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I. INTRODUCTION

Frequently data from survey research, epidemiology, or clinical settings because of
unpreventable problems contain incomplete information caused by known or unknown reasons.
In some situations it is possible to identify variables that are associated with the pattern of
missing data. In other situations the mechanism of missing data is known but variables
associated with this mechanism are inaccessible to the researcher. Finally, in some other
situations the researcher controls the pattern of incomplete data (e.g. for an expensive clinical

test the decision may be made to only perform the test on a random sample of study subjects).

The potential problem associated with missing data is that estimates from non-imputed
data sets that exclude cases with at least one observation missing might not have enough power
to detect significant differences and may introduce bias due to the reduced number of complete :
observations. More recently several alternatives have been proposed to solve this problem that

included maximum likelihood [1] and Bayesian methods [2, 3].

This report is organized to give a general overview of the basic concepts of data
imputation, with emphasis on application. The purpose is to explain the basic principles of
multiple imputation for handling missing data and how to implement this method using SAS

version 8.2.

II. BASIC CONCEPTS

One basic concept in data imputation is the mechanism of ignorability, the theoretical basis that
explains the causes of missing data. Ignorability includes three complementary concepts missing
completely at random (MCAR), missing at random (MAR), and non-ignorable (NI) missingness

[4]. In the following paragraphs the concepts of MCAR and MAR are defined using formal
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notation and examples to understand these fundamental concepts. NI mechanism is not the focus

of this paper and has not been included.

Formal definitions

The matrix representation of a data set that includes observed and missing values is
denoted by Y=(Ybs> Ymis)» Where Yy is the matrix of observed values, and Y ;s is the matrix
of missing values. In this report we deal with recovering incomplete data to produce one (or
many) data set(s) that can be used to estimate parameters for a specific analytic model. The
complete probability density function of the data set is denoted as

p10)=]]r |0, 1)

i=1

where 0 denotes the parameters governing the distribution of Y. To better understand the
missing data patterns, suppose that R is a matrix of indicators with the same dimensions as the
original data matrix, where each element of R is 1 if the corresponding element in the original
matrix is observed and 0 if it is missing. Since R has the same dimensions as the original matrix,

the joint conditional probability is denoted as

pY,R[6,0)=p(Y |0)p(R|Y,0), )

where ¢ denotes the conditional distribution of R given the complete data set Y. In expression

(2) the complete data for the observed data is replaced and integrated over the missing portion

and expressed as

p(Yobs’R l 6’¢) = J‘p(Yobs’Ymis | e)p(R | Yobs’Ymix’q))deis ° (3)
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The missing data mechanism is said to be “missing completely at random” (MCAR) if
the distribution of the indicators R does not depend on either observed or missing data. Thus

MCAR is defined as
PR|Y,,.Y,..0) = p(R|9), 4)

In practical terms MCAR situation means that the mechanism that governs the missing data is
not related either to the observed or missing data. The MCAR mechanism is equivalent to
deleting a random subsample from a hypothetical population in which each observation has

equal probability of being selected for deletion.

The second mechanism is “missing at random” (MAR). A formal definition of MAR
states that the distribution of the missing data does not depend on the missing values but only on

what we observe. Then
p(RlYobs’Ymis’q))=p(R|Yobs’¢)' (5)

In other words, the missing data mechanism can be found in the data observed. Note that
in this case the distribution of the observed values is not affected by incomplete information;

only what is observed is relevant. Now substituting (5) into (3), we have

p(Yabs 4 R | e’ ¢) = _[p(Yobs 4 Ymis I e)’ ¢)p(R | Yobs ’ ¢)deis
= p(R | Yobs 4 q)) X Ip(Yobx 4 Ymix | 6)’ ¢)deis (6)
= p(R | Yobs ’¢)p(Yobs l 6)
This means that if under MAR conditions the distribution of the parameter governing the

missing data mechanism, ¢, and the observed data, 8, are independent, then the joint distribution

of the parameter space (0, ¢) can be split into the product of the parameter space 0 and ¢, a
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property known as distinctness. The property if independence between 6 and ¢ is useful when

using maximum likelihood estimation.

From a practical standpoint MCAR scenarios are less common and the MAR mechanism
is more frequent. For example, suppose for a study of cigarette smokers we collect information
regarding number of cigarettes smoked daily and gender. If the probability of recording the
number of cigarettes smoked daily does not depend on the number of cigarettes they smoke nor
on gender then missing data are MCAR. On the other hand, if the probability of recording
cigarettes smoked daily depends on gender, but not on number of cigarettes smoked, and this

probability is the same across all subjects within gender, then data are MAR.

Empirical definitions

Let the X=(x;,x2, ...X,) be observed variables, Z=( z;,2, ...2,) non observed covariates,
and Y=(Y,ss, Ymis) the set of variables with missing values. In this case Y are the variables to be
imputed. Table 1 illustrates the MCAR, MAR patterns characterized by the observed and non-

observed covariates.

MCAR patterns are very rare in the real world and survey researchers can take advantage
of this pattern. This mechanism takes place when a random subsample of respondents is selected
from a population to have complete information. For example, when a new survey instrument is
developed (or a costly test is implemented) not all respondents are selected to answer that
specific instrument (or complete that test) but only a random subsample. The missing data
mechanism is MCAR and the imputation step is straightforward. In longitudinal studies the
MCAR property would be useful if a random subsample are selected for follow up at each wave

and every respondent has the same probability of being selected.
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The MAR scenarios are more common in real practice. Under MAR assumption a set of
covariates X is observed and the missing values, Y,;s, depend on the observed variables X (see
Table 1). For example, if the number of cigarettes smoked by adolescents depends only on
subject gender and number of peers who smokes tobacco and both variables are observed the
missing data mechanism is MAR. There is no statistical test to prove this assumption; however,
a common approach to see if MAR assumption is plausible is to determine if the covariates X are

correlated with Y, or X is associated with Y, (e.g. via logistic regression or chi-square test).

The imputation and the analytic models

A basic principle in data imputation under the MAR assumption is to understand the
difference between the imputation model and the analytic model. The imputation model consists
of all variables that collectively explain the missing data pattern and are useful in the imputation
step. The analytic model is the one that is used to analyze the imputed data. Under the MCAR
assumption, the variables used in the analytical model are, in general, the same as the variables
of the imputation model (i.e. MCAR does not require covariates to explain patterns of

incomplete data).

Under the MAR assumption identifying the variables for the imputation model becomes a
relevant step to produce good quality imputations. The variables for the imputation model for
the MAR condition are used to explain the missing data pattern and therefore are not necessarily

restricted to the variables in the analytic model.

Another relevant question is how many and what variables in the imputation model are
needed to provide good quality imputations. Under the MAR assumption the number and
variables selected for the imputation model affect the quality of imputations as suggested in two

studies [5, 6]. For example Graham and Schafer [5] showed that parameter estimates exhibit less
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bias from population parameter estimates as the number of covariates included in the imputation
model increase. However, a simulation study using data under a multivariate normal distribution
assumption showed that better quality imputations are obtained when a subset of covariates are
selected in the imputation model, particularly those associated with the missing data mechanism
[6]. Therefore the strategy we will use in this report is to incorporate into the imputation model
the variables that show some ability to predict the mechanism of missing data in two ways. First,
using contingency tables or logistic regression models with categorical dummy variables for the
missing data (to indicate whether the data are missing or not). Second, using a correlation
matrix of the variables from the imputation model with the variables to be imputed. The analytic
model may not include all the variables used in the imputation model; but all variables, which
are to be used in the analytic model, need to be included in the imputation model. If the
analytical model includes interaction terms, these interaction terms need to be included in the

imputation step as well.

II1. DATA AUGMENTATION

Multiple imputations (MI) incorporate a simulation process to fill-in several missing values since
a single one might not reflect the variability. The variability results from the simulation process
where missing data are filled after several iterations. MI are generated using MCMC methods
from which several complete versions of the variables in the imputed data set are generated; each
data set can be submitted to the analytical model using standard methods. A single set of
parameter estimates is obtained from each model and Rubin’s rules are used to pool all estimates

into one (Appendix I).

One of the MCMC methods is called data augmentation (DA). DA is a particular method

for dealing with missing data and has been described in detail in Tanner and colleagues [7, 8].
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The general idea of DA via MCMC has two phases, called the I- and P- steps. The I- step: draw

a random sample of observations from an initial marginal distribution in the first iteration

Y(Hl) ~ p(Ymis les ’e(‘))'

mis ol

The P-step: draw a random sample of parameters from a marginal distribution that
incorporates observed and initial values for the missing observations from the I-step in the first

iteration

e(t+l) - p(e I Yobs ,Y(t+1)) .

mis

The I- and P- steps in the first iteration provide a starting value {¥?,0‘> }and posterior

mis ?

00;Y? 0®;...} which converges in

mis ?

iterations create a stochastic Markov Chain of values {¥,,

distribution to P(0, Yuis|Yoss). To produce multiple imputations we iterate over data

augmentation and iterate over Yy, to create a chain of filled in observations

{Y(t).Y(Zt) Y(mt)} .

mis > “ mis """~ mis
This is equivalent to a run of m independent chains or burn in iterations of length z.

One important issue is to test the convergence of the MCMC process of a single chain
and the number of iterations required for convergence depends on the amount of missing data

and therefore varies from one data set to another. The algorithm requires assigning the minimum

number of burn-in iterations, m, that are needed to guarantee that in a single chain 6"*" will be
independent from 6’ . This process can assure that after the burn-in period of size m every value

estimated for O can be taken as an independent draw from P(8|Yobs) and Yris could be used as an

imputed value.
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Several methods have been proposed to investigate the convergence of the joint
distribution of O for a specified value m [9, 10]. From a practical approach the autocorrelation

function (ACF) can be used to determine the convergence of the algorithm. For a lag-p

stationary series {K® :7=1,2,...k} the ACF is defined as

3 Cov(k® , k")
Pp= V(K") )

(7

The ACF plots r, versus p for a limited number of p. The correlogram that is produced with the
ACEF plots helps to identify potential linear dependence. If the correlogram shows a sudden
decay for the values p=2 to 4 this suggests serial independence, i.e. the algorithm converged to a
satisfactory solution. The autocorrelation plots are easy to understand, however, it should be
clear that they do not prove independence. Other methods are available to verify the convergence

of the MCMC process but require further knowledge of Bayesian methods [11, 12].

IV. EXAMPLE: NICOTINE DEPENDENCE DATA

Data Source

A study of patients treated in the Mayo Clinic Nicotine Dependence Center (NDC)
included 1877 adult patients that completed the Minnesota Multiphasic Personality Inventory
(MMPI) prior to being treated for cigarette smoking. They were seen at the NDC between
4/1/1988 and 12/31/1999. Only patients with known smoking abstinence information 6-months
following treatment were included in our analyses. At the time of the nicotine dependence
consultation, patients were asked to complete an extensive baseline questionnaire. The
questionnaire included demographic variables (e.g. age, gender, race, marital status, highest
educational level) and tobacco use history (e.g. number of years smoked, number of cigarettes
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smoked per day (CPD), longest duration of previous abstinence, type of tobacco products used).
The questionnaire also contained items from the Fagerstrom Test for Nicotine Dependence
(FTND), which assesses the severity of nicotine dependence [13]. At the time of the
questionnaire administration, a nicotine dependence counselor evaluates and records the
patient’s stage of change according to the transtheoretical model [14]. As a routine part of the
NDC follow-up a trained telephone interviewer, who is not associated with provision of the
nicotine dependence intervention, attempts to contact patients by telephone 6-months following
their NDC consultation. The patients’ current tobacco use status is obtained as part of this call.
For this study, tobacco abstinence is defined as a self-report of no use of any form of tobacco

(not even a puff of a cigarette) during the previous 7-days.

The Analytic Model

The analytic model used for this investigation included specific personality
characteristics (trait anxiety, depression, and neuroticism) as measured by the MMPI and
whether they predict abstinence from tobacco 6-months following the nicotine dependence
consultation. Five variables that have been found in previous investigations to be predictive of
abstinence were included in the analytic model as covariates. Thus, the following expression is

the logistic regression analytic model used in this example.
logit(p,) =By +B,x, +B,x, +Bax; +B,x, +Bsxs +PBexs e, (8)

where the dependent variable was the 7-day point prevalence tobacco use status 6-months post
consultation (abstinence, y=1; use, y=0); the independent variables included pre-consult stage of
change (x;), average CPD smoked in the past six months prior to baseline consultation (x2),

longest duration without smoking (x3), Fagerstrém score (x4), gender (xs, male=1, female=0) and
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the selected MMPI scale of specific study interest (xs). All patients had complete information on
Y (6-months tobacco use status), x5 (gender) and xs (MMPI scale). Note that separate analytic

models were used for each MMPI scale of interest.

Of the 1877 patients, 42% (793) had complete data for model (8) the remaining had
missing values for at least one adjusted variable. Since 58% of the patients were missing some
information, there was a concern that those with complete data were not representative of the
entire sample. To address this problem, MI methodology was proposed since this is the

preferred method for analyzing data sets with missing data [2, 3, 15].

The Imputation Model

The data imputation methodology used in the example includes several steps. The first
step was to determine the variables for .the imputation model. The MAR assumption was used
because we found this assumption plausible: there were a set of observed variables that were
either correlated or showed an association with the variables with missing data. Second, we
tested the convergence of the algorithm by using the ACF plots for the outcomes of interest in
the imputation model. Finally the Rubin’s rules, as described in Appendix I, were applied to

summarize the parameter estimates for the analytic model.

For this example the MAR assumption was used in the imputation methodology because
we hypothesized that some observed variables (hopefully with minimal amount of missing

values) had some ability to explain the missing data mechanism.

Using the MAR assumption, it is necessary to identify the variables to be included in the
imputation model. With binary indicator variables used to indicate missing data, the ¥ test
statistic was used to test the degree of association of the potential variables of the imputation
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model with variables with missing data from the analytic model. In addition, Spearman rank
correlation was used to estimate the association of the potential variables from the imputation
model with the variables in the analytic model. Based on these analyses several variables were
selected for inclusion in the imputation model. Tables 2 and 3 summarize the association with

the variables in the imputation model.

In Table 2 the relationship between the variables in the imputation model and the
variables in the analytic model is explored, some of the variables showed significant p-values
from the % test as indicated. The following variables: age group, year of NDC consult, race,
highest level of education, post-consultation stage of change, average CPD when smoking
heaviest, longest duration without using tobacco, number of serious stop attempts, and location
of appointment showed a significant association with at least one of variables from the analytic

model.

In Table 3 the variables post-consultation state of change, average CPD currently,
average CPD when smoking heaviest, and longest prior duration without using tobacco at time of

consultation, showed a significant correlation with the variables from the analytic model.

Programming Multiple Imputation

In this section the actual implementation of the imputation procedure using SAS version
8.2 is explained. After selecting the variables for the imputation model as described above we
prepared the SAS statements using PROC MI. This procedure assumes that the variables
included in the statements belong to the analytic and imputation models. The SAS statements

used in this report are as follows:
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{line)
(1) proc mi data=final out=miout nimpute=8 seed=101039
(2) round=1

(3) minimum=2 0 1988 0 0 0 011 1111110 0 00O0O

(4) maximum=8 1 1999 1 1 1 18 3 3 444331411 11 .;

(5) mcmc initial=em prior=ridge=0.5 outiter =outit

(6) timeplot (mean (pre_con avgémos2 longstop ftndgrp))

(7) acfplot (mean (pre_con avgémos2 longstop ftndgrp));

(8) var agegrp gender ndcyear race_new single together divorce
(9) educ pre_con post_con avgcurr2 avgémos2 avgheav?2

(10) longstop longest ftndgrp numstop loc_clin hospital ndc
(11) success6 tp_0 tp_1 tp_2 tp_3 tp_4 tp_5 tp_6 tp_7 tp_8
(12) tp_9 tp_f tp_k ts2_1 ts2_4 ts2_7 ts2_8 ts2_9 t_t a
(13) 1wl _231 dl j09 depw j01 p2l1 pkl p84 _5ne hrl hr2 hr3
(14) man psm Smo;

(15) run;

The MI Procedure.- The SAS code in the proc statement (line 1) instructs the program
to read and save SAS files. In addition, in this line the user specifies more imputation details like
the number of imputations, a random seed, rounding numbers and minimum and maximum

values for each variable.

The option “data=final” refers to a matrix where the original data are stored, each row
corresponds to one patient and the columns correspond to the variables. The incomplete data are
defined as missing values and PROC MI will impute a value for each missing observation. An
output file is produced with the statement “out=miout”, this file contains all 8 imputed datasets

with the missing values replaced with imputed values.

To determine the number of imputations needed we use formula 9 (Appendix I). In this
study we expect about 58% of the observations will be missing for one or more variables in the
analytic model (8). Then for =8 imputed data sets the expected relative efficiency for
recovering missing values will be close to 93% (i.e. (1+0.58/8)'1x100). Thus the option
“nimpute=8~ will give the desired relative efficiency in estimating the parameters for the

analytic model in expression (8) using the multiple imputation methodology. The seed is a
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random number and it is specified as seed=101039 and is used mainly to reproduce the
simulation based on the same seed. If the seed statement is omitted then in each run the seed

number will be randomly selected.

The option “round=1" (line 2) results in all variables in the imputed data sets to be
integers. The “minimum="and “maximum=" lines (3 and 4) specify the minimum and maximum
values for all the variables in order of the “var” statement (lines 8 to 14). The value of “*” in this
statement implies that the variable has no bounds. The variables in the var statement are in the
same order as in the round statement. This alternative provides more flexibility allowing the

simulation process to converge in fewer iterations.

The round option can also be set to specific formats for each variable. For example,
“round=. 01" indicates rounding all variables to the nearest multiple of .01. The option
“round=e 1 10” indicates no rounding for the first variable, rounding to the integer for the

second and to the nearest 10 for the third.

The MCMC options.- The options set in line (5) indicate the Markov Chain Monte
Carlo method indicate the starting values, the type of prior distribution to be used, and the output
for the autocorrelation plots. In this example the MCMC method has been chosen with an initial
estimation provided by the EM algorithm. Running this algorithm as the initial step in the data
imputation process is highly recommended since the initial estimates obtained from the EM-

algorithm are used as starting values for the simulation step.

In this example the Ridge method was selected as the prior option. The Ridge prior
option is useful when the estimated covariance matrix is nearly singular. It is the option of

choice when the variables in the imputation data set could have a high correlation, or the number
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of rows is substantially less than the number of columns, or when some of the variables show
little variability. Since in our example the expected level of correlation could be high we
selected the “prior=ridge=0.50" as an option to make the algorithm converge efficiently.
The number 0.50 indicates the proportion of the data set that is to be used to generate the initial

estimates.

The option “prior=jeffreys” is given by default and uses a non-informative prior.
The non-informative prior starts with no information available for the parameter of interest;
using MCMC methods it generates a posterior distribution and generates updated parameters; the
process iterates until a convergence criterion is met. In general Jeffrey’s method is quite stable

and works for most data imputation situations.

The option “prior=input=<sas dataset>” specifies the informative prior where the
mean and covariance is requested with this statement. The starting values, in the informative
prior method, are chosen from an imaginary dataset. Instead of choosing an informative prior
starting with complete ignorance of the parameter of interest, as the Jeffreys methods does, an
estimated mean and covariance matrix is obtained after observing a sample from the data. Thus,
the process for generating the updated parameters creates an imaginary prior distributions and
represents the best guess of the population covariance. A similar iterative process as in the
Bayesian approach generates the final estimates until a convergence criterion is met. The option
“outiter” creates a SAS output dataset that contains all relevant information for each

imputation.

The default statements for this procedure are the number of burn-in iterations. This
option refers to the number of iterations required before stopping the first chain of simulations,
as described in section III Data Augmentation in this report. The defaults given by SAS are
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chain=single nbiter=200 niter=100 initial=em.

There has been no particular preference whether single or multiple chains would provide
the best results. Is running a single run of size mt (i.e. 200x100) better than having 7 (i.e. 200)
parallel runs of size ¢ (i.e. 100)? It is open to debate, the default option in SAS is single chain
and S+ recommend to run multiple chains [16]. See section IIl Data Augmentation regarding the

burn in iterations concept.

The parameter “nbiter=200" specifies the number of burn-in iterations within each
chain and niter=100 specifies the number of iteration between imputations in a particular
chain. When a single chain is chosen there will be 200x100 iterations. The options
“nbiter=200" and niter=100 are selected as the default since the values are quite reasonable

for the current data set.

The Variables in the Imputation Model.- The SAS statement that includes the variables
from the imputation and the analytical models are specified in lines (8) to (14), that are the main
interest of the study. However, we have included more variables since other models are of

interest as well for further analyses.

Testing the Convergence

An important step in data imputation is to test the convergence of the MCMC process.
This step is recommended after specifying the number of iterations (burn-in and niter), and
the number of datasets to be imputed (nimpute=). Lines (6) and (7) request the autocorrelation
function (ACF) plots for the outcomes in the analytical model. As discussed in a previous
section, the ACF plots are useful to examine the dependency of the time series to diagnose

convergence of the MCMC process.
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Figures 1 to 4 show the ACF for variables pre_con (pre-consult stage of change),
avgémos2 (average CPD past 6 months), longstop (longest duration without smoking),
ftndgrp (Fagerstrom score) in the analytic model as requested in lines (6) and (7). Figure 1
shows a slow decay for the first four autocorrelations, meanwhile Figures 2 to 4 show a sudden
decay of the stationary process. Overall the ACF functions in Figures 1 to 4 provide some

evidence that the stationary process converged to a satisfactory solution.

Rules for Reporting Final Results
A final step for reporting the results is to apply Rubin’s rules to the estimates from the
imputed data sets. With eight data sets we conduct logistic regression analysis on each data set.

The “proc logistic” statements that request a logistic regression model by imputation are:

proc logistic data=final covout outest=outl noprint;
by _imputation_;
model successé6= t_t gender contemp prepare cpd2l_39 cdp40 ftnd 6
longl_30 longl;

Independent variables in this model included TSC tension scale (t_t), gender (with values
1=male, O=female), dummy variables for stage of change (contemp=1 if in contemplation stage
and 0 otherwise; and prepare=1 if in preparation/action stage, 0 otherwise), dummy variables for
average cigarettes in the past 6 months (cpd21_39 = 1 if cpd = 21-39 or O otherwise; cdp40=1 if
cpd > 40, 0 otherwise), Fagerstrom score (ftnd_6 = 1 if score > 6, 0 otherwise), and dummy
variables for longest duration without smoking (longl_30 if duration = 1-30 days, and longl if
duration is more than 1 month). This “proc” statement will produce 8 parameter estimates for
each of the coefficients in the analytic model, but will not be printed as specified by the
“noprint” option. Instead all parameter estimates will be stored in the “out1” data set. This

data set will have the 9 parameter estimates corresponding to the logistic regression model for
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each imputation. In this example there were 8 models with 9 parameters in each model (data not

shown).

Equations (1) to (7) from Appendix I are applied to the eight models to generate the

output for the MIANALYZE procedure. The PROC MIANALYZE statements in SAS are:

proc mianalyze data=outl edf=1867;
var intercept t_t gender contemp prepare cpd2l_39 cdp40 £tnd_6
longl_30 longl;

Output 1 shows the results of applying Rubin’s rules, see Appendix I. The variance
between estimates (column 2) corresponds to equation (3, Appendix I); the variance within
estimates (column 3) are related to equation (2, Appendix I); the square term of expression (4,
Appendix I) gives the total variance (column 4); the degrees of freedom (column 5) are
calculated using equation (5, Appendix I); the relative increase in variance (column 6)
corresponds to equation (8, Appendix I); the fraction of missing information (column 7)

corresponds to expression (7).

Output 1. Rubin’s Rules using PROC MIANALYZE

(Column)
(1) (2) (3) (4) (5) (6) (7)
————————————— Variance-~----—-—==wce—o-o-

Relative Fraction

Increase Missing
Variable Between Within Total DF in Variance Information
Intercept 0.017182 0.070552 0.089881 137.17 0.273981 0.225230
t_t 0.000001155 0.000054809 0.000056109 15%88.5 0.023717 0.023317
gender 0.000086216 0.011086 0.011183 1812.8 0.008749 0.008695
contemp 0.013492 0.050266 0.065444 119.3 0.301963 0.243468
prepare 0.021500 0.050227 0.074415 62.942 0.481575 0.344534
cpd21_39 0.003470 0.014484 0.018387 140.46 0.269521 0.222253
cpd40 0.011829 0.031332 0.044640 74.292 0.424744 0.315288
ftnd 6 0.008979 0.013436 0.023538 36.697 0.751789 0.456996
longl_30 0.007617 0.018912 0.027481 68.171 0.453088 0.330168
longl 0.005917 0.022781 0.029437 125.04 0.292187 0.237187
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From Output 1 the relative efficiency (RE) can be calculated using equation 9 (Appendix
D). RE reflects the efficiency of the imputation process after k=8 imputations, not the efficiency
of the parameter estimates. For example, RE for the variable ftnd _6 is equal to 0.95% which
means that the efficiency of the imputation process for this variable is 95 %". The percentage of
relative efficiency (in parenthesis) of the remaining variables in the logistic model are t_t
(100%), gender (100%), contemp (97%), prepare (96%), cpd21_39 (97%), cpd40 (96%),

long1_30 (96%), long1 (97%).

The 95% Confidence Intervals (CI) and the significance level for the parameter estimates
from the logistic regression are provided in Output 2. They are obtained from eight complete

data sets and summarized using Rubin’s Rules (Appendix I).

PROC MIANALYZE supports other models that apply Rubin’s Rules as presented in
Appendix I, see SAS Technical report 8.2 for further reference on the procedures that are

supported by multiple imputation analysis [17].

Finally, Output 3 presents the logistic regression model with no imputed data. The
sample size is reduced to 793 observations, due to missing values. By comparing Outputs 2 and
3 and some similarities and differences emerge. First, notice that standard errors in Output 2 are
smaller than in Output 3. For example, the standard errors for gender are 0.11 and 0.16 for
imputed and non imputed data, respectively. The reason being is that for the imputed data we

have more observations available.

* using the fraction of missing information (column 7 from Outputl), RE is calculated as (1+0.457/8)"

® Note that for variables with RE equal to 100% there are no missing data or it is less than 5% thus the
corresponding parameter estimate is close to the actual estimate.
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Output 2. Parameter estimates and 95% Confidence Intervals using PROC
MIANALYZE

The MI Procedure
Multiple Imputation Parameter Estimates

Variable Mean std Error 95% Confidence Limits
Intercept -1.456105 0.299802 -2.04894 -0.86327
t_t -0.020665 0.007491 -0.03536 -0.00597
gender 0.405855 0.105749 0.19845 0.61326
contemp 0.500577 0.255820 -0.00596 1.00711
prepare 0.878217 0.272791 0.33308 1.42336
cpd2l_39 -0.287429 0.135600 -0.55551 -0.01935
cpd40 -0.640260 0.211281 -1.06122 -0.21930
ftnd_6 -0.099658 0.153420 -0.41060 0.21129
longl_30 0.337200 0.165775 0.00642 0.66798
longl 0.514874 0.171573 0.17531 0.85444

Multiple Imputation Parameter Estimates

Parameter DF Minimum Maximum
Intercept 137.17 -1.711285 -1.315350
t_t 1598.5 -0.022588 -0.018962
gender 1812.8 0.393348 0.419131
contemp 1159.3 0.336356 0.671839
prepare 62.942 0.638929 1.084117
cpd21_39 140.46 -0.356567 -0.197010
cpddo 74.292 -0.815684 -0.454293
ftnd_6 36.697 -0.235057 0.040653
longl_30 68.171 0.181206 0.449794
longl 125.04 0.365602 0.594621
Multiple Imputation Parameter Estimates
t for HO:
Parameter Theta0 Parameter=Theta0 Pr > |t
Intercept 0 -4.86 <.0001
t_t 0 -2.76 0.0059
gender 0 3.84 0.0001
contemp 0 1.96 0.0527
prepare 0 3.22 0.0020
cpd21_39 0 -2.12 0.0358
cpd40 0 -3.03 0.0034
ftnd_6 0 -0.65 0.5200
longl_30 0 2.03 0.0458
longl 0 3.00 0.0033

Second, the estimates are in the correct direction in both models. For example, the

estimates for the variables T_T, CPD21_39, CPD40, and FTND_6, are negative in Outputs 2 and
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3. Third, the estimates from the non imputed data (Output 3) are included in the 95%CI limits

for the estimates from the imputed data.

Output 3. Logistic regression with non imputed data, N=793.

The LOGISTIC Procedure
Model Information

Data Set WORK . FINAL

Response Variable SUCCESS6 Tobacco abstinence (6 month)
Number of Response Levels 2

Number of Observations 793

Model binary logit

Optimization Technique Fisher's scoring

Response Profile

Ordered Total
Value SUCCESS®6 Frequency
1 Abstinent 265
2 Using tobacco 528

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -1.7870 0.4545 15.4621 <.0001
T_T 1 -0.011l6 0.0111 1.0971 0.2949
GENDER 1 0.3543 0.1597 4.9227 0.0265
CONTEMP 1 0.9088 0.4019 5.1143 0.0237
PREPARE 1 1.3704 0.4013 11.6607 0.0006
CPD21_39 1 -0.1939 0.2001 0.9396 0.3324
CPD40 1 -0.6697 0.2732 6.0086 0.0142
FTND_6 1 -0.1485 0.1915 0.6010 0.4382
LONG1_30 1 0.2154 0.2085 1.0667 0.3017
LONG1 1 0.4040 0.2236 3.2634 0.0708
0dds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

T_T 0.988 0.967 1.010

GENDER 1.425 1.042 1.949

CONTEMP 2.481 1.129 5.455

PREPARE 3.937 1.793 8.644

CPD21_39 0.824 0.557 1.219

CPD40 0.512 0.300 0.874

FTND_6 0.862 0.592 1.255

LONG1_30 1.240 0.824 1.867

LONG1 1.498 0.966 2.322
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Fourth, all variables but five (e.g. t_t, cpd21_39, ftnd_6, longl_30, and longl) were
statistically significant (p<0.05) in Output 3; however, all variables but two (e.g. contemp and

ftnd_6) was statistically significant (p<0.05) in the imputed data set in Output 2.

V. DISCUSSION

In practice we face the dilemma of making inferences restricting the data set to those with non-
imputed data, or using imputed data. In either scenario we are making assumptions. Estimates
are potentially biased since the assumption made is that data are missing completely at random

and it is unlikely that this assumption is tenable.

Having 10% or less of missing data does not merit the effort of conducting imputations.
Inferences are reliable for both the non-imputed and imputed data. With more than 10% of
incomplete information there is generally some concern that the inferences based on complete
data are not warranted. The first assumption that we want to make is that data are MAR. Since,
in most practical situations incomplete data does not occur completely at random instead we
assume MAR and rely on observed variables that are related to and hence can predict imputed

values for the missing data.

The MAR assumption appears to be plausible in our example since, in the analyses done,
variables were identified to be associated with the missing value status of the variables in the
analytic model (Tables 2 and 3). However, currently there is no statistical test available to test
whether data are MAR. One limitation is that variables included in the imputation model are
restricted to those available in the data set. We make the theoretical assumption that those

variables are sufficient for the MAR condition. Researchers should have some theoretical
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understanding that the observed variables are predictive of the missing value mechanism

associated with the MAR assumption.

In our example, multiple imputation demonstrated an efficiency ranging from 93 to 100%
for recovering missing values, which is considered satisfactory. Some discrepancies are
expected between estimates obtained using imputed data compared to non-imputed data, as
observed in Outputs 2 and 3. The main reason is that if data are MAR there exist particular
characteristics associated with subjects with incomplete information that distinguish them from
subjects with complete information. Moreover, having more complete observations available
decreases the standard error; however, the MI method penalizes for the simulation involved in
recovering missing data by adjusting the standard errors. Since Rubin’s Rules correct for the
amount of missing data, standard errors are inflated relative to what would be obtained if all data
were observed. However, in all cases the adjusted standard errors obtained from the MI method
are smaller than those obtained if the analysis is restricted to the subset of subjects with non-

imputed data.

Simulation studies demonstrate that multiple imputations are robust and provide
satisfactory results [18, 19]. The simulation studies suggest that even if the MAR assumption
cannot be totally defended, imputation methods provide less biased estimates as compared to
analyses using complete data only[3]. This is because making incorrect assumptions in the
model only affects the portion of the data that was imputed and therefore the influence on the

parameter estimates is lessened by the non-imputed data [3].

Some caution needs to be exercised when conducting MI. The multiple imputation
methodology is not able to recover data from a bad study design. If there is a concern that

missing data happened because of a bad study design, MI methods are not warranted for
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successful recovery of incomplete information. Furthermore, MI methods are not designed for
making a forecast of missing data at the individual level. Instead, MI methods are intended for
producing simulated data that preserves the structure from the available data, based on its prior
distribution, and its covariance matrix. The imputed data can be used for making inferences for

the combined estimates.

Finally, in some cases the missing data mechanism depends on the variable itself and is
called Non-Ignorable (NI) missing. For example, if the probability of recording cigarettes
smoked daily depends only on the number of cigarettes smoked daily (i.e. it does not depend on
other variables available in the data set or possibly it depends on variables that were not
recorded), then the mechanism of missing data is NI. The NI scenario is the most difficult to
analyze and is under current investigation. Fairclough and colleagues [20, 21] have addressed
this problems using patterned mixed models. Other more complex modeling strategies include

the use of Bayesian methods [11].

PROC MI provides satisfactory results when data support the normality assumption and
when the missing data mechanism is either MCAR or MAR; however, it is not recommended for

NI missing data patterns.

Ml is a method for imputing data under MAR or MCAR assumptions using MCMC
methods and once the data set has all missing values recovered, regular modeling can be applied
to each data set and later the estimates need to be combined for obtaining the final estimates to
be reported. PROC MI and PROC MIANALYZE as implemented in SAS version 8.2 are useful

tools for data imputation.
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APPENDIX 1.
Rubin’s Rules

For the k sets of imputed values, let é, ,I=1,..., k, denote the parameter estimates obtained

from the analytic model each for complete dataset. The combined estimate of 8 1is 0, the

average of the parameter estimates over the k-data sets. Namely,
— 1A
5=228,. (1)

Let Vf’, represent the standard error associated with parameter estimate 6 ,» I=1,..., k, the within-

imputation variance is

12 @

?7‘

the between-imputations variance in 0 is estimated as

=

B=-—26,-0), 3

i=1

thus the total standard deviation associated with 0 is

«/F=1/W+%’—13, @)

that can be used to estimate a confidence interval for 6 with df degrees of freedom. Using a t-

Student distribution with degrees of freedom based on Rubin’s [2] formula
kK WY
af =(k—l)(l+—+———J . &)
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Thus, a 100(1-00)% interval estimate for 0 is
6 i tdf,l—(x/Z ﬁ . (6)

The multiple imputation efficiency can be calculated using Rubin’s [2] formula to

estimate the fraction of missing information about 0 as

Ao in(;.’f_l”f_:‘) , %
where
e ( +‘I;,-l )B 8)

The ratio r is known as the relative increase in variance due to nonresponse [2]. Thus the relative

efficiency (RE) due to k imputations expressed in terms of the variance is
}\’ -1
RE = (l + ;) . 9)

Table 4 depicts some values for k and A that can be used for determining the efficiency of
data imputation. For example, the percentage of efficiency in recovering missing data with 30
percent missing, with five (k=5) datasets, is 94 percent. A general rule of thumb is that 3 to 5

imputations are sufficient to obtain good quality overall estimates [3, 22].
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Tables and Figures
Table 1. Characterization of MCAR, and MAR patterns

Table 2: Assessing the association between the missing value status of variables in the
analytic model (columns) and candidate predictor variables (rows) for missing data in the

imputation model

Table 3: Spearman rank correlations coefficients between variables in the analytic model

(columns) and candidate predictor variables (rows)

Table 4. Efficiency expressed as a percent for multiple imputations (MI) with & data sets

and A percent missing information. Rubin [2]

Figure 1. Autocorrelation Function (ACF) plot for x;:pre-consult stage of change
(PRE_CON) variable with 21 iterations shown. The ACF plot decays after 5 iterations, 95% CI

intervals are shown with dotted lines

Figure 2. ACF plot for x,:average CPD past 6 months (AVGMOS?2) variable. The ACF

decays after the second iteration, 95% CI intervals are shown with dotted lines

Figure 3. ACF plot for x3. Longest duration without smoking (LONGSTOP) variable. The

ACF decays after the fourth iteration, 95% CI intervals are shown with dotted lines

Figure 4. ACF plot for x4 Fagerstrdm score (FTNDGRP) variable. The ACF decays after

the second iteration, 95% CI intervals are shown with dotted lines
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Table 1. Characterization of MCAR, and MAR patterns

Patterns

Covariates X=(x5,x2, ...X,)
are observed

Covariates Z=( 21,22, .--Zn)
are not observed

MCAR

Y.nis does not depend on X

Ynis does not depend on Z

MAR

Y uis does depend on X

Y is does not depend on Z
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Table 2: Assessing the association between the missing value status of variables in the
analytic model (columns) and candidate predictor variables (rows) for missing data in
the imputation model

Variables in the analytic model with missing values
Candidate predictor X1: X33 X3: x40
variables for the imputation Pre- Average Longest Fagerstrom
model consult CPD past duration Score
stage of 6 months without
change smoking
% T % t % t % t
[P #] [P #] [P ] [P ]
xs:Gender [NS] [NS] [NS] [NS]
Female 44.3 28.8 33.5 31.0
Male 41.3 31.1 33.2 33.0
xs:Year of NDC consult [<0.001] [<0.001] [<0.001] [<0.001]
1988 100.0 16.0 22.2 13.8
1989 98.5 9.7 10.1 9.0
1990 58.4 37.5 41.2 38.3
1991 34.6 37.3 37.3 35.9
1992 43.5 45.9 45.9 44.5
1993 29.3 325 40.1 35.0
1994 29.0 33.3 41.2 31.6
1995 31.0 47.1 48.3 42.5
1996 19.0 28.5 34.5 31.0
1997 7.3 42.4 46.1 52.7
1998 1.0 6.1 16.3 22.5
1999 0.9 9.4 15.0 21.5
x7: Age group (years) [0.005] [NS] [NS] [NS]
18-29 45.2 28.9 28.9 27.9
30-39 50.8 31.7 36.3 34.2
40-49 40.1 28.5 31.0 31.8
50-59 42.3 29.4 33.7 30.0
60-69 43.3 32.1 33.8 32.8
70-79 30.8 24.2 36.3 33.0
80-89 16.7 33.3 33.3 50.0
xg: Race [0.036] [NS] [NS] [NS]
Non-Caucasian 18.2 9.1 12.1 15.2
Caucasian 35.9 17.3 20.9 18.7
xo: Marital Status [NS] [0.101] [0.101] [0.080]
Separated/divorced/widowed 44.7 33.3 37.2 35.8
Single 36.7 26.0 29.0 27.2
Married/living together 42.9 28.4 32.1 30.6
x10: Highest level of [<0.001] [0.022] [NS] [NS]
education
< 8™ grade 12.3 6.2 10.8 7.7
8™ grade 16.2 7.5 8.7 2.8
Some high school 32.9 2.9 9.0 4.9
High school 39.4 3.1 5.4 5.1
Some college 32.7 1.9 5.8 2.9
>4 year degree 35.1 1.8 3.5 7.0
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Variables in the analytic model with missing values
Candidate predictor x;: X2 X3: X4t
variables for the imputation Pre- Average Longest Fagerstrom
model consult CPD past duration Score
stage of 6 months without
change smoking
% % T % T % t
[P £] [P 1] [P ] [P %]
x11: Post-consultation stage [0.045] [0.004] [NS] [0.016]
of change
Pre-contemplation 0.0 16.7 20.0 16.7
Contemplation 2.2 6.4 15.9 10.7
Preparation/action 0.5 14.4 18.8 18.8
x12: Average CPD when [0.006] [0.097] [NS] INS]
smoking heaviest
1-20 23.3 4.7 9.1 5.9
21-39 28.5 1.8 6.8 7.5
>40 34.1 4.2 10.2 5.8
x13:Average CPD currently [NS] [NS] [NS] [NS]
smoking
None 21.1 0.0 21.1 0.0
1-20 30.3 4.6 9.8 7.9
21-39 26.5 4.0 8.5 7.7
>40 32.5 3.1 10.8 5.2
x14: Longest duration without [NS] [0.068] [0.002] [NS]
using tobacco
< 1 day/not at all 27.4 6.3 12.6 6.8
1-30 days 31.7 2.8 7.2 4.8
> 1 month 29.4 4.8 5.0 4.5
x15: Number of serious stop [0.007] [NS] [0.043] [NS]
attempts
None 29.2 53 0.0 10.6
1 22.8 2.9 5.8 3.4
2-5 27.9 3.2 7.5 5.5
6-10 37.3 5.3 8.1 5.7
>11 36.9 6.3 7.2 5.4
x16: Location of appointment [<0.001] [<0.001] [<0.001] [<0.001]
Clinic
RMH 32.9 11.3 15.5 12.6
SMH 26.6 28.4 34.7 38.3
NDC 19.4 13.0 15.9 14.6

T % with missing data on the independent variable (x) in the analytic model

1 Two-tail P-value from Chi-square test comparing the percentage of patients with
missing data across the groupings of the candidate predictor variables for the
imputation model.
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Table 3: Spearman rank correlations coefficients between variables in the analytic

model (columns) and candidate predictor variables (rows)f.

Candidate predictor X;:Pre-consult x3:Average x3:Longest x4:Fagerstrom
variables for the stage of CPD past 6 duration Score
imputation model change months without
smoking
xs5: Gender 0.06 0.17 0.01 0.06
(1=Male, 0=Female) 1069 1318 1251 1279
57 70 67 68
xs: Year of NDC consult 0.02 0.01 0.09 0.0001
1069 1318 1251 1279
57 70 67 68
x7: Age group (years) -0.03 -0.02 -0.01 -0.05
1069 1318 1251 1279
57 70 67 68
xs: Race: (Caucasian=1, -0.04 0.03 0.02 -0.04
Non-caucasian =0) 982 1262 1207 1238
52 67 64 66
x9: Martial status: Single 0.01 0.06 0.01 0.03
(yes=1, no=0) 1067 1318 1251 1279
57 70 67 68
X94: Marital status: -0.03 -0.01 -0.03 -0.03
Married or living together 1067 1318 1251 1279
(yes=1, no=0) 57 70 67 68
Xop: Marital status: 0.03 -0.04 0.02 0.003
Divorce (yes=1, no=0) 1067 1318 1251 1279
57 70 67 68
x;0: Highest level of 0.05 -0.03 -0.0001 -0.05
education 890 1229 1183 1220
47 65 63 65
x;;: Post-consultation 0.60 -0.05 0.02 -0.02
stage of change 1064 936 878 891
1=Precontemplation, 57 50 47 47
2=Contemplation
3=Preparation/Action
x12: Average CPD -0.05 0.85 -0.08 0.61
currently 965 1311 1235 1267
2=1-20, 3= 21-39, 4= >40 51 70 66 68
x13: Average CPD when -0.02 0.63 -0.06 0.40
smoking heaviest 947 1295 1224 1256
2= 1-20, 3= 21-39, 4= >40 50 69 65 67
x;4: Longest duration 0.01 -0.06 0.49 -0.12
without using tobacco 914 1252 1215 1242
1= <1 day, 2=1-30 days, 49 67 65 66
3=>1
x;5: Number of serious 0.1 -0.01 0.12 -0.03
stop attempts 889 1212 1178 1191
O=none, 1=1, 2= 2-5, 3= 47 65 63 63
6-10, 4 =>10
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Candidate predictor x1¢Pre-consult x:Average x3:Longest x¢:Fagerstrom
variables for the stage of CPD past 6 duration Score
imputation model change months without
smoking
x64: Location: Clinic -0.30 -0.07 -0.02 -0.07
(yes=1, no=0) 1069 1294 1231 1255
57 69 66 67
xj6p. Location: Rochester 0.26 0.09 -0.02 0.06
Methodist 1069 1294 1231 1255
or St Mary’s Hospital 57 69 66 67
(yes=1, no=0)
x;6c: Location: Nicotine 0.13 0.01 0.04 0.03
Dependence Center 1069 1294 1231 1255
(yes=1, no=0) 57 69 66 67

+ Shown are Spearman rank correlation coefficients, number of observations used
in correlation calculation, and the percentage of observations used in correlation
calculation. Bolded correlation coefficients indicate those with an associated two-
tail P-value <0.05 testing correlation coefficient against 0.
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Table 4. Efficiency expressed as a percent for multiple imputations (MI) with
k data sets and A percent missing information. Rubin [2]

Number

datasets percent of missing information
k 10% 30% 50% 70% 90%
3 97 91 86 81 77
5 98 94 91 88 85
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Autocorrelations with 95% Confidence Limits
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Figure 1. Autocorrelation Function (ACF) plot for x;:pre-consult
stage of change (PRE_CON) variable with 21 iterations shown. The
ACF plot decays after 5 iterations, 95% CI intervals are shown with
dotted lines.
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Autocorrelations with 95% Confidence Limits
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Figure 2. ACF plot for x;:average CPD past 6 months (AVGMOS2)
variable. The ACF decays after the second iteration, 95% CI intervals
are shown with dotted lines.
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Autocorrelations with 95% Confidence Limits
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Figure 3. ACF plot for x3. Longest duration without smoking
(LONGSTOP) variable. The ACF decays after the fourth iteration, 95%
CI intervals are shown with dotted lines.
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Autocorrelations with 95% Confidence Limits
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Figure 4. ACF plot for x4. Fagerstrom score (FTNDGRP) variable. The
ACF decays after the second iteration, 95% CI intervals are shown with
dotted lines.
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