods is publicly available at 

h t t p//w w w .bc h . msu.edu/-zac haredpublic at ions/supplemen tary/ee-dr . 

Contact: eckel @mayo.edu 
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1. INTRODUCTION 

Various normalization strategies have bekn proposed in the literature for two-channel 

arrays which include, but are not limited to, log-median centering (Jazaeri et al. 2002; 

Sotiriou et al. 2003), analysis of variance (ANOVA) models (Kerr et al. 2000; Wolfinger 

et al. 2001), and local regression smoothing models (Dudoit et a1. 2002; Yang et al. 2002) 

for the removal of experimental effects. IHowever, these strategies possess various 

limitations. For example, simple normaliization procedures such as log-median centering 

do not take into account overall effects due to arrays, print-tips, and dyes or intensity- 

dependent biases due to these effects. Thus, although it is a simple normalization 

I 

procedure to implement, log-median centering will be insufficient for most and if not all 

situations because it  will not eliminate bias due to these overall effects. In contrast, 

ANOVA models have the capability to qormalize with respect to effects due to spot 

location, arrays, and dyes; however, the4 assume a linear function and therefore do not 

account for nonlinear intensity-dependeat biases that are inherently a result of two- 

channel microarray experiments. The ANOVA model also assumes constant variance, 

which is often clearly not justified even bn the log-transformed scale, as evidenced by an 

MA-plot on the log-transformed data. A$ defined by Dudoit et al. (2002), an MA-plot is a 

representation of the (R,G) data such thai M = log,(R/G) and A = log, J7RxG) (where 

R corresponds to the signal intensity produced from the Red channel, Cy5, and G for the 

Green channel, Cy3). Thus, before implementing an ANOVA approach, a variance- 

stabilizing transformation is often warrarbted. 
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Realizing that nonlinear intensity-dependent biases clearly exist in microarray 

experiments via MA-plots, Dudoit et al. (2002) and Yang et a]. (2002) proposed a within- 

print tip local regression procedure that is applied to each array separately to normalize 

the log-ratio intensities from two-channel arrays. Thus, for each print-tip in a 4x4 grid of 

print-tips on each array, a local regression functionfis fit to the log-ratio intensities in the 

corresponding print-tip. Ideally, the functionfwould be a horizontal line at M=O for 

perfectly normalized data. Dudoit et al. (2002) and Yang et al. (2002) provide an 

example of a relevant print-tip effect and we suspect that such effects are relatively 

common and deserve attention. Normalizing within a print-tip results in normalization of 

the data with respect to the lowest fundamentaVexperimenta1 unit and thus is generally 

appealing. Although the within-print tip normalization approach is capable of removing 

intensity-dependent biases in the log ratios, it only normalizes signal intensities from the 

two channels on a corresponding array and therefore does not normalize with regard to 

relationships across arrays. After applying the within-print tip normalization the 

normalized log-ratio intensities for each array should be centered about zero. However, 

the spread in their log-ratio intensities could vary significantly across arrays. Therefore, 

Yang et al. (2002) suggest applying a multiple-array-scale adjustment to the within-array- 

normalized intensities that essentially forces an entire set of arrays to have equivalent 

spreads in their log-ratio intensities (for implementation of the Dudoit et al. (2002) and 

Yang et al. (2002) approach see the Limma software in the Bioconductor & R package at 

http://www.bioconductor.org/). 
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The Dudoit et al. (2002) and Yang et a]. (2002) approach is reasonable for an experiment 

that utilizes a reference design, and in which it is of interest to express the intensities in 

terms of a ratio. However, because therq are numerous other experimental designs 

currently being implemented (e.g., the loop design by Kerr et al. 2001), their approach 

needs to be extended to fit a more general class of experimental designs and for data that 

need not be expressed as a ratio. In addition, their approach does not account for across- 

array intensity-dependent effects. Therefore, with respect to normalization, there is still 

substantial room for improvement and we provide another normalization tool to add to 

the analyst’s toolbox. The proposed normalization procedure for two-channel arrays 

corrects for intensity-dependent biases both within- and across-arrays and is not specific 

to any single experimental design. It uses a combination of a parametric model and a 

nonparametric model and is derived from a procedure that was developed for single- 

channel oligonucleotide arrays. The true signal intensity for every cDNA is estimated via 

a parametric model and normalization is applied via a set of local regression curves that 

corrects for nonlinear intensity-dependent biases. In contrast to the methods of Dudoit et 

al. (2002), Yang et al. (2002) and the methods available in the L i m a  software in the 

Bioconductor & R package, the proposed technique corrects for intensity-dependent 

biases across channels on a single array as well as across- and within-channels across a 

set of arrays. Thus, it  resembles the cyclic loess procedure of Bolstad et a]. (2003) as 

well as thefastlo procedure of Ballman et al. (2003) that were developed for 

oligonucleotide arrays where each array is normalized against every other array in the 

experiment. The motivation for the proposed normalization strategy is to balance the 

effects due to dyes, location (print-tip) and arrays in addition to correcting for intensity- 
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dependent biases, while maintaining the effect due to the treatment(s) under 

investigation. 

Because the proposed normalization technique is essentially an extension of thefastlo 

procedure developed by Ballman et a]. (2003) for single-channel arrays, and so that the 

reader can gain an appreciation lor the simplicity of the procedure, Section 2 briefly 

discusses how to applyfistlo with regard to single-channel arrays. Section 3 then 

describes how one-channel fastlo is extended to apply to two-channel arrays, which 

includes a discussion of the additional factors that must be addressed with two-channel 

arrays in comparison to single-channel arrays. Section 4 provides an application of the 

proposed normalization procedure to a two-channel dose-response experiment. And 

lastly, Section 5 is a discussion of the aforementioned work. 

2. FASTLO: SINGLE-CHANNEL ARRAYS 

Ballman et al. (2003) state thatfasilo can be conceptualized as a loess smooth coupled 

with a very simple linear model. In general, the data are set up as a matrix where cDNAs 

comprise the rows and arrays comprise the columns. To implementfastlo, first the 

average signal intensity across thej  arrays for the ith cDNA is estimated for each cDNA 

in the matrix, which corresponds to a vector row means jli. that represent estimates of the 

true signal intensity. Note that the simplest parametric model to estimate the row means 

is yii  = ai + E ~ ,  where yu is the signal intensity for cDNA i represented on arrayj and 

.Gi. = &i = 7;. is the estimated fit for the row. Second, j i .  is plotted against ( y i i  - F i . ) ,  

referred to as a modified MA-plot, for each arrayj separately. Thus, each of thej  
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modified MA-plots have a point associattd with each of the cDNAs in the study. The 

modified MA-plots depict the bias in using j l i .  to estimate the true signal intensities, 

Third, a loess curve f j ( j , , )  is fit through the data for each of the j  modified MA-plots 

separately. As stated previously, if the data were perfectly normalized, the function 

f,(?,,) would essentially be a straight lihe at M=O for each of the modified MA-plots. 

Fourth, fj (!,,) is subtracted from yi i  . Lastly, this algorithm is repeated until some 

convergence criterion has been satisfied. Ballman et al. (2003) suggest that the fustlo 

algorithm has converged when the row means remain unchanged and this typically 

requires two iterations at most. Ballmarl et al. (2003) also show thatfustlo is equivalent 

to cyclic loess (Bolstad et al. 2003) and computationally appealing since it requires 

significantly fewer loess smooths in comparison to cyclic less to obtain relatively 

equivalent results. 

A feature offustlo is that while cycling through the algorithm the estimated true signal 

intensity, the row means of the data matfix, for each cDNA are preserved. An additional 

desirable feature is that the column meahs of the data matrix converge to an overall 

global mean within each experimental uhit as defined by the parametric model. For 

example, suppose the parametric model khat contains all cDNA i by treatment k 

interactions ylJk = aI + pk + 

that this is equivalent to implementingfestlo separately on each treatment group. Under 

this parametric model, the average signdl intensity across cDNAs for every array within a 

treatment group (i.e., the matrix column means) will converge to a global mean after 

implementingfustlo. This will be impottant in two-channel experiments for situations 

+ cIJk is used to estimate the matrix row means. Note 



when it is expected that many of the cDNA clones spotted on the arrays will be 

differentially expressed. In this scenario, maintaining the average signal intensity within 

a treatment group is essential. 

3. TWO-CHANNEL FASTLO 

Essentially, the fastlo procedure in Section 2 can be conceptualized as the semiparametric 

model 

y = p +  fW+ E 9 (3.1) 

where p is an unknown parametric vector that estimates the true signal intensity for each 

cDNA, f(p) is an unknown nonlinear bias function, or set of bias functions, that is 

assumed to be reasonably smooth, and E is a vector of random errors. In two-channel 

arrays, the formation of the parametric component in (3.1) is relatively similar to that in 

one-channel arrays. However, the nonlinear bias function becomes increasingly more 

complicated because of the additional experimental effects that exist in two-channel 

experiments. With one-channel arrays, experimental bias due to arrays is the primary 

concern. On the other hand, in two-channel arrays experimental bias due to additional 

effects, such as dyes and print-tips for example, are also of concern. 

3. I Paranietric Coinponent 

As is the case with one-channel arrays, the simplest parametric model to estimate the row 

means in a two-channel experiment is yiid = cu, + E~~ where y ~ d  denotes the signal 

intensity for cDNA i associated with arrayj and dye d. With respect to the 

semiparametric model in (3.1), this implies that p = a,. However, with regard to a k- 
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sample experiment (k22)  where the signal intensity distribution is not expected to be 

equivalent across the treatment groups due to a majority of the cDNAs being 

differentially expressed, it may be attractive to normalize within each of the k treatment 

groups. For example, p = a; + Pk + (@), contains all cDNA i by treatment k 

interactions and thus will produce estimates of row means for each treatment group 

separately. The two parametric models just discussed are simple examples of how to 

construct the most appropriate set of row means for a two-channel experiment. However, 

the analyst must realize that the best model for their particular experiment depends on the 

experimental design and therefore, we have shown that the preceding models can be 

straightforwardly modified to include any experimental effect of interest. 

3.2 Nonparametric Component (Bias Function) 

After the true signal intensities have been estimated via a parametric model, the second 

step in performing two-channelfastlo is to estimate the bias functions via a 

nonparametric model. With respect to one-channel arrays, a separate bias function is 

estimated for each of t h e j  modified MA-plots, wherej denotes the arrays. With two- 

channel arrays this process becomes ever more complicated with the increasing number 

of experimental effects as well as the manner in which they should be considered. For 

example, in a two-channel experiment it is typically of interest to take into consideration 

intensity-dependent biases due to arrays,. dyes, and print-tips (the print-tip effect could 

reflect an actual print-tip effect andor a location effect). Therefore, the analyst needs to 

consider whether the bias functions for these effects are additive or whether interactions 

exist among the bias functions. And lastly, it is important to discover which effects 
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actually generate intensity-dependent biases and which, if any can be simply included in 

the parametric component. 

Using a bottom-up modeling approach, the nonparametric component that consumes the 

most degrees of freedom is a multiplicative model that generates a separate bias function 

for each arrayj by dye d by print-tip p combination. For this scenario the nonparametric 

component in model (3.1) is defined to be f(p) = f j d p ( p ) .  This assumes that the 

intensity-dependent bias depends on the exact level of each of array, dye, and print-tip 

effects simultaneously. Conversely, if it is reasonable to assume that the bias function for 

each of these effects is independent of the other two effects (i.e., the bias functions are 

additive), then a more parsimonious nonparametric component should be considered. For 

example, if the array, dye, and print-tip bias functions are additive, then the 

nonparametric component in (3.1) should be f ( p )  = fj(p) + g,(p) + h,(p) . Likewise, 

there are numerous intermediate models that can be considered as well (Table 2). Thus, 

for two-channel fistlo the nonparametric component is defined such that it corrects for 

intensity-dependent biases due to arrays, dyes, and print-tips using the most parsimonious 

model possible. A model fit criterion that takes into account the number of estimated 

parameters (equivalently, the total degrees of freedom associated with all of the bias 

functions), such as mean squared error (MSE), is used to determine the most appropriate 

nonparametric component. 

4. APPLICATION: DOSE-RESPONSE EXPERIMENT 
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The objective of this study was to examine dose-dependent changes in hepatic gene 

expression in liver tissue from immature! ovariectomized C57BU6 mice gavaged with 

ethynyl estradiol (EE), an orally active estrogen. cDNA microarrays, representing 6,528 

cDNA clones, were used to assess hepatic changes in gene expression. The five dose- 

concentrations studied were 0.1, 1, 10, 100, and 250 pg/kg, in addition to an untreated 

sample (U) and a vehicle control sample’ (V - referred to as 0 pg/kg). All cDNAs were 

spotted in duplicate on each microarray, with the bottom half of the array being an exact 

replicate of the top half. Each half of a microarray was made up of the same 4x4 grid of 

print-tips, and hence, the entire array consists of 32 blocks. The experimental design, 

referred to as a ‘spokes’ design, was replicated in quadruplicate (Figure 1). Therefore, 

each of the cDNAs under investigation had 192 total possible observations (= 48 arrays x 

2 dyes x 2 spots). Of the 6,528 cDNA clones spotted on the arrays, only 6,282 clones 

had at least 90% complete data (5 20 abnormal data points; spots were declared abnormal 

during image analysis) and were used in. the proceeding analyses. Each set of dye-swaps 

(referred to as a spoke) within a design replicate consists of a single independent liver 

tissue, and each design replicate is an independent biological replicate. 

By examining modified MA-plots, intensity-dependent bias is apparent in these data 

(Figure 2) and thus neither a simple log-median centering nor a parametric normalization 

procedure would be appropriate. Note that in Figure 2 the horizontal axis is the estimated 

true signal intensity for every cDNA ( A = ,b) and the vertical axis represents the bias 

associated with using 

goal of these data is to assess dose-response relationships such that (1) each dose 

to estimate theitrue signal intensity ( M  = y - , b  ). The ultimate 
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concentration will be standardized relative to the vehicle samples to obtain the effect due 

to only the dose-concentration and then (2) dose-response relationships will be examined. 

For this reason, expressing the signal intensities as log ratios is not convenient and as a 

result the Dudoit et al. (2001) and Yang et al. (2001) normalization approach is not 

applicable. This was the motivation behind developing two-channel fastlo. 

To apply two-channel justlo in these data the parametric model p = a, + pk + (ap), was 

used to estimate the true signal intensity for each cDNA with respect to the spokes design 

in Figure I ,  where i (i=l, ..., 6282) denotes the cDNA and k (kl ,...,7) denotes the 

treatment. Accordingly, the above parametric model estimates 43,974 average signal 

intensities (Table 1). A wide assortment of bias functions were considered with these 

data and MSE was used to determine the most parsimonious set of bias functions (Table 

2). With these data it is evident from Table 2 that controlling for only a nonlinear array 

effect eliminates more systematic bias (MSE = 0.2917) than controlling for only a 

nonlinear dye effect (MSE = 0.3939) or only a nonlinear print-tip effect (MSE = 0.3939). 

Thus, i t  appears that most of the experimental bias in these data is linked to the arrays. 

Modeling the bias functions for arrayj, dye d, and print-tipp in an additive manner is of 

essentially no benefit since it ultimately results in a MSE (MSE = 0.2897) that is almost 

equivalent to only controlling for a nonlinear array bias. 

Moving beyond an additive model and looking at interactions, a top-down modeling 

approach was utilized such that all interactions that included an array effect were 

considered since the array effect is clearly responsible for most of the systematic bias 
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with these data. Although the nonparambtric model f ( p )  = f,dp(,u) produced the 

smallest MSE for these data (MSE = 0.2!375), it appeared that the model was actually 

over-fitting the data. This model estimates a bias curve for each arrayj by dye d by print- 

tip p combination, such that each curve is estimated from approximately 384 data points. 

However, there are only a few data poinlis at each end of the curve that inappropriately 

become influential to the fit of the bias functions (Figure 2a). Therefore, it appears more 

appropriate to fit a bias curve to each arrayj by print-tipp combination only (Figure 2b), 

thus averaging across the two dyes, and then apply a separate additive-shift constant to 

this curve for each dye at each arrayj b$ print-tipp combination. Thus, we are using the 

nonparametric component f ( p )  = f ,p( ,u)  + ship,,,, , which actually includes a parametric 

component to estimate a mean shift associated with each dye for each array j by print-tip 

p combination. This model results in a I(/ISE that is only slightly larger than that of the 

model f ( p )  = f,,(p) ; however, using toughly 4,608 fewer degrees of freedom (Table 

2). 

As is the case with the parametric compbnent, the determination of the most appropriate 

nonparametric component depends on tde data at hand. If there had been more data 

points at each end of the curve for this e)tample, over-fitting with the nonparametric 

component f(p) = fjdp(p) would not hbd been a concern. Thus, it is recommended that 

in addition to using MSE to determine the most parsimonious nonparametric component, 

visualization tools such as modified MAbplots should also be used to determine if the bias 

functions are either under- or over-fitting the data at hand. Modified MA-plots are also 

effective in determining the functional $rm of the bias functions. In Figure 2c it is clear 
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that the amount of dye bias remaining in the current example after adjusting for intensity- 

dependent biases due to arrays and print-tips is minimal. As a result, instead of using a 

nonlinear function to eliminate dye bias, a simple additive mean shift was applied for 

each dye at each array-by-print tip combination. 

Figure 3 displays the before- and after-effect of the two-channel fastlo normalization 

procedure for the third dose-concentration (1 0 lg/kg). Before normalization the average 

signal intensities across systematic effects clearly fluctuates (Figure 3a). However, the 

fluctuation in average signal intensities across systematic effects was removed after 

applying two-channel fastlo (Figure 3b). Because a within-treatment parametric 

component was implemented to estimate the true signal intensities for each cDNA, the 

individual treatment means were maintained and thus the dose-response relationship was 

preserved. 

The Yang et a]. (2003) approach and the Limma software in the Bioconductor & R 

package would have arrived at a similar version of Figure 3 after two sequential steps. 

First intensity-dependent biases are corrected within each array and second a multiple- 

array-scale adjustment is applied to the within-array intensity-dependent normalized 

intensities that forces the entire set of arrays to have equivalent spreads in their 

normalized intensity values. The proposed two-channel fastlo approach accomplishes all 

this in a single step while also adjusting for intensity-dependent biases across arrays. 

5. DISCUSSION 
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We have described a normalization procedure for two-channel microarray experiments 

that incorporates various normalization strategies that have previously been described in 

the literature for both two-channel and siagle-channel arrays. Because the proposed 

semiparametric normalization procedure utilizes a linear model, it  can be implemented on 

any experimental design while being capable of handling intensity-dependent biases. 

Lastly, we have also confirmed that normalizing down to the print-tip effect with the EE 

dose-response example is optimal with respect to eliminating the most experimental bias. 

Kerr et al. (2001) discussed concerns with normalization procedures that use local 

regression smoothing curves because of the large number of parameters that are needed. 

They suggest that it is unclear how to chpose a smoothing parameter because if the 

smoother js too small there will be over-fitting and if the smoother is too large then the 

procedure is ineffective. In the analyses of Section 4 we used the default setting 

(smooth=0.5) in the LOESS PROCEDURE of SAS@ (v8.2). With respect to the 

nonparametric component f ( p )  = f J P  (p)  + shi.’,,, in the EE dose-response example, a 

loess fi t  is estimated from approximately 768 data points (Figure 2b) using approximately 

five degrees of freedom (min = 4.8 and max = 5.4). Thus, we would argue that this 

approach resulted in neither over- nor under-fitting of the bias functions. 

With respect to normalization, the following two assumptions are often necessary: (1) 

only a relatively small proportion of cDNAs are differentially expressed or (2) there is 

symmetry in the number of up/down-regulated cDNAs. In two-channel fastlo, the 

construction of the parametric component in model (3.1) determines whether the 
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aforesaid assumptions are necessary. For example, the preceding assumptions are 

necessary if the parametric component p = a;. is used to estimate the true signal 

intensities, where i denotes the cDNA. After applying two-channel fastlo, the average 

signal intensities across experimental conditions for groups defined in the parametric 

model should be equivalent (Figure 3). Thus, for the parametric component p = a; the 

average signal intensities across experimental units as well as across treatment groups 

will be equivalent. In this scenario it is assumed that the small proportion of 

differentially expressed cDNAs will be represented as outliers in the modified MA-plots. 

On the other hand, if the nonparametric component p = ai + pk + (ap),k is used to 

estimate the true signal intensities, where k denotes the treatment, then the 

aforementioned assumptions are not necessary. In this setting the true signal intensities 

are estimated within each treatment group and the modified MA-plots are forcing the 

signal intensities within a treatment group to be equivalent across all other experimental 

effects, as shown in Figure 3. Thus, the number of differentially expressed cDNAs is not 

detrimental to the normalization procedure in this scenario. 

Given the above discussion, there are problems associated with using the parametric 

model p = a; + pk + ( ~ p ) ; ~  to estimate the true signal intensities for each cDNA if there 

are not an appropriate number of arrays associated with each treatment group. That is, 

using this model, it is assumed that the estimated true signal intensity represents a 

treatment effect and not simply an experimental effect such as an array effect. This 

assumption is inappropriate, for example, i f  there are only two arrays per treatment 

group. In a scenario where there are only a small number of arrays per treatment group, 
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i t  is difficult to defend whether the effec at hand is actually due to the treatment or in fact t 
is due to a systematic effect, the sample bize is simply too small. Therefore, if it is 

assumed that a large proportion of the cIbNA clones spotted on the arrays are going to be 

differentially expressed, we suggest that ithe experimental design be chosen carefully with 

suitable biological replication so that trebtment effects can be appropriately estimated. 
I 
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Table 1: ANOVA table for the parametric component in model (3. I), where i denotes the 
cDNA and k denotes the treatment. 
Effect DF 
ai 6,282 
Pk 6 
<aP>ik 37,686 
Total 43,974 

Table 2: ANOVA table for the semiparametric model in (3.1) such that roughly 5 
degrees of freedom were used for each of the loess smooths (smooth=0.5 in the LOESS 
PROCEDURE of SAS@ v8.2), wherej denotes the array, d denotes the dye, and p denotes 
the print-tip, and 43,974 degrees of freedom were used to estimate the parametric 
component. There are 1,206,144 total possible observations, 6,032 have missing values 
(marked as abnormal during image analysis), leaving 1,200,112 total observations in all 
analyses. Under the semiparametric model that does not include any bias functions, 
y = ,D = + Pk + (UP),, , the resulting SS,,or= 456,530.90, DFe,,= 1,156,138 and 
MS,=,,r = 0.3949. 
Bias Functions (BF) DFBF Sserror DF,,O, MSmor 
f j  (P I  240 337,124.54 1,155,898 0.2917 

10 455,34 1.16 1,156,128 0.3939 
160 455,383.15 1,155,978 0.3939 
410 334,761.23 1,155,728 0.2897 
480 31 8,8 14.7 1 1,155,658 0.2759 

7,680 294,796.33 1,148,458 0.2567 

f,dp ( P )  15,360 270,95 1.04 1,140,778 0.2375 

f j p  ( P )  + ' ' i f i d  7,682 294,755.10 1,148,456 0.2567 

f', (Pu) + Shift ,d 10,752 279,150.16 1,145,386 0.2437 
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Figure 1: Experimental design. Each avow represents an array such that the head of the 
arrow corresponds to the Cy5 dye and the tail of the arrow corresponds to the Cy3 dye. 
Each node represents a tissue and U, V, PI, D2, D3, D4 and Ds correspond to an untreated 
sample, a vehicle control sample (0 pg/kb), 0. I ,  1 ,  10, 100 and 250 pg/kg respectively. 
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Figure 2: Modified MA-plot for the upper-left-comer print-tip on array 10 for the first 
design replicate: (a) the estimated nonlinear fit for f(p) = f j dp (p )  (b) the estimated 

nonlinear fit for f(p) = f j p ( p )  (c) residuals after fitting the f ( p )  = f , p ( p )  bias function. 
The horizontal axis is the estimated true signal intensity for every cDNA ( A = ,L ) and the 
vertical axis represents the bias associated with using ,il to estimate the true signal 
intensity (M = y - ,il ). 

2 -  

1 -  

0 -  D 

= 
-1 - 

- 2 - 

n 

0 -  
I 

-1 - 

-2 - 

-3 4 
I I I I 1 I I I I I 

6 7 8 9 10 1 1  12 13 14 15 16 

A 
d y e  + + + C y 3  O o O C y 5  

(c) 

22 



'1 d 

I 

- 3 ( I I I 
I I I ' I  I I 

6 7 8 9 10 11 1 2  .13 1 4  15 1 

A - c y 3  -- c y 5  , 

23 



Figure 3: Average log*-transformed signal intensities across both technical and 
biological replicates for the third dose concentration and the lower-right-corner print tip 
of both array halfs (spot=l refers to the top half and spot=2 refers to the bottom half of 
the array), (a) before two-channel fastlo and (b) after two-channel fastlo. Note that 
rld3sl denotes the average logz-transformed signal intensity for design repiicate=l, 
dye=Cy3, and spot=l . 
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