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1 Introduction

This paper is an extension and update of Technical Report #52 [13]. An update to the
rate tables themselves is based on the recently released data from the 1990 decennial
census [18], which allowed us to replace extrapolated 1990 death rates with actual rates,
and to improve the extrapolated year 2000 values. Much of the material in the prior
report is contained here, in order to make this document useful on it's own.

The expected survival computations are based on a set of tables containing survival
probabilities for the US population. These tables have been compiled over several
years by members of the Department of Health Sciences Research; earlier versions are
documented in Bergstralh and O�ord [2], a SAS procedure that makes use of them was a
part of the SAS Supplemental Library [12]. (These procedures are no longer distributed
by SAS, however). Details of these data sets are discussed in section 2.

Sections 3 and 4 of the report gives background on the computation of an expected
survival curve based on these data sets. There are several methods, each with its
advantages. The methods and their relative merits seem to be \rediscovered" on a
regular basis in the literature. Sections 5 and 6 discuss S-Plus and SAS functions that
implement these techniques. Examples are given that use both the US population and
user-created rate tables.

2 Expected Survival Rates

The expected survival data consists of 5 groups of tables: US, Minnesota, Florida, Ari-
zona, and West North Central (WNC). The WNC region consists of the states Nebraska,
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Kansas, Missouri, North and South Dakota, Iowa and Minnesota. All are divided by
age, sex and calendar year, with optional further divisions by race, and are derived from
published US and regional mortality data. The data tables are published for decade
years, usually with about a 5-7 year lag, e.g., we expect to have the year 2000 data
available by 2006. Each table is based on the average of 3 years, e.g., 1989-1991. The
table entry q1960;24;F would contain the probability that a female who became 24 years
old sometime in 1960 will die on or before her 25th birthday. The value of :16859 for
age 84{45 white males in 1940 states that approximately 17% of the men who became
84 years old sometime during 1940 perished before reaching their 85th birthday.

2.1 United States

The S-Plus data sets are survexp.us and survexp.usr. The �rst is a 3 way array with
dimensions of age (0{1 day, 1{7 days, 7{28 days, 28 days{1 year, 1{2 years, : : : 109{
110 years), gender ('male', 'female') and calendar year (1940, 1950, : : : , 2000). The
survexp.usr table has dimensions of age, sex, race ('white', 'nonwhite', 'black') and
year. The year 2000 data is an extrapolation, which is discussed below. The sources for
the tables are

1950 United States Life Tables and Actuarial Tables 1939-1941, Federal Security Agency,
United States Public Health Service, National O�ce of Vital Statistics, US Gov-
ernment Printing O�ce, 1947.

1950 Life Tables for 1949-51, Vital Statistics, Special Reports, US Department of
Health, Education, and Welfare, Public Health Service, Volume 41, No 1, 1956.

1960 United States Lifetables 1959-61, Public Health Service Publication No. 1252,
Volume 1, No. 1

1970 U.S. Decennial Lifetables 1969-71, DHEW Publication No. HRA 75-1150, Volume
1, No. 1

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 85-1150-1, Vol-
ume 1, No. 1

1990 National Center for Health Statistics, U.S. Decennial Lifetables 1989-91, Volume
1, No. 1, Hyattsville, Maryland, 1997.

At the time of this writing, the more recent tables could be found at the National Center
for Health Statistics web site, http://www.cdc.gov/nchswww, by following the links for
products ! published reports ! life tables.
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The prior version of these tables had both a survexp.uswhite and survexp.usr

data set, the former having years 1950{2000 and the latter years 1960{2000. The new
survexp.usr data set subsumes both of these.

There have been some changes in de�nitions over the time period covered by the
tables, and creation of a single table involves some compromises. The breakdown by
race has been

� 1940: white, negro, other than white or negro

� 1950{60: white, non-white

� 1970{90: white, non-white, black

Based on comparisons of the the three groups in 1940, 70, 80 and 90, the `black' dimen-
sion for 1950 and 1960 is a duplicate of the non-white data.

The 1940 data breaks down the �rst year of life into multiple intervals: daily ending
on 1, 2, 3, 7, 14, 21, and 28 days, and monthly ending at 1{12 months. The probabilty of
dying in days 1{7 is then 1�f(1�q1)(1�q3)(1�q7)g, with similar computations for the
other intervals. The table for white males only goes to age 108{109 (one entry short).
The tables for non-white males and females both end at the 105{106 interval. Because
the probability of death q is > 70% in both the male and female tables, implying very
few survivors to or past this point, the table was �lled out by propagating the age 105
value forward. Interestingly, the table for black females (but none other) extends to
age 112-113; only the values up to age 109{110 are in the S-Plus data set. (A linear
regression on log(q) for the last few years can be extrapolated forward to give values for
these later ages, but gives values of q > 1 for some of the points).

The 1960 decennial data has a di�erent set of intervals for the �rst year of life: 0-1,
1-3, 3-28, and 28 days - 1 year. However, a di�erent source [19], based on only the 1960
rather than 1959{61 data, contains the necessary breakdown. The actual values, for
day 0{1 for instance, di�er slightly from the decennial data; we used the new source as
a relative scale for interpolating the missing interval in the decennial table.

The 1970 data sets and onwards use the same breakdown for the �rst year of life as
the S-Plus tables.

The SAS data set is lt_us, and contains variables age (0{109), sex( 'f', 'm'), year
(1950{2000), and race ('t', 'b', 'nw', 'w'). The race codes are \total" (all races), \black",
\non-white", and \white". The SAS data set does not subdivide the �rst year of life.
It contains only total and white for 1950, all but black for 1960 and 1970, and all four
categories thereafter.
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2.1.1 West North Central

The WNC data set survexp.wnc has dimensions of age (0{.5, .5{1, 1{109), sex, and
decade calendar years 1910{2000, and contains rates for the white population of the
region. The SAS data set lt_wnc does not subdivide the �rst year of life.

In the years prior to 1950 a separate Minnesota table was not issued, presumably
because the denominator population was too small, particularly in the older age groups.
From 1970 onward a WNC table has not been published, and our WNC table contains
Minnesota white data. The main use of this table is in conjunction with long-term
studies associated with the Rochester Epidemiology Project. (A recent study of hip
fracture, for instance, included all incident cases from 1928 to 1982 inclusive and exam-
ined changes in post-fracture survival). The table may be of less interest outside of the
institution. See table 1 in [2] for details on the sources and computations used for the
earlier years.

The 1990 Minnesota data does not include information to subdivide the �rst year
of life. Data for this was taken from the infant mortality data, 1989-91 average, table
2-14 of [16], which shows for each of the 50 states the proportion of �rst year deaths
which occurred in 0-6 months (77/100 and 44/55 for males and females, respectively).
This proportion was used to divide the �rst year's hazard.

2.2 Minnesota

The 1990 Minnesota life tables are the �rst to include separate data for non-whites, thus
the S-Plus data includes tables only for the total population (survexp.mn) and for the
total white population (survexp.mnwhite). The �rst of these is given only for 1970{2000,
and is thus equal to the West North Central table for all but the �rst year of life, where
the WNC table is subdivided into the �rst and second half years. The Minnesota white
table is given for 1950{2000.

1950 Minnesota State Life Tables 1949-51, Vital Statistics, Special Reports, US De-
partment of Health, Education, and Welfare, Public Health Service, Volume 41,
Supplement 22, 1956.

1960 Minnesota State Life Tables 1959-61, Public Health Service Publication No. 1252,
Volume 2, No. 24

1970 U.S. Decennial Lifetables 1969-71, DHEW Publication No. HRA 75-1151, Volume
2, No. 24

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 86-1151-24, Vol-
ume 2, No. 24
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> matplot(0:109, temp.male*365, type='l', log='y', col=1:3,

xlab="Age", ylab="Yearly Hazard")

> legend(60, .01, c("1980 black", "1990 black", "1980 nonwhite"),

lty=1:3, col=1:3)

> temp.female <- cbind(survexp.flr[,2,2:3,3], survexp.flr[,2,2,2])

> matplot(0:109, temp.female*365, type='l', log='y', col=1:3,

xlab="Age", ylab="Yearly Hazard")

> legend(60, .01, c("1980 black", "1990 black", "1980 nonwhite"),

lty=1:3, col=1:3)

The SAS data set lt_fl has variables of age, sex, year and race. There are 660
observations for 1970 (2 genders x 110 ages x 3 races) and 880 for the other 3 years.
The data set does not �ll in an \assumption" for the 1970 black population, but because
of how the programs work, this is computationally equivalent to using the 1980 black
data for 1970 black survival.

2.4 Arizona

The published 1990 data for Arizona contains all four race categories (total, white, non-
white, black), the 1980 data contains the �rst 3, and the 1970 data contains only total
and white. The S-Plus data set survexp.az contains total survival for 1970{2000, and
the data set survexp.azr contains white and non-white for 1980{2000. The SAS data
set lt_az contains all of the data.

2.5 Computer Tables

The S-Plus rate tables are contained in an object of class `ratetable'. This is essentially a
multi-way array, with extra information included that allows the computing algorithms
to distinguish between �xed margins, e.g. `sex', which do not change over time, versus
time-dependent margins such as `age' and `year' for which a subject changes categories
over the course of his/her follow-up. All of the rate tables are by age, sex, calendar year,
and optionally race, however, rate tables with other dimensions can be easily created.
Only the decade calendar years are stored, data for intervening years is interpolated on
demand.

To maintain backwards compatibility for old studies, the data sets survexp.oldus,
survexp.oldusr, survexp.oldwnc and survexp.oldmn contain the prior versions of the
data sets. Since the master �les are maintained with SCCS, any of the old data sets
could be retrieved on request if necessary.

The SAS data sets contain one observation per hazard value, and have the following
variables:

pop = 3 character population name (US,MN,WNC,AZ,FL)
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Figure 2: Changes in log-hazard (base 10) between 1970 and 1990, US males

year = decade speci�cation (1910-2000)

sex = 1 character sex (m,f)

race = 2 character race (t=total, w=white, b=black, nw=non-white) Please note
b and nw are not mutually exclusive.

age = age (0-109) (whole years only)

q = probability of dying before next birthday (from life table)

hazard = calculated daily hazard = � log(1� q)=365:241

The SAS data sets are rarely accessed directly. The macros %surv, %ltp etc use pop=us

for instance to reference the US population. A separate parameter pop80=y can be used
to request the old set of rate tables.
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3 Extrapolation

There is a time lag of 4-7 years between each census and the publication of the corre-
sponding rate tables; we expect that the year 2000 tables will not become available until
some time in 2006 or 2007. The expected survival functions use interpolation between
calendar years within the rate table, but outside of the range of years they use the
closest available date, e.g., if using the US total rate table then the expected number of
events for a subject in 1910 would be assessed using the 1940 rates.

Given the continuing improvement in overall survival over the last 3 decades, use
of the 1990 rates as a comparison for post-1990 data would be biased. Extrapolation
of the risk of death, however, is perilous, as is any extrapolation of population data.
The extrapolation method that we used for the year 2000 data was based therefore on
two premises: to reduce the overall bias that would result from no extrapolation and to
keep the model simple. Figure 1 shows the hazard rate as a function of time for United
States males. Vertical lines have been drawn for reference purposes at ages 25, 50, 75
and 100.

The prior rate tables contained extrapolated values for both 1990 and 2000. The
method used was aggressively simple: we noted that the hazards (as a function of age)
for 1960, 70 and 80 were nearly evenly spaced on the log-hazard scale, with a mean
di�erence of :0979 + :00015 � age for males and :1448 + :0005 � age for females. This
correction, based on the US total data, was applied to all the `total' rate tables in order
to generate year 1990 and 2000 extrapolations. Similar corrections based on total white
and Minnesota white were used for other rate tables. Details are in Therneau and Scheib
[14].

The wide range of values makes di�erences between the years di�cult to examine,
so �gure 2 plots the change in log hazard since 1970 as a function of age. For the males,
the 1970 data shows substantial gains at ages 0{15 (the greatest at age 10) and 40{70,
with moderate changes in survival for ages 20{35. The 1970 data is, by de�nition, the
horizontal line. When the 1990 extrapolation (points) is compared to the actual 1990
data, we see that the extrapolation was a quali�ed success. The extrapolated values
are closer to the actual values than the 1980 values were; without extrapolation the
programs would use 1980 values by default. There were three areas of systematic error:
although the predicted gain at age 80 is quite accurate, the predicted gains in survival
beyond that age did not occur; the gains for infants age 0-5 were better than anticipated,
and there was some increase in mortality for ages 28-40 in the males (AIDS?), with a
lesser increase for females.

For the 1990 to 2000 extrapolation, we had the advantage of an abbreviated 1995
US life table [20], containing single years of age up to age 85, by sex and race. Again,
the log-hazard scale seemed most useful, in terms of plots having the smallest variation
on this scale. For each race (total, white, non-white, black) and sex, a smoothed �t
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Figure 3: Actual and smoothed change in hazard, 1990 to 1995
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Figure 4: Actual and smoothed change in hazard, 1990 to 1995
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to the 1990 and 1995 data was obtained as a natural spline with knots at ages 8, 15,
30, 45, 60, 75, 90 and 105, speci�cally by using the SAS macro daspline. The curve is
purposely oversmoothed. The smoothing is not as extreme as the prior extrapolation,
which assumed that the curve was a constant! The increase in hazard for ages over 100
is largely due to a methodologic change in the way these estimates are computed by the
National Center for Health Statistics. The 1995 data was available only through age
85. Because the gains above this age for both men and women, as compared to 1970
rates, were essentially zero, the year 2000 rates for ages 85+ are set equal to the 1990
data. Other than for infants the survival for women has changed very little from 1990
to 1995.

4 Individual Expected Survival

4.1 Population rate tables

In the published life tables, each entry is the probability that a given subject, in a given
calendar year, will reach his/her next birthday [17]. The entry for a 20 year old male
in 1950, for instance, contains the probability that a subject who turns 20 years of age
in 1950 will reach his 21st birthday. The log of this survival probability pi is related to
the cumulative hazard �(t)

log(pi) = �(i+ 1)� �(i) :

Assuming that the cumulative hazard is linear over each interval, each subject's cu-
mulative hazard curve is a piecewise linear function with `elbows' at each birthday. as
depicted in �gure 5 for a subject born on 11/9/1931.

The table of U.S. hazards has data only for the decades 1960, 1970, etc. Linear
interpolation is used for intervening years, e.g. the 1962 value is :8�(1960 value) +
:2�(1970 value). The rates for the earliest available calendar year are used for all years
before this year and the rates for the latest calendar year in the table are used for all
years after that year. The rates for the oldest age (109) are used for all subsequent ages.

For integer years of follow up the total survival for a subject can be expressed either
using hazards as exp(�(t)) or as a product of conditional yearly probabilities

Q
pi, the

two forms give identical answers. For partial years of follow-up the interpolation can
be done either on the hazard scale (i.e. as in the �gure above) or on the survival scale.
The computer functions use the hazard scale because it is easier to deal with partial
years.

In detail, the hazard based computation is as follows: we assume that each subject
experiences a daily hazard of h0/day over the �rst year of life, h1/day over the second
year, : : : . The cumulative hazard �(t) is the sum of the daily hazards, and the ex-
pected survival at time t is exp(��(t)). The major advantage of the cumulative hazard
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Figure 5: Cumulative Hazard is piecewise linear over calendar time.

formulation, as opposed to multiplying the conditional probabilities, is that it is much
easier to deal with partial years of follow-up. For example, a woman born on 8/31/42
enters a study on 5/10/63. What is the expected 1 and 2 year survival? The subject
is 20 years old on 8/31/62. From the US white female table for 1960, the conditional
probability of surviving from the 20th to 21st year is 0.999434 and the corresponding
hazard per day is � log(:999434)=365:24 = :0000015550. In 1970, the values are .999355
and 0.0000017724, respectively. Using linear interpolation on the hazard scale, the 1962
hazard rate would be: .8 *(1960 value) + .2*(1970 value) = .0000015985. In like fash-
ion, the hazard from her 21st to 22nd birthday would be .0000016410. Using the hazard
formulation, her cumulative hazard for the �rst year is 10�6 times

5/10/63 to 8/30/63 = 113 days @ 1.5985 = 180.628
8/31/63 to 5/9/64 = 253 days @ 1.6410 = 415.165

So, the 1 year probability of survival is exp (-.0005960) = .9994044. (rounded numbers
are printed here, but the computations used exact values).

Using the linear interpolation on the survival scale, as was found in SAS SURVFIT
procedure, the survival using the event rates would be computed from the 2 yearly
survival rates of exp(-365.24*.0000015985)= .9994163 and .9994008 as
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5/10/63 to 8/30/63 = 1� (113=365)(1 � :9994163) = .999819
8/31/63 to 5/9/64 = 1� (253=365)(1 � :9994008) = .999585

which are multiplied together to obtain an overall survival of .9994041. The numeral
di�erence between the two methods is trivial, but the hazard calculation is more con-
venient since it is a simple sum.

There are two reasons for using 365.24 instead of 365.25 in our calculations. First,
there are 24 leap years per century, not 25. Second, the use of .25 led to some confusing S
results when we did detailed testing of the functions, because the S-Plus round function
uses a nearest even number rule, i.e., round(1.5) = round(2.5) =2. In actual data, of
course, this niggling detail won't matter a bit.

4.2 User created rate tables

The US and state population tables are somewhat special, in that many other sources
for rate data are reported not as a probability of survival p but as r = events per 100,000
subjects per year. The daily hazard table for the computer program could, presumably,
be created using either one of these two formulae:

� log(1� 10�5r)=365:24

or
10�5r=365:24 :

For rare events, these two forms will give nearly identical answers. For larger rates, the
proper choice depends on whether the rate is computed over a population that is static
and therefore depleted by the events in question, or a population that is dynamic and
therefore remains approximately the same size over the interval. The �rst case applies
to the standard rate tables, the second may more often apply in epidemiology.

An example rate table is given in section 6.

5 Cohort Expected Survival

The prior section discussed the computation of an expected survival for an individual,
here we outline how these are combined to give an overall expected survival for the
group. There are several di�erent methods. The various papers in which they are de-
scribed can be somewhat di�cult to compare because they are confounded with di�erent
approximation methods for the individual curves, i.e., the subject of the last section.

Let �i(t) be the expected hazard function for subject i, drawn from a population
table, and matched with subject i based on age, sex, and whatever. Then

Si(t) = exp(��i(t))
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�i(t) =

Z t

0
�i(s)ds

are the expected cumulative hazard and expected survival curves, respectively, for a
hypothetical subject who matches subject i at the start of follow up. For simplicity
in some later expressions, also de�ne hi(t; s) = �i(t + s) � �i(t), the total hazard
accumulated by subject i from time t to time t+ s.

The expected cumulative hazard and survival for the combined cohort of subjects
i = 1; : : : ; n are de�ned as

�e(t) =

Z t

0

Pn
i=1 �i(s)wi(s)Pn

i=1wi(s)
ds

Se(t) = exp[��e(t)] ;

where wi(t) depends on the method. Suggested choices for w are
the exact method of Ederer, Axtell and Cutler [5]

wi(t) = Si(t); (1)

the cohort method of Hakulinen and Abeywickrama [7]

wi(t) = Si(t)ci(t); (2)

the conditional estimate of Ederer and Heise [6]

wi(t) = Yi(t):

5.1 The Exact Method

This is perhaps the most intuitive way to weight the expected hazards. The term under
the integral is the average of the hazards at time s, and the weights are the probability
of a subject being alive at that time. It is thus an average over those still expected to be
alive. The exact method gives the survival curve of a �ctional matched control group,
assuming complete follow-up for all of the controls. This is perhaps easier to see if we
rewrite the formula as

Se(t) � exp(��e(t))

= exp

 Z t

0

"
@

@u
logf(1=n)

nX
i=1

Si(u)g

#
du

!

= (1=n)
nX

i=1

Si(t) : (3)
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Equation (3) is the usual de�nition of the exact method. It is interesting to note
that in the paragraph just above this de�nition ([5] page 110), the verbal description
of the method suggests an average over those who actually survive to time t, which is
the conditional estimate of Ederer and Heise. A third expression, and the form actually
used by the program, is easily derived from the above.

Se(t+ s) = Se(t)

P
wi(t)e

�hi(t;s)P
wi(t)

; (4)

where wi(t) � Si(t). This gives the total survival as a product of conditional survivals.
One technical problem with the exact method is that it often requires population

data that is not yet available. For instance assume that a study is open for enrollment
from 1980 to 1990, with follow-up to the analysis date in 1993. If a 11 year expected
survival were produced on 1/93, the complete expected follow-up data for the last subject
enrolled involves the year 2001 US population data.

5.2 The cohort method

Several authors have shown that the Ederer method can be misleading if censoring is
not independent of age and sex (or whatever the matching factors are for the referent
population). Indeed, independence is often not the case. In a long study it is not
uncommon to allow older patients to enroll only after the initial phase. A severe example
of this is demonstrated in Verhuel et al. [15], concerning aortic valve replacement over
a 20 year period. The proportion of patients over 70 years of age was 1% in the �rst ten
years, and 27% in the second ten years. Assume that analysis of the data took place
immediately at the end of the study period. Then the Kaplan-Meier curve for the latter
years of follow-up time is guaranteed to be \atter" than the earlier segment, because
it is computed over a much younger population. The Ederer curve will not reect this
bias in the K-M, and give a false impression of utility for the treatment.

In Hakulinen's method [7, 8], each study subject is again paired with a �ctional
referent from the cohort population, but this referent is now treated as though he/she
were followed-up in the same way as the study patient. Each referent is thus exposed to
censoring, and in particular has a maximum potential follow-up, i.e., they will become
censored at the analysis date. In the Hakulinen weight (equation 2), ci is a censoring
indicator which is 1 during the period of potential follow-up and 0 thereafter. If the
study subject is censored then the referent would presumably be censored at the same
time, but if the study subject dies the censoring time for his/her matched referent will
be the time at which the study subject would have been censored. For observational
studies or clinical trials where censoring is induced by the analysis date this should be
straightforward, but determination of the potential follow-up could be a problem if there
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are large numbers lost to follow-up. (However, as pointed out long ago by Berkson, if a
large number of subjects are lost to follow-up then any conclusion is subject to doubt).

In practice, the program can be invoked using the actual follow-up time for those
patients who are censored, and the maximum potential follow-up for those who have
died. By the maximum potential follow-up we mean the di�erence between enrollment
date and the most optimistic last contact date, e.g., if patients are contacted every 3
months on average and the study was closed six months ago this date would be 7.5
months ago. It may be true that the (hypothetical) matched control for a case who
died 30 years ago would have little actual chance of such long follow-up, but this is not
really important. Almost all of the numerical di�erence between the exact and cohort
estimates results from censoring those patients who were most recently entered on study.

Assume that for some time interval (t; t+ s) the weights wi(�) are constant for all i,
i.e., that the potential risk set remains constant over the interval. Then using the same
manipulation as in equation (3), equation (4) is found to hold for the cohort estimate
as well, with Si(t)ci(t) as the weights. This is the estimator used by the program.

This formula di�ers somewhat from that presented in Hakulinen [8]. He assumes
that the data are grouped in time intervals, and thus develops a modi�cation of the
usual actuarial formula. The numerical di�erence, however, should be trivial if the
midpoints of these grouped intervals were used in (4).

5.3 Conditional Expected Survival

The conditional estimate is advocated by Verhuel [15], and was also suggested as a
computation simpli�cation of the exact method by Ederer and Heise [6]. The weight
Yi(t) is 1 if the subject is alive and at risk at time t, and 0 otherwise. The estimate
is clearly related to Hakulinen's cohort method, since E(Yi(t)) = Si(t)ci(t). However,
when considered as a product of conditional estimates, it's form is somewhat di�erent
than (4); in this case

Se(t+ s) = Se(t) exp

�
�

P
hi(t; s)Yi(t)P

Yi(t)

�
: (5)

As for the cohort estimate, the derivation requires that Yi(�) be constant over the interval
(t; t+ s), i.e., no one dies or is censored in the interior of the interval.

One advantage of the conditional estimate, shared with Hakulinen's method, is that
it remains consistent when the censoring pattern di�ers between age-sex strata. This
advantage was not noted by the Ederer and Heise, and the \exact" calculation was
adapted as the preferred method [5, 7]. A problem with the conditional estimator is
that it has a much larger variance than either the exact or cohort estimate. In fact, the
variance of these latter two can usually be assumed to be zero, at least in comparison
to the variance of the Kaplan-Meier of the sample. Rate tables are normally based on
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a very large sample size so the individual rates �i are very precise, and the censoring
indicators ci(t) are based on the the study design rather than on patient outcomes. The
conditional estimate of Se(t), however, depends on the observed survival up to t.

5.4 Recommendation

Because it predicts the outcome of a hypothetical group at the completion of their
follow-up, the Ederer curve is the most natural to use for study planning activities such
as sample size. If the expected survival curve is going to be compared to the observed
(K-M) survival curve, either graphically or numerically, then the exact method should
not be used unless there is convincing evidence that censoring is unrelated to any of the
factors (age, sex, etc.) used to match the study group to the referent population. Such
evidence is di�cult to come by. It remains the easiest calculation to do by hand, but
computer programs would seem to have made this advantage irrelevant.

The conditional estimate is the next easiest to compute, since it requires only the
follow-up time and status indicators necessary for the Kaplan-Meier. The actual curve
generated by the conditional estimator remains di�cult to interpret, however. One wag
in our department has suggested calling it the \lab rat" estimator, since the control
subject is removed from the calculation (\sacri�ced") whenever his/her matching case
dies. Andersen and V�th make the interesting suggestion that the di�erence between
the log of the conditional estimate and the log of the Kaplan-Meier can be viewed as
an estimate of an additive hazard model

�(t) = �e(t) + �(t) ;

where � is the hazard for the study group, �e is the expected hazard for the subjects and
� the excess hazard created by the disease or condition. Thus the di�erence between
curves may be interpretable even though the conditional estimate Se(t) itself is not.

We suggest that Hakulinen's cohort estimate is the most appropriate for common
use, and particularly for any graphical display alongside of the Kaplan-Meier of the
data.

5.5 Approximations

The above equations (4) and (5) are \Kaplan-Meier like" in that they are a product of
conditional probabilities and that the time axis is partitioned according to the observed
death and/or censoring times. They are unlike a KM calculation, however, in that the
ingredients of each conditional estimate are the n distinct individual survival probabil-
ities at that time point rather than just a count of the number at risk. For a large
data set this requirement for O(n) temporary variables may be a problem, particularly
for the SAS macro. An approximation is to use longer �xed width intervals, and allow
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subjects to contribute partial information to each interval. For instance, in (5) replace
the 0/1 weight Yi(t) by

R t+s
t Yi(u)du=s, which is the proportion of time that subject i

was at risk during the interval (t; t + s). A similar proportionality correction can be
made to the weights in equation (4) for the cohort estimate: ci(t) is replaced by the
proportion of time that subject i was uncensored during the interval (t; t+ s).

If those with fractional weights form a minority of those at risk during the interval
the approximation should be reliable. (More formally, if the sum of their weights is a
minority of the total sum of weights). By Jensen's inequality, the approximation will
always be biased upwards. However, the bias is usually very small. For the Stanford
heart transplant data used in the examples below an exact 5 year estimate using the
cohort method is 0.94728, a computation using half year intervals yields 0.94841. Even
with these very wide intervals the di�erence is only in the third decimal place.

The Ederer estimate is unchanged under repartitioning of the time axis.

5.6 Total expected deaths

All of the above discussion has been geared towards a plot of Se(t) = exp(��e(t)),
which attempts to capture the proportion of patients who will have died by t. When
comparing observed to expected survival for testing purposes, an appropriate test is the
one-sample logrank test (O � E)2=E [10], where O is the observed number of deaths
and

E =
nX

i=1

ei

=
nX

i=1

Z
1

0
�i(s)Yi(s) ds (6)

is the expected number of deaths, given the observation time of each subject. This
follows Mantel's concept of `exposure to death' [11], and is the expected number of
deaths during this exposure. Notice how this di�ers from the expected number of
deaths in the matched cohort at time t: nSe(t). In particular, E can be greater than n.
The SAS ltp macro and the S survexp function (with the cohort=F option) both return
the individual expected survivals exp(�ei).

Equation (6) is referred to as the person-years estimate of the expected number of
deaths. The logrank test is usually more powerful than one based on comparing the
observed number of deaths by time t to nSe(t); the former is a comparison of the entire
observed curve to the expected, and the latter is a test for di�erence at one point in
time.

Tests at a particular time point, though less powerful, will be appropriate if some
�xed time is of particular interest, such as 5 year survival. In this case the test should be
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based on the cohort estimate. The H0 of the test is \is observed survival at t the same as
a control-group's survival would have been". A pointwise test based on the conditional
estimate has two problems. The �rst is that an appropriate variance is more di�cult
to construct. The second, and more damning one, is that it is unclear exactly what
alternative is being tested against.

Berry [3] shows how the individual expected hazards ei may be used to adjust
regression models. The one-sample logrank test is seen to be equivalent to the test
for intercept=0 in a Poisson model with log(ei) as an o�set term, replacing the usual
o�set of log(ti). This may be extended to more complicated regression models, e.g., to
compare the excess death rates among multiple groups. An o�set of log(ei) may also
be used in a Cox model, to correct for di�erential background mortality.

6 S Implementation

The rate tables are used by the S-Plus survexp and pyears functions to obtain expected
survival and person-years computations, respectively. As a �rst example, we will cal-
culate the expected survival for the Stanford heart transplant data set, as found in
the JASA article of Crowley and Hu [4]. This data set contains birth, entry, and last
follow-up dates, treatment, and prior surgery as covariates. Sex will be assumed to be
male, and we will use the US total population as the comparison data set. The last
potential follow-up date for any subject was April 1 1974. A copy of the data set can
be found on Statlib. The following code will calculate the Ederer or \exact" estimate,
with separate curves for the two treatment arms.

# exact estimate

attach(jasa)

rx <- !is.na(tx.date)

age <- (entry.dt - birth.dt) # age in days

exp1 <- survexp( � rx + ratetable(age=age, year=entry.dt, sex=1),

data=jasa, ratetable=survexp.us, times=(0:4)*182.5)

The ratetable function is used to match the data set's variable names to the age, sex

and year dimensions of the US table. The arguments to ratetable can be in any order.
If the input data contains the same variable names (with the correct coding!) as the
rate table, then the ratetable function is not needed. That is, an alternative to the
above code is:

mydata <- data.frame(jasa, age=jasa$entry.dt - jasa$birth.dt, sex=1,

year=jasa$entry.dt)

exp1 <- survexp( � rx , data=mydata,

ratetable=survexp.us, times=(0:4)*182.5)
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The times argument speci�es that an output estimate should be computed at half year
intervals for 2 years. The resultant curves can be listed or drawn using print and plot

functions.
The cohort estimate uses potential follow-up on the left hand side, along with the

conditional argument. The potential follow-up time for a censored subject is the ob-
served follow-up time, but for someone who dies it is the amount of time they might
have been followed had the death not occurred.

# cohort estimate

ptime <- mdy.date(4,1,74) - entry.dt

ptime <- ifelse(fustat==1, ptime, futime)

exp3 <- survexp( ptime � rx, data=mydata, ratetable=survexp.us,

ratetable=survexp.us, times=(0:4)*182.5, conditional=F)

If the times argument is omitted, an estimate is returned for each unique follow-up time.
To compute the conditional estimate, follow-up time is included on the left hand

side of the formula.

# conditional estimate

futime <- fu.date - entry.dt

exp2 <- survexp( futime � rx, data=mydata, conditional=T,

ratetable=survexp.us, times=(0:4)*182.5)

By default, the survexp function returns a survival curve for the entire cohort of
subjects. To use expected survival as a covariate in a model a single number per subject
is desired, i.e., the subjects' expected hazard on their last follow up date. For instance,
the following computes the one sample logrank test (the test for intercept=0 in fit1)
and a test for treatment di�erence after controlling for baseline mortality due to age
(the test for rx=0 in fit2). Note the argument cohort=F. The vector haz will contain
the individual values ei of equation (6).

# individual expected survival

haz <- -log(survexp(futime � 1, data=mydata,

ratetable=survexp.us, cohort=F))

fit1 <- glm(fustat � offset(log(haz)), data=jasa, family=poisson)

fit2 <- glm(fustat � rx + offset(log(haz)), data=jasa, family=poisson)

By default the internal computations used in survexp partition the time line at every
censoring or death point, thus equations (4) and (5) hold exactly. For very large data
sets the npoints option may be used to replace this with the approximation discussed
in section 4.4.

User created rate tables may be used in place of the provided populations. Tables
1 and 2 show yearly death rates per 100,000 subjects based on their smoking status
[21]. A stored raw data set contains this data, with the \Never smoked" data replicated
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Former smokers (1-20 cig/day)
Duration of abstinence (yr)

Never Current
Age Smoked Smokers < 1 1-2 3-5 6-10 11-15 � 16

45-49 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5
50-54 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4
55-59 448.9 1,132.4 945.2 728.8 729.4 590.2 447.3 436.6
60-64 733.7 1,981.1 1,177.7 1,589.2 1,316.5 1,266.9 875.6 703.0
65-60 1,119.4 3,003.0 2,244.9 3,380.3 2,374.9 1,820.2 1,669.1 1,159.2
70-74 2,070.5 4,697.5 4,255.3 5,083.0 4,485.0 3,888.7 3,184.3 2,194.9
75-79 3,675.3 7,340.6 5,882.4 6,597.2 7,707.5 4,945.1 5,618.0 4,128.9

Former smokers (� 21 cig/day)
Duration of abstinence (yr)

Never Current
Age Smoked Smokers < 1 1-2 3-5 6-10 11-15 � 16

45-49 610.0 497.5 251.7 417.5 122.6 198.3 193.4
50-54 915.6 482.8 500.7 488.9 402.9 393.9 354.3
55-59 1,391.0 1,757.1 953.5 1,025.8 744.0 668.5 537.8
60-64 2,393.4 1,578.4 1,847.2 1,790.1 1,220.7 1,100.0 993.3
65-69 3,497.9 2,301.8 3,776.6 2,081.0 2,766.4 2,268.1 1,230.7
70-74 5,861.3 3,174.6 2,974.0 3,712.9 3,988.8 3,268.6 2,468.9
75-79 6,250.0 4,000.0 4,424.8 7,329.8 6,383.0 7,666.1 5,048.1

Table 1: Deaths per 100,000/year, males
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where the lower table shows blanks, followed by the data for females. A rate table is
created using the following S code.

temp <- matrix(scan("data.smoke"), ncol=8, byrow=T)/100000

smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8])

attributes(smoke.rate) <- list(

dim=c(7,2,2,6,3),

dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"),

c("1-20", "21+"),

c("Male","Female"),

c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"),

c("Never", "Current", "Former")),

dimid=c("age", "amount", "sex", "duration", "status"),

factor=c(0,1,1,0,1),

cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL,

c(0,1,3,6,11,16),NULL),

class='ratetable'

)

is.ratetable(smoke.rate)

The smoking data cross-classi�es subjects by 5 characteristics: age group, sex, status
(never, current or former smoker), the number of cigarettes consumed per day, and, for
the prior smokers, the duration of abstinence. In our S implementation, a ratetable
is an array with added attributes, and thus must be rectangular. In order to cast the
above data into a single array, the rates for never and current smokers needed to be
replicated across all 6 levels of the duration, we do this by �rst creating the smoke.rate

vector. The array of rates is then saddled with a list of descriptive attributes. The dim
and dimnames are as they would be for an array, and give its shape and printing labels,
respectively. Dimid is the list of keywords that will be recognized by the ratetable

function, when this table is later used within the survexp or pyears function. For the
US total table, for instance, the keywords are \age", \sex", and \year". These keywords
must be in the same order as the array dimensions (as found in the dimid attribute, not
in the user invocation). The factor attribute identi�es each dimension as �xed or mobile
in time. For a subject with 15 years of follow-up, for instance, the sex category remains
�xed over this 15 years, but the age and duration of abstinence continue to change;
more than 1 of the age groups will be referenced to calculate his/her total hazard. For
each dimension that is not a factor, the starting value for each of the rows of the array
must be speci�ed so that the routine can change rows at the appropriate time, this is
speci�ed by the cutpoints. The cutpoints are null for a factor dimension. Because these
attributes must be self-consistent, it is wise to carefully check them for any user created
rate table. The is.ratetable function does this automatically.

As a contrived example, we can apply this table to the Stanford data, assuming that
all of the subjects were current heavy smokers (after all, they have heart disease).
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Former smokers (1-20 cig/day)
Duration of abstinence (yr)

Never Current
Age Smoked Smokers < 1 1-2 3-5 6-10 11-15 � 16

45-49 125.7 225.6 433.9 212.0 107.2 135.9 91.0
50-54 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1
55-59 244.8 542.8 287.4 259.5 375.9 165.8 202.2 247.2
60-64 397.7 858.0 1,016.3 365.0 650.9 470.8 570.6 319.7
65-60 692.1 1,496.2 1,108.0 1,348.5 1,263.2 864.8 586.6 618.0
70-74 1,160.0 2,084.8 645.2 1,483.1 1,250.0 1,126.3 1,070.5 1,272.1
75-79 2,070.8 3,319.5 2,580.6 2,590.7 3,960.4 1,666.7 1,861.5

Former smokers (� 21 cig/day)
Duration of abstinence (yr)

Never Current
Age Smoked Smokers < 1 1-2 3-5 6-10 11-15 � 16

45-49 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8
50-54 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0
55-59 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1
60-64 397.7 1,302.9 1,114.8 862.1 699.6 541.7 373.1 356.4
65-69 692.1 1,934.9 2,319.6 1,250.0 1,688.0 828.7 797.9 581.5
70-74 1,160.0 2,827.0 4,635.8 2,517.2 1,687.3 2,848.7 1,621.2 1,363.4
75-79 2,070.8 4,273.1 2,409.6 5,769.2 3,125.0 2,978.7 2,803.7 2,195.4

Table 2: Deaths per 100,000/year, females

# user supplied rate table

p2 <- ptime/365.24

exp4 <- survexp(p2 � ratetable(age=(age/365.24), status="Current",

amount=2, duration=1, sex='Male'),

data=jasa, ratetable=smoke.rate, conditional=F, scale=1)

This example does illustrate some points. For any factor variable, the ratetable function
allows use of either a character name or the actual column number. Since I have chosen
the current smoker category, duration is unimportant, and any value could have been
speci�ed. The most important point is to note that age has been rescaled. This table
contains rates per year, whereas the US tables contained rates per day. It is crucial that
all of the time variables (age, duration, etc) be scaled to the same units, or the results
may not be even remotely correct. The US rate tables were created using days as the
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basic unit since year of entry will normally be a julian date; for the smoking data years
seemed more natural.

An optional portion of a rate table, not illustrated in the example above, is a summary

attribute. This is a user written function which will be passed a matrix and can return
a character string. The matrix will have one column per dimension of the ratetable, in
the order of the dimid attribute, and will have already been processed for illegal values.
To see an example of a summary function, type attr(survexp.us, 'summary') at the S
prompt. In this summary function the returned character string lists the range of ages
and calendar years in the input, along with the number of males and females. This
string is included in the output of survexp, and will be listed as part of the printed
output. This printout is the only good way of catching errors in the time units; for
instance, if the string contained \age ranges from .13 to .26 years", it is a reasonable
guess that age was given in years when it should have been stated in days.

The data could have been organized in other ways, for instance as a 2 by 7 by 15
array based on sex, age, and a 15 level grouping variable with levels \Never smoked",
\Current smoker of 1-20 cig/day", \Current smoker of > 20 cig/day", \Former smoker
of 1-20 but ceased for < 1 year", : : : .

As an aside, many entries in the smoke.rate table are based on small samples. In
particular, the data for females who are former smokers contains 2 empty cells. Before
serious use these data should be smoothed. As a trivial example:

newrate <- smoke.rate

temp <- newrate[ ,1,2, ,3]

fit <- gam(temp � s(row(temp)) + s(col(temp)))

newrate[,1,2,,3] <- predict(fit)

A realistic e�ort would begin and end with graphical assessment, and likely make use
of the individual sample sizes as well.

References

[1] Andersen, P. and V�th, M. (1989). Simple parametric and nonparametric models
for excess and relative mortality. Biometrics 45, 523-35.

[2] Bergstralh, E. and O�ord, K.(1988). Conditional probabilities used in calculating
cohort expected survival. Technical Report #37, Section of Medical Research Statis-
tics, Mayo Clinic.

[3] Berry, G. (1983). The analysis of mortality by the subject-years method. Biometrics
39, 173-84.

24



[4] Crowley, J. and Hu, M. (1977), Covariance analysis of heart transplant data. J. Am.
Stat. Assoc. 72, 27-36.

[5] Ederer, F., Axtell, L.M. and Cutler, S.J. (1961). The relative survival rate: a statis-
tical methodology. National Cancer Inst Monographs 6, 101-21.

[6] Ederer, F. and Heise, H. (1977). Instructions to IBM 650 programmers in processing
survival computations, Methodological Note No. 10, End Results Evaluation Section,

National Cancer Institute.

[7] Hakulinen, T. (1982). Cancer survival corrected for heterogeneity in patient with-
drawal. Biometrics 38, 933.

[8] Hakulinen, T. and Abeywickrama, K.H. (1985). A computer program package for
relative survival analysis. Computer Programs in Biomedicine 19, 197-207.

[9] Hakulinen, T. (1977). On long term relative survival rates. J. Chronic Diseases 30,
431-43.

[10] Harrington, D.P. and Fleming, T.R. (1982). A class of rank test procedures for
censored survival data. Biometrika, 69, 553-66.

[11] Mantel, N. (1966). Evaluation of survival data and two new rank order statistics
arising in its consideration. Cancer Chemotherapy Reports 50, 163-6.

[12] O�ord, K.; Augustine, G.; Fleming, T.; and Scott, W.(1986) The SURVFIT Proce-

dure. SUGI Supplemental Library User's Guide, Version 5, SAS Institute Inc., Cary,
NC.

[13] Therneau, T., Sicks, J., Bergstralh, E. and O�ord, J. (1994). Expeceted Survival
Based on Hazard Rates, Technical Report No. 54, Department of Health Science
Research, Mayo Clinic.

[14] Therneau, T. and Scheib, C. (1994). Extrapolation of the U.S. Life Tables, Technical
Report No. 55, Department of Health Science Research, Mayo Clinic.

[15] Verhuel, H.A., Dekker, E., Bossuyt, P., Moulijn, A.C. and Dunning, A.J. (1993).
Background mortality in clinical survival studies. Lancet 341, 872-5.

[16] National Center for Health Statistics. Vital statistics of the United States, 1991,
vol II, mortality, part A. Washington, Public Health Service, 1996.

[17] National Center for Health Statistics: Life tables for the geographic divisions of the
United States: 1959-61. Vol 1, number 3. Public Health Service, Washington. U.S.
Government Printing O�ce, May 1965.

25



[18] National Center for Health Statistics: Life tables for the geographic divisions of the
United States: 1989-91. Vol 1, number 1. Hyattsville, Maryland, 997.

[19] Vital Statistics of the United States, 1960. Volume II, Mortality, Part A, Section
3, table 3-B. US Department of Health, Education, and Welfare, Washington, 1963.

[20] Vital Statistics of the United States, 1995, Life Tables. Preprint of Volume II,
Mortality, Part A, Section 6. National Center for Health Statistics, Hyattsville, May
1998.

[21] The Health Bene�ts of Smoking Cessation (1990). US Department of Health and
Human Services. Public Health Service, Centers for Disease Control, Center for
Chronic Disease Prevention and Health Promotion, O�ce on Smoking and Health.
DHHS Publication No (CDC)90-8416.

26


