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1 Introduction

Since its introduction, the proportional hazards model proposed by Cox [8] has be-
come the workhorse of regression analysis for censored data. In the last several
years, the theoretical basis for the model has been solidified by connecting it to the
study of counting processes and martingale theory. Comprehensive accounts of the
underlying mathematics are given in the books of Fleming and Harrington [14] and
of Andersen et. al. [2]. These developments have, in turn, led to the introduc-
tion of several new extensions of the original model. These include the analysis of
residuals, time varying covariates, time dependent coefficients, multiple/correlated
observations, multiple time scales, time dependent strata, and estimation of under-
lying hazard functions.

The aim of this monograph is to show how many of these methods and extensions
of the model can be approached using standard statistical software, in particular the
S-Plus and SAS packages. As such, it should be a bridge between the statistical
journals and actual practice. The focus on SAS and S-Plus is based largely on the
author’s familiarity with these two packages, and should not be taken as evidence
against the abilities of other software products. The text uses the labels ‘S’ and
‘S-Plus’ interchangeably; the former is the package developed by Bell Laboratories
and the latter is the commercial version of the same. Since nearly every installation
of “S” consists of the latter this shorthand notation should cause no harm. All of
the examples given in the text actually refer to S-Plus.

Sections 2 and 3 lay a foundation for our methods. In section 2, we discuss the
counting process formulation of a Cox model, the software implementation of this
model, and the flexibility that it allows. Section 3 defines a set of residuals for the
Cox model, based on the counting process and the mathematical formalism of a
martingale.

Sections 4 and 5 use residuals to test the two basic assumptions of a Cox model:
proportional hazards and the functional form of the covariates. The counting process
formulation allows us to extend these methods to time-dependent covariate models
as well.

Section 6 discusses one of the newer areas of application, the use of a Cox model
for correlated survival data. Such data naturally arise when there are multiple
observations per subject as well as in other applications. Because of it’s importance,
and several choices that are available in the set up of such problems, more examples
are presented in this area than in any of the other sections.



2 The counting process formulation of a Cox model

The Andersen-Gill (AG) formulation of the proportional hazards model as a counting
process has proven very useful in theoretical development [1]. Represent the ith
subject as a counting process where

e N;(t) is the cumulative number of events up to time ¢ for the subject.

e Yj(t) is an indicator function, Y;(¢) = 1 if and only if the subject is at risk of
an event and under observation at time ¢.

From a data analysis viewpoint, each subject is treated as an observation of a
(very slow) Poisson process. A censored subject is thought of not as “incomplete
data”, but as one whose event count is still zero. Time dependent covariates effect
the rate for upcoming events, and can depend in any way on past observation of the
subject. Intervals of observation need not be contiguous.

To cast a data analysis in this framework has several advantages. In the computer
data set, each subject 4 is represented by a set of observations: s;;, ti;, 0ij, Zij, Kij,
Jj =1,...,n4; where (s;5,1;;] is an interval of risk, open on the left and closed on the
right, 6;; = 1 if the subject had an event at time #;;, and 0 if the subject did not
have an event, z;; is the covariate vector over the interval, and k;; is the stratum
to which the subject belongs during the interval. Data sets like this are easy to
construct with a package such as SAS or S-Plus.

2.1 Particular cases
2.1.1 Multiple events

The original motivation for adding the counting process form to the S-Plus coxph
function was a study of a calcium channel blocker, diltiazem, in post myocardial
infarction patients, where one of the events of interest was fatal or non-fatal re-
infarction [37]. Several patients had multiple events, though none had more than 3.
A “standard” Cox analysis was performed using first cardiac event as an endpoint,
but there was a question about whether more power would be obtained if all of the
events could be used. These additional data can be incorporated by breaking any
patient with multiple events into multiple intervals of risk. For instance, assume a,
subject has an event on days 100 and 185 and has now been followed to day 250.
He would be coded as 3 observations or “lines” of data whose intervals are (0, 100],
(100, 185], (185, 250] with corresponding status codes of 1, 1 and 0.



2.1.2 Time-dependent covariates

The most common type of time dependent covariate is a repeated measurement on
a subject or a change in the subject’s treatment. Both of these are straightforward
in the proposed formulation. As an example consider the well known Stanford heart
transplant study [11], where treatment is a time dependent covariate. Select two
patients whose times from enrollment to death are 102 and 343 days, respectively;
the second patient had a transplant 21 days from enrollment. The data file for these
two patients would be

Interval Status Transplant Age at Entry Prior Surgery

0,102] 1 0 a1 0
021 0 0 48 1
(21,343] 1 1 48 1

Note that static covariates such as age are simply repeated for a patient with multiple
lines of data.

Multiple lab values are easily coded as well. A patient with tests on days 0, 60
and 120, and follow up to day 140 would be coded using 3 time intervals 0—60, 60—
120 and 120-140. This does implicitly assume that the time dependent covariate is
a step function with jumps at the measurement points. It might be more reasonable
to break at the midpoints of the measurement times, or to use an interpolated value
over many smaller intervals of time, but in practice these refinements appear to
make little practical difference in a model’s results. If a lab test varies markedly
from visit to visit interpolation strategies may become important, but the adequacy
of the study design would then also be in question.

2.1.3 Discontinuous intervals of risk

In a study of tumor progression and its relationship to a particular blood marker, the
key time-dependent variable was the monthly measurement of this marker. Patients
were expected to have a measurement every 3-6 months. One patient, however,
had a significant hiatus in her visit record. One choice for the analysis was to
interpolate the values over the missing 2 year period. A more conservative course,
and that chosen by the investigators, was to treat the data value as missing. This
effectively removes the subject from the risk set over that interval, without having
to remove her entire experience from the study.

Other cases where a subject is lost from and then returns to observation can
certainly be imagined. For instance, consider a situation where multiple events
are possible, but the treatment for an event temporarily protects the patient from
further injury. In a study of falls in the elderly, hospitalization following a fall would



temporarily protect the subject from further falls. (For conditions with a low event
rate, however, this refinement is likely to be insignificant.)

2.1.4 Alternate time scales

The usual Cox model forms risk groups based on time since entry. For some studies
a more logical grouping might be based on another alignment, such as age or time
since diagnosis.

Andersen et al. [2] discuss this issue in several of their examples, and then
in depth in chapter 10 of their book. One example concerns nephropathy and
mortality among insulin dependent diabetics. Patients can be in one of 3 states:
0-alive without diabetic nephropathy (DN), 1-alive with DN, and 3-dead. Relevant
time scales for the 0-1 transition are age, calendar time, and duration of diabetes,
and for the 1-2 transition the duration of DN.

As another example, consider a study conducted at the Mayo Clinic on the effect
of L-dopa for patients with Parkinson’s disease. It was felt that time from diagnosis
was the most appropriate time scale for analysis. However, Mayo is a major tertiary
referral center, and many of the study’s patients were not seen here until well after
that date. For each patient we have the date of diagnosis, the date of referral to
Mayo, and the date of last follow-up or death. The patient diagnosed on 8Feb82
with referral on 28Apr85 and last contact on 18Jun90 will be represented as a single
interval (1175, 3052]. It is not correct to enter them as (0, 3052] (which is equivalent
to a standard non-interval Cox model with follow-up time of 3052) since the patient
was not at risk for an observable death during that interval. Such data, where the
patient enters the risk set after time 0, is said to be left truncated.

2.1.5 Time dependent strata

When a patient is represented as multiple lines of data or “observations”, both the
covariates and the stratum indicator may change from line to line. Coding a time
dependent stratum is thus quite easy.

Time alignment within the strata may require more thought, however. As an
example, consider a study of Dutch patients with primary biliary cirrhosis of the
liver (PBC). PBC is a rare but fatal chronic liver disease of unknown cause, with a
prevalence of about 50 cases per million population. The hazard rate for a diseased
patient grows over time, as does the rate of degeneration in their hepatic function as
tracked by various blood tests. A portion of the patients receive a liver transplant
at some point during their follow up.

One point of the study was to assess the value of covariates such as age and biliru-
bin in predicting patient outcome, both before and after transplantation. Transplant



was treated as a time dependent stratification variable. In the post transplant stra-
tum the most “natural” hazard function is based on time since transplant. Surgical
death is a major risk for such an extensive procedure, and this time scale properly
aligns the patient’s clock with the dominating hazard.

The “proper” alignment for time dependent strata is not always so clear. One
appealing method of analysis for the diltiazem study is to place patients into new
strata after their second, third, etc cardiac event (all have had one event, which was
the trigger for enrollment). The baseline hazard after a second infarction may be
quite different than the group as a whole. It is not obvious, however, whether time
since enrollment or time since last event is the better index of an appropriate risk

group.

2.2 Implementation in SAS and S-Plus

The S-Plus function coxph and the SAS phreg procedure accommodate these exten-
sions by a simple programming artifice. The input data set is assumed to consist
of observations or rows of data, each of which contains the covariate values Z, a
status indicator 1=event 0=censored and an optional stratum indicator, along with
the time interval (start, stop| over which this information applies. In the notation
above, this means that each row is treated as a separate subject whose Y; variable
is 1 on the interval (start, stop| and zero otherwise. Within the program, it means
that the risk set at time ¢ only uses the applicable rows of the data. In order to
avoid double-counting any subject within a risk set, both packages disallow zero
length intervals, i.e. (z,z]. At the time of this writing S-Plus will fail with an error
message if such intervals are present, and SAS silently deletes them. I slightly prefer
the former behavior since the presence of such intervals is often indicative of a more
general mistake in setting up the data set.

The code has no specific “hooks” to accommodate time-dependent covariates,
time-dependent strata, multiple events, or any of the other special features men-
tioned above. Rather, it is the responsibility of the user to first construct an ap-
propriate data set. The strategy, originally motivated by sloth, leads to a fitting
program that is simpler, shorter, easier to debug, and more efficient than one with
multiple specific options. A significantly more important benefit has become appar-
ent over time, i.e., the flexibility inherent in building a data set has allowed analyses
that were not considered by the original coder — left truncation is a case in point.

The S-Plus code has had the ability to fit these models since version 2.0 (1992)
using the agreg function; from S-Plus version 3.3 (1995) onward it is easier to use the
coxph function. The counting process form is an option within phreg for SAS releases
6.10 and later; the actual date of availability depends on your specific computing
platform.



2.2.1 The Stanford Heart Transplant Data

Since the Stanford data set is so well known, it is worthwhile to show the data setup
in complete detail. We use the data set as it is found in the paper by Crowley and
Hu [11]. A copy of the data can be obtained from statlib (http://lib.stat.cmu.edu)
in the jasa section.in the jasa section. Three issues arise in setting up the data:

1. The covariates in the data set are moderately colinear. Because of the presence
of an interaction term, the coefficients found in table 5.2 of Kalbfleisch and
Prentice [22] will be recreated only if the covariates are defined in ezactly the
correct way. (Conclusions are not changed, however). This is the reason for
using fractional age (days/365.25), centered at 40 years, and for centering the
enrollment date at Oct 1, 1967.

2. One subject died on the day of entry. However (0,0] is an illegal time interval
for the programs. To avoid this, treat an interval from 10/21 to 10/22, say, as
2 days of risk, i.e., someone enrolled on 10/21 and censored on 10/22 should
be coded as the interval (0,2]. This leads to the “1 +” expression in several
lines of the program.

3. A subject transplanted on day 10 is considered to be on medical treatment for
days 1-10 and on surgical treatment for days 11-last contact. Thus if Smith
died on day 10 and Jones was transplanted on day 10, we in effect treat the
transplant as happening later in the day than the death; ezcept for patient 38,
who died during surgery on day 5. This person should certainly be counted
as a treatment death rather than a medical one. The problem is resolved by
moving his transplant to day 4.9. In the final data set his first observation
is (0,5.9] with status of 0 and a treatment of ‘non-surgical’ over the interval
(remember the +1 day rule), and a second observation of (5.9, 6] with a status
of 1 (dead) and surgical treatment.

(If there are ties between the time at which some time dependent covariate
changes value and an event or censoring time, I have usually found it most accurate
to explicitly resolve the ambiguity via a fractional time value, rather than try to
remember and apply any tie breaking rule used by the program code. However,
for those who wish to know there are two principles. Since time intervals are open
on the left and closed on the right, changes in a covariate by default happen after
the deaths and/or censoring at a time point. For ties between death and censoring
times SAS and S-Plus place deaths first, in accordance with common practice.)

Here is SAS code to create the analysis data set.

data temp;



infile ’data.jasa’;

input id @6 birth_dt mmddyy8. @16 entry_dt mmddyyS8.
026 tx_dt mmddyy8. @37 fu_dt mmddyy8.
fustat prior_sx ;

format birth_dt entry_dt tx_dt fu_dt date7.;

data stanford;
set temp;
drop fu_dt fustat birth_dt entry_dt tx_dt;

age = (entry_dt - birth_dt)/365.25 - 48;

year = (entry_dt - mdy(10,1,67))/ 365.25;  *time since 10/1/67;
wait = 1 + (tx_dt - entry_dt);

if (id = 38) then wait = wait - .1;

if (tx_dt =.) then do;
rx = 0; * standard therapy;
start = 0;
stop = 1 + fu_dt - entry_dt;
status= fustat;
output;
end;

else do;
rx =0; *first an interval on standard treatment;
start = 0;
stop = wait;
status= 0;
output;

rx =1; *then an interval on surgical treatment;
start = wait;

stop =1 + fu_dt - entry_dt;
status= fustat;

output;

end;

proc print;

id id;
And here is S-Plus code to fit the 6 models found in table 5.2 of Kalbfleisch
and Prentice [22]. The > symbol is the package’s interactive prompt. The formula

language uses ~ for “is modeled as”, and the right hand side symbols are similar
to the GLIM and GENSTAT programs: + for main effects, : for interaction, and



* for main effects plus interaction. The contrast option that I have chosen causes it
to use the first treatment as the reference category.

> options(contrasts="contr.treatment")

> sfit.1 <- coxph(Surv(start, stop, status) ~ (age + prior.sx)* rx,
data=stanford, method=’breslow’)
> print(sfit.1)

coef exp(coef) se(coef) z P

age 0.0139 1.014 0.0181 0.768 0.44
prior.sx -0.5465 0.579 0.6109 -0.895 0.37
rx 0.1195 1.127 0.3277 0.365 0.72

age:rx 0.0346 1.035 0.0272 1.270 0.20
prior.sx:rx -0.2929 0.746 0.7582 -0.386 0.70

Likelihood ratio test=12.5 on 5 df, p=0.0288 n= 172

> sfit.2 <- coxph(Surv(start, stop, status)~ year* rx,
data=stanford, method=’breslow’)

> sfit.3 <- coxph(Surv(start, stop, status)~ (age + year)* rx,
data=stanford, method=’breslow’)

> sfit.4 <- coxph(Surv(start, stop, status)~ (year +prior.sx) *rx,
data=stanford, method=’breslow’)

> sfit.5 <- coxph(Surv(start, stop, status)~ (age + prior.sx)* rx +
year, data=stanford, method=’breslow’)

> sfit.6 <- coxph(Surv(start, stop, status)~ age* rx + prior.sx +year,
data=stanford, method=’breslow’)

Because of several tied death times in the data set, the Efron approximation
would be preferred to the Breslow method, but the difference in this case is slight
and we wished to match the printed table. (The Efron approximation is the default
in S-Plus). The SAS code to analyse the data set requires explicit creation of the
interaction variables. An example for the first of the models is given below

data temp2; set stanford;
age_rx = age * IX;
prior_rx = prior_sx * rx;
proc phreg data=temp2;
model start stop * status(0) = age prior_sx rx age_rx prior_rx;

10



2.3 Computational considerations

The more common way to deal with time dependent covariates is to call a com-
putational subroutine at each death time. The counting process style has been
implemented in the S-Plus package, and more recently in SAS as well. There are
some advantages for the procedure proposed here.

1. Tt was easy to code the routine.

2. The counting process code may be more efficient. Both routines begin by
sorting the data according to the end point of the interval. In both, the time
needed to accumulate the score and information matrices is identical. The
difference is that the counting process routine must spend time scanning the
data to select the risk set — those observations whose (start, stop] interval
brackets a given death time. The other style routine must make n; subroutine
calls, where n; is the size of the risk set. If the subroutine is at all complex
the tradeoff will favor the counting process routine, particularly if only a few
subjects have multiple lines of data. For example, in a recent study here with
multiple lab tests, the proportion with 1, 2, ... tests geometrically decreased;
only 2 patients had five values. Slightly over half the subjects had only one
value.

The counting process function will often run much faster when there are strat-
ification variables in the model. When strata are introduced the program
spends less time searching out who is part of the current risk set since it need
look only within the strata; without strata it has to scan the entire data set.

3. The counting process style may be easier to use. This is particularly true for
the case of multiple lab tests. Assume that there is a maximum of 5 lab tests,
then use of the older style code requires the creation of 9 ancillary covariates
containing the first lab value, the time of the second test, the value of the
second test, the time of the third test, the value of the third test, etc. Those
with fewer than 10 tests have the remaining “time of test” values set to some
number greater than that patient’s follow up time. Then a code fragment
similar to the following is placed into the subroutine:

lab = labl;
if (TIME > t1) then lab=1lab2;
if (TIME > t2) then lab=1lab3;

As well, if some patient has the effrontery to come for an 11th visit, then the
subroutine and all ancillary data must be updated to include a new pair of
variables.

11



The major disadvantage of the counting process style is that it is difficult to
accommodate a smoothly time-varying covariate. One main use of this is to test
the proportional hazards assumption by the addition of a product variable x*time
or xxlog(time). As we will see later, there is a much better way to test for and
visualize non-proportional hazards.

This is not to say that one cannot accommodate a smooth covariate. With
sufficient effort, general time dependent covariates can be managed in any package
that allows stratified models. This may be accomplished by making each unique
death time a separate stratum, then within the stratum place one observation for
each subject at risk, setting his/her covariates to the appropriate time-dependent
values. Creation of such a data set would of course be a tedious process.

3 Residuals

3.1 Mathematical definitions

Several ideas for residuals based on a Cox model have been proposed on an ad hoc
basis, most with only limited success. The current, and most successful, methods are
all based on counting process arguments, and in particular on the subject-specific
martingale process that arises from this formulation. Barlow and Prentice [3] give
the original definition of “martingale residuals”, and further work was done by Ther-
neau, Grambsch and Fleming [47]. To begin, we must expand on the mathematical
notation introduced in the previous section.

As before, let Y;(t) be the indicator that a given subject is at risk and under
observation at time ¢, N;(¢) the cumulative number of “events” for the subject up
to time ¢, and N(t) = 3 N; the total event process. Let Z;;(t) be the jth covariate
of the ith person (possibly time dependent), where i = 1,...,n and j = 1,...,p;
and Z;(t) the entire covariate set for a subject i, represented as a p x 1 column
vector. Define 7;(t) to be exp[B'Z;(t)], i.e., the risk score for the ith subject. In
actual practice 8 will be replaced by B and the subject weights r; by 7;.

If A;(t) is the true cumulative event rate function for subject 4, then the (observed
- expected) process

Mi(t) = [ Yi(t){aNi(t) - dAi(t)}

will be a subject-specific martingale.
The Cox model assumes that the hazard for subject i is

A(t; Zi) = do(t)ri(t)

where )¢ is an unspecified baseline hazard. Assuming no tied death times, the log

12



partial likelihood is defined as

n 00
:Z/ Y;(t
i=1"0

The first derivative is the p by 1 vector

log{ZY H dN;(1).

wmzzz/[z B, ] AN (1 1

==Z/[z B, dM;(5,1). @

M is defined below. Equation 1 is the usual form in which the Cox score is written,
but 2 is more useful in some contexts. The transition from 1 to 2 involves simple
algebraic manipulations The p by p information matrix is

/ ¥, Yi(t)r(0)[Zi(t) — Z®)][Zi(t) — Z(B, 1))

e =, Y5 (0r; (1)

dN; (t) ’ (3)

where Z is the weighted mean (vector) of those still at risk at time ¢: defined by

2 Yi(t)ri(t) Zi(t)
XYi)ri(t)

In practice the martingale residual is estimated by M , with B, # and A substi-
tuted for B, r, and A. The most usual estimate of the baseline hazard is the Breslow
or Nelson—Aalen estimate

Z(B,t) = (4)

/2]1 zf()

3.2 Martingale and deviance residuals

The martingale residual for subject i at time ¢ is
M) = i) ~ [ 78, o) i(e)dho(5, ).

The SAS and S-Plus functions return the residual at ¢ = oo, 8 = B . If there are no
time-dependent covarlates then r,(t) = r; and can be factored out of the integral,
giving M, = M;(00) = N; — 7:Ao(B, 1.

13



The martingale residual is really a simple difference, O — F, between the observed
number of events for a subject and the expected number given the current model.
As in a simple Poisson model, var(M;) = E;, the expected number of events. The
residuals have some properties that are reminiscent of the residuals from an ordinary
linear model.

1. E(M;) =0
2. S M; =0
3. cov(M;, M;) =0
4. cov(J/VI\i,]T/I\j) < 0.

The last property is a consequence of the fact that the observed residuals are con-
strained to sum to zero. The covariance is small, however; of the same order as the
covariance of residuals from a linear model.

The martingale residual is highly skewed for single-event (survival) data, since
the limiting distribution (under the true model) of Ay(¢) is a censored exponen-
tial distribution. This suggests the application of a normalizing transform for the
residual, with the idea that such plots would be “easier on the eye”. The deviance
residual incorporates such a normalizing transform and is very similar in form to
the deviance residual for a Poisson distribution,

o~

d; = sign(M;) * \/—M; — N;log((N; — M;)/N;)

In practice it has not been very useful.

3.3 Score residuals

The score process U;;(t) for the ith subject and the jth variable is
t _ —
U(t) = [ [2i() = Zy(s)] dB (o),

where Z;(s) is the weighted mean of the jth covariate over the subjects still in the
risk set at time s, as defined in equation 4.

One can think of the score process as a 3 way array with dimensions of subject,
covariate, and time. Lin, Wei and Ying [32] suggest a global test of the proportional
hazards model based on the maximum of the array.

The score residual is defined as a U;j(00), and is an n by p matrix. It is the sum
of the score process over time. The first, and most obvious use of the score residual
is as a measure of leverage. The dfbeta matrix is defined as D = —UZ !, where

14



Z~! is the usual Cox variance matrix. The elements of D are the leverage residuals
derived by Cain and Lange [5] using case weights, and by Reid and Crépeau [44]
using another method. The ij element D;; is an estimate of the change in Bj if
observation ¢ were removed from the sample. It is straightforward to show that
the column sums 1’D are the Newton-Raphson increment AB at each iteration, and
thus that 1’D = 0 at the final solution. A useful variant is dfbetas, the change in
the coefficients scaled by the standard errors of the coefficients. It is common to
plot either D; (dfbeta) or dfbetas against i = 1,2,...,n as a visual way of checking
influence.

A second use of the leverage residuals matrix is to form a robust variance esti-
mate. This will be discussed further in the section on multiple events.

3.4 Schoenfeld residuals

Another useful transform is to sum the score process up over individuals to get a total
score process L;(t) which is a function of time. This yields a residual first proposed
by Schoenfeld [45]. Because Ag is discrete, our estimated score process will also be
discrete, having jumps at each of the unique event times. The Schoenfeld residuals
are a p column matrix with one row per death which contains these increments.

3.5 General residuals

Barlow and Prentice [3] define a generalized martingale residual by
il = [ 5ty dE()

for a predictable process f;, which is any function of time or the covariates that
depends only on the past. They show that since the predictable covariation process
for M; and M; is zero, e;(f;) and e;(f;) are asymptotically uncorrelated. The
variance process is

var(ed(£) = [ FOUO) dsto)

This formula can be used to motivate several residuals. The martingale residual
is e(1) and the score residual is e(Z—Z). Other possibilities suggested by the authors
are e(t), “a more traditional residual giving the difference between the failure time ¢;
for an uncensored subject and a corresponding projected quantity under the model,
and e(n) where 7 is the linear predictor Z'S.

3.6 Counting process data

Assume that we have a counting process style of data set, where each subject may
be represented by multiple (start, stop] intervals. One nice feature of the martingale
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and score residuals is that the residual for a subject is the sum of the residuals for
his/her observations. This is a natural consequence of the integral representation.
For example, assume that subject “Smith” is represented in the data as four obser-
vations with intervals (0,10], (10,25], (25,27] and (27,50]. The martingale residuals
for the individual observations are

10 25

i Y;(s) dM;(s), ’ Y;(s)dMi(s),

27 . 50 A
Yi(s) dM;(s), and Yi(s) dM;(s) -

25 27

The martingale residual for the subject is the integral from 0 to 50, which is obviously
the sum of these four quantities.

The Schoenfeld residuals are defined at each unique death, and are unchanged
by a counting process formulation.

4 Functional form

In the Cox model, we assume that the hazard function satisfies
Ai(t) = Xo(?) eXp(ﬂIZ).

That is, a proportional hazards structure with a log-linear model for the covariates.
In this section we investigate the correct functional form for the covariates. Perhaps
one of the variables, Z;, should be replaced by Z?, InZj, Itz 5y or some other
transform to properly account for its effect.

We use the PBC data set as an example. The data come from a Mayo Clinic
trial in primary biliary cirrhosis of the liver conducted between 1974 and 1984. PBC
is a progressive disease thought to be of an auto-immune origin; the subsequent
inflammatory process eventually leads to cirrhosis and destruction of the liver’s bile
ducts. A description of the study along with a listing of the data set can be found in
Fleming and Harrington [14]. A more extended discussion can be found in Dickson,
et al. [12]. Through the work done for these two analyses, the important variables
and their proper transformation is already ‘known’.

4.1 A Simple approach

The simplest approach is one examined by Therneau, Grambsch and Fleming [47]
who suggested smoothed residual plots. Consider the martingale residuals from a
null model, i.e., one with 8 = 0. They show that if the correct model is exp(8f(Z))
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Figure 1: PBC Data, functional form for age

80

for some smooth function f, then a plot of the smoothed martingale residuals versus

Z will display the form of f. That is

E(M;) = cf (z)

where ¢ is a constant which depends on the amount of censoring. Since ¢ simply
scales the labeling of the y axis, it has no effect on the visual appearance of the
plot. In many ways, this plot is similar in spirit to the y vs. x scatterplots used for
ordinary, non-survival data; the censoring process forces us to use this modification.

The following example shows the creation of such a plot in S, using the PBC

data set.
> fit.pbcO <- coxph(Surv(futime, fustat) ~ 1, data=pbc)
> rr <- resid(fit.pbc0) #default is martingale residuals
> plot(pbc$age, rr, xlab="Age", ylab=’Residual’)
> lines(lowess(pbc$age, rr, iter=0), lty=2)
> title(main="PBC data", sub=’Figure 1’)
>
> plot(pbc$bili, rr, xlab="Bilirubin", ylab=’Residual’)
> lines(lowess(pbc$bili, rr, iter=0), lty=2)
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Figure 2: PBC Data, functional form for bilirubin

> title(main="PBC data", sub=’Figure 2’)

The resid function returns martingale residuals by default. The iter=0 option
of the lowess smoother causes it to skip its outlier detection phase, and is necessary
because of the extreme skewness of the martingale residuals. (A similar problem
can occur with logistic regression residuals when the proportion of postive responses
is small). Figures 1 and 2 show that age is reasonably linear, but that bilirubin is
certainly not so.

Creation of this same plot in SAS is more subtle, as phreg has no facility to fit a
model with B forced to a given value; a “not converged” error message is invariably
produced. However, a null model fit may be accomplished by using a single dummy
variable as follows.

libname save ’sasdata’;

data temp; set save.pbc;
dummy = O;

proc phreg data=temp;
model futime*fustat(0)= dummy;
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output out=temp2 resmart=rr / order=data;

This method works well when the data are uncorrelated, but fails when correla-
tions are present. The same failure occurs for ordinary scatter plots in uncensored
data: if y = 221 4+ Oz9 and cor(z1,z2) = .9, then a plot of y versus zo will show an
unwanted relationship. There are other problems with the martingale residuals plot
as well: the skewness of the data may force the fitted curve to occupy only a small
region, and there are no clear methods for creating a confidence band.

4.2 Poisson approach

Grambsh, Therneau and Fleming [17] later extended the method to address these
deficiencies. The basic idea is to use the residuals from a linear fit as the building
block. Let M; be the martingale residuals from a Cox model using all of the co-
variates, and F; the expected number of events for each subject, based on the fitted
model. (Since the residual satisfies M; = N; — E;, the expected number of events is
just the 0/1 status variable minus M;). Two different plots are suggested. The first
is based on the relationship

smooth(N) -
f ~ lOg{m} +ﬁ]Z] +c

where ¢ is an unknown additive constant. If all of the covariates are linear except for
the jth, this should reveal the functional form of that covariate, Z;. The approach
performs well, but can experience numerical difficulties since smooth(F) may not
always be > 0.

Their second idea, illustrated here, is to use the residual data as input to Poisson
regression, taking advantage of modeling tools already available for that method. In
S-Plus for instance this involves the gam function, which implements the Generalized
Additive Models of Hastie and Tibshirani [20].

> fit.pbc <- coxph(Surv(futime, fustat) ~ age + edema + bili + protime
+ albumin, data=pbc)
> print(fit.pbc)

coef exp(coef) se(coef) z P

age 0.0383 1.04 0.00806 4.75 2.0e-06
edema 0.9351 2.55 0.28186 3.32 9.1e-04
bili 0.1158 1.12 0.01302 8.90 0.0e+00
protime 0.2006 1.22 0.05661 3.54 3.9e-04
albumin -0.9682 0.38 0.20533 -4.72 2.4e-06

Likelihood ratio test=182 on 5 df, p=0 n=416
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Figure 3: PBC Data, functional form using Poisson approach

(2 observations deleted due to missing)

> exp.pbc <- predict(fit.pbc, type="expected")
> xbeta <- predict(fit.pbc, type="1p") #the linear predictor
> gfit <- gam(fustat ~ s(age) + edema + s(bili) + s(protime) +
s(albumin) + offset(log(exp.pbc) - xbeta),
data=pbc, family=poisson, na.action=na.omit)
> plot(gfit, se=T, rug=T)

For the PBC data set prior work had shown that age and edema, were reasonably
modeled as linear terms, and that bilirubin, prothrombin time and albumin levels
fit well with a logarithmic transform. Hopefully, the plots will clearly reveal this
trend.

In the gam function, the s(age) term asks for the fit of a smoothing spline in age
with the default 4 degrees of freedom. The edema variable has only 3 values, 0, .5
and 1, and is fit as a linear term. The offset term includes both the log(expected)
term usual to a Poisson model, but also the linear predictor X’ B This causes the
linear term, already fit by the Cox program, to be reflected in the plots.

The plots are shown in figure 3 (a linear plot for edema is also produced by
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the plot command, but is omitted). We can see the logarithmic form clearly for
bilirubin. A transform does not appear necessary for protime or albumin. The rug
option to the plot command produces the set of tick marks along the bottom of the
plot, one at the location of each of the x-values for the data. One can see from the
rug that the apparent downturn at the right extreme of the protime plot is based
on only 2 data points.

A logical next step would be to replace bilirubin with its logarithm and repeat
the process, however, we will jump directly to the final model. (Bilirubin is the
dominant variable in the model, and any changes to its modeling are reflected in all
the other plots).

> fit.pbc2 <- coxph(Surv(futime, fustat) ~ age + edema + log(bili) +
log(protime) + log(albumin),
data=pbc, method="breslow")
> print(fit.pbc2)

coef exp(coef) se(coef) z P

age 0.0396 1.0404 0.00767 5.16 2.4e-07

edema 0.8946 2.4463 0.27165 3.29 9.9e-04
log(bili) 0.8630 2.3703 0.08295 10.40 0.0e+00
log(protime) 2.3856 10.8654 0.76876 3.10 1.9e-03

log(albumin) -2.4966 0.0824 0.65280 -3.82 1.3e-04

Likelihood ratio test=231 on 5 df, p=0 n=416
(2 observations deleted due to missing)

exp.pbc <- predict(fit.pbc2, type="expected")

1bili <- log(pbc$bili)

lpro <- log(pbc$protime)

lalb <- log(pbc$albumin)

xbeta <- c(cbind(1bili, lpro, lalb) %x*J fit.pbc2$coef[3:5])

vV V. V VvV

> gfit <- gam(fustat ~s(1bili) + s(1lpro) + s(lalb)
+ offset(log(exp.pbc) - xbeta)
data=pbc, family=poisson, na.action=na.omit)
plot(gfit, se=T, rug=T)

A\

In this run we have also made the refinement of dropping out the linear terms for
age and edema, both from the gam fit and from the compensating variable xbeta.
Since we are satisfied with them as linear terms, and the coxph program has already
modeled them as such, they can be excluded from the gam fit. The gam fit will be
more stable since it has fewer terms. The final plots are shown in figure 4, and show
that the transformations are quite satisfactory.
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Figure 4: PBC Data, test of final functional form

With smaller data sets and/or a large number of variables, this method should
be applied to one variable at a time rather than all-at-once, to avoid an excessive
number of degrees of freedom in the gam model. Grambsch et al [17], however, show
one constructed example with highly correlated predictors and nonlinear effects
where one-at-a-time plots do not completely succeed.

For the SAS code, we cannot take advantage of a standard additive models
procedure. Instead, for each predictor variable in turn a natural spline is fit using
the genmod procedure, followed by a plot of the predicted values of the fit. The
daspline macro creates a set of basis vectors agel, age2, age3, age4 which allows
a spline to be fit with standard procedures.

proc phreg data=save.pbc outest=fit;
model futimexfustat(0) = age edema bili protime albumin
/ties=efron;
output out=temp resmart=rr/ order=data;

data temp2; merge rr save.pbc;

keep fustat rr expected age bili protime albumin;
expected = fustat - rr;
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data temp3; set fit;
keep beta;
beta = age;
data temp4; merge temp2 temp3;
xbeta = age * beta;
%daspline(age, 4); * spline basis with 4 df ;
off = log(expect) - xbeta;
proc genmod data=temp4 noprint;
model fustat = age agel age2 age3 / offset=off dist=poisson;
make ’obstats’ out=tempb;

*plot of x=age, y=xbeta, xbeta-2*std, xbeta+2x*std;
data temp6;

merge temp4 tempb5;

lower = xbeta - 2*std;

upper = xbeta + 2xstd;

res = xbeta + resdev;
proc sort; by age;
proc gplot;

plot xbetaxage=1
lower*age=2
upper*age=3
res*xage =4 /overlay vaxis=axisl haxis=axis2;

symboll i=join 1=1;
symbol2 i=join 1=2;
symbol3 i=join 1=2;
symbol4 i=none v=dot h= .1 cm;

axisl label=(r=0 a=90 "smooth(age), df=4");
axis2 label=("age");

*repeat the temp3 through plot process for bili, then protime, etc.

4.3 Other methods

Another method to adjust the plots for possible correlation between the predictor
variables is to borrow techniques from the linear models literature. Let M’ be the
martingale residual from a model omitting age. The adjusted variable plot uses M’
on the y-axis, and the residual from a linear regression of age on the remaining
predictors in the model on the x-axis. If the plot is linear, then age is presumed
to enter linearly into the multivariate model. Other variants on this theme are the
partial residual and augmented partial residual plots. See Chambers et al [9] for an
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explanation and examples of the methods.

Chen and Wang [7] discuss another method, constructed variable plots, which
should be useful for detecting a power transform. They are based on the Taylor
series expansion

VN xz+A=1)(zlogz —z)+ (A —2),

where
x(lambda) — (-7:)\ - 1)/)\ ifA#0
| logz ifA=0

which suggests the use of z = xlog z —x as the extra variable in an adjusted variable
plot. The slope of a fitted line will suggest the appropriate power transform.

In the author’s experience, none of these methods work as reliably as the Poisson
regression based fits of the section above.

4.4 Time dependent covariates

The martingale residual for a subject with time-dependent covariates is well defined,
although the computation requires more bookkeeping. (With a time-dependent
covariate defined by programming statements, the SAS phreg procedure presently
will not produce the martingale residual). However, it is not at all clear how to plot
each observation — what should be used as the x-axis value?

If the time-dependent covariate is encoded using the counting process style of
data, however, the above methods can be used. In this case each subject is repre-
sented as one or more observations, each consisting of a time interval, the status,
and fized covariate values over that interval. Both SAS and S-Plus return the mar-
tingale residual per observation. The total residual for a subject is then the sum of
residuals, over the observations that represent his/her data.

One could explore functional form using the simpler method by plotting one
point for each observation. Depending on their length of follow-up, different sub-
jects may have different numbers of observations, however, and for a given subject,
observations may encompass different intervals of time. This can introduce bias in
the simple method by effectively giving different weights to subjects, e.g., a person
with 10 observations (10 points on the scatter plot) will have a larger influence on
the smooth than a subject with only one observation.

The Poisson based method, however, automatically provides the correct weight-
ing through the expected values e; and can be used without modification in such
a data set. One exercise, not shown here, is to randomly divide some of the sub-
jects in the PBC data set into two intervals. It is easy to show that the fitted Cox
model and the Poisson regression estimate of functional form are unchanged by this
manipulation.
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5 Testing proportional hazards

5.1 Time dependent coefficients

Many possible alternatives to proportional hazards exist. One easily expressed gen-
eralization is provided by models with a time-dependent coefficient

A(t) = Mo(t) exp[B(1)Z].

This is not at all the same as a time-dependent covariate Z(t). The proportional
hazards model, for a given covariate j, corresponds to the restriction g;(t) = g, i.e.,
that a plot of 3;(t) versus time will be a horizontal line.

Let V(f,t) be the covariance of Z at time ¢, defined analogously to the running
mean Z, whose 7,5’ element is estimated as

> Yi(t)ri(t)[Zij (t) — Z;(8)][Zej (t) — Z5(2))]

> Yi(t)ri(t) ’
let s; be the Schoenfeld residual for the kth death in the study, and sj be the
rescaled Schoenfeld residual V=1(3, t)sy.

Grambsch and Therneau [16] show that if 3 is the coefficient from an ordinary
fit of the Cox model, then

Viy(B,1) =

E(s; + B) = B(tx)-

This suggests a plot of s* + 3 versus time or some function of time g(t) as a method
for visualizing the extent of non-proportional hazards. A line can be fit to the plot
followed by a test for zero slope, a non-zero slope is evidence against proportional
hazards. If T is the test statistic for zero slope, it is clear that different choices of
the time-scale g lead to different tests for model misspecification.

1. If ¢g(t) is a specified function of time, then T is a score test for the addition of
the time-dependent variable g(t) * Z to the model, a test initially suggested
by Cox [8]. Chappell [6] describes the relationship between this test and the
test of Gill and Schumacher [15].

2. If g is piecewise constant on non-overlapping time intervals with the intervals
and constants chosen in advance, T is the score test proposed by O’Quigley
and Pessione [40], which generalizes and extends goodness of fit tests proposed
by Schoenfeld [45] and Moreau, O’Quigley and Mesbah [36]. As the authors
point out, this test has the disadvantage that the investigator must choose a
partition of the time axis, but they suggest guidelines for doing so.
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3. If g(t) = N(t—) then T is the covariance between the scaled Schoenfeld residual
and the rank of the event times. The resulting test is similar to one proposed
by Harrell [18], who uses the correlation between the unscaled residuals and
rank of the event times. This test is familiar to users of the (now discontinued)
SAS phglm procedure.

4. Lin [28] suggests comparing /3 to the solution 39 of a weighted Cox estimating
equation

Z / 9(t) [Zi(t) — Z(t)]dN;(t) = 0

with g(t) one of the scalar weight functions commonly chosen for weighted log
rank tests, and he showed that asymptotically ﬁ — ﬁg is multivariate normal
with mean~0 and a variance matrix derived from martingale counting pro-
cess theory. If the estimator Bg were based on a one-step Newton-Raphson
algorithm starting from B, his test would be identical to 7. Lin suggested
a monotone weight function such as F (t), the left-continuous version of the
Kaplan-Meier estimator for the survivor function of the entire data set, to de-
tect monotone departures from proportionality and a quadratic function such
as F(t){1 — F(t)} for non-monotone trends.

5. Nagelkerke, Oosting and Hart [38] suggest using the serial correlation of the
Schoenfeld residuals for a univariate predictor, or for multivariate covariates,
the correlation of a weighted sum, a’s. The authors standardize by using a
permutational approach to estimate the variance. They suggest a = B as a
natural choice for the weights, followed by examination of individual covariates
if the test is significant. This is equivalent to using the lagged residuals as g(t).

The key point is that each of the above tests can be directly visualized as a simple
trend test applied to the plot of g(¢) versus the scaled residuals.

In practice, the individual estimates of V at each death time may be unstable,
particularly near to the end of follow-up when the number of subjects in the risk set
is less than the number of elements of V. For most data sets, the variance matrix of
Z(t) changes slowly, and is quite stable until the last few death times. Combining
this with the observation that

| vieive =1)

where Z71 is the Cox model’s usual estimate for the variance of ,3, suggests the use
of the average value V = Z/d, where d = N(c0) is the total number of deaths. With
this substitution, let tx,k = 1,...d be the individual death times, gy = g(tx) the
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chosen transformation, g = Y gx/d the average of the transformed time values, and
S the matrix of unscaled residuals. The tests are based on a slope parameter

0 =D"'[S"(g—9)]
with variance
D' =dT™/Y (9-9)°.
A global test of proportional hazards, over all p covariates is
(9—9)S1'S'(g — 9)
> (gr — 9)?/d
The test for an individual covariate Z; is
29k — 9)sk;
VI Sl — 9)2/d

Since the Schoenfeld residuals sum to zero, the above equation is the usual test of
a correlation coefficient, with Z as an estimator for the variance of s*.

To aid in detecting the possible form of departure, a smooth curve with confi-
dence bands is added to the plot. For both the S-Plus and SAS functions this has
been done using a spline fit. Let X be the matrix of basis vectors for the spline
fit of the scaled residual on g(t) and B the same spline functions, but evaluated at
the plotting points. (B will usually be based on 30-40 points evenly spread over the
range of g(t)). The plotted values of the spline curve will be

T =

()

T

§=18'+B(X'X)"'X'R=13'+ HR

where H = B(X'X) X' is the projection matrix. The variance matrix for the jth
variable is

Sj=T;;{dHH' + (J - HJH')}

where J is a matrix of 1’s. For most smoothers, smooth(constant) = constant so that
HJ = J and the second and third terms cancel. The resultant formula is equivalent
to the standard linear model’s formula for a standard error for the predicted values,
with the exception that de_jl replaces the usual estimator of o2. Confidence intervals
can be formed by standard linear model calculations, e.g., Shefté intervals using the
rank of S; for simultaneous confidence bands or simple z-intervals for pointwise
estimates.

If the residuals are used as input to a “standard” scatterplot smoother, the
resultant confidence bands will be based on 62H H' where 6 is based on the sum of
squared residuals from the smooth. We have not done any theoretical investigation
of this estimator, but note that
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Figure 5: Veteran Data, tests of PH

e based on a very small number of empirical cases, the resultant bands tend to
be somewhat too large (anticonservative),

e the shape of the bands will be correct, however.

5.2 Vetarans Administration data

As an example consider the Veterans Administration lung cancer data as found in
Kalbfleisch and Prentice [22], pp. 223-224, from a clinical trial of 137 male patients
with advanced inoperable lung cancer. The end point was time to death and there
were six covariates measured at randomization: cell type (squamous cell, large cell,
small cell, and adenocarcinoma), Karnofsky performance status, time in months
from diagnosis, age in years, prior therapy (yes/no) and therapy (test chemotherapy
versus standard). Lin’s test [28] comparing the Cox model B to a weighted estimate
with the Peto-Prentice weight function is highly significant (p = 0.00002), suggestive
of non-proportionality. Figure 5 shows the scaled Schoenfeld residuals for the most
significant predictor, Karnofsky score, along with a fitted least squares line. As the
results below show, the Grambsch-Therneau test for slope=0 is highly significant.
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> fit.vet <- coxph(Surv(futime, status) ~ rx + celltype + karno +
months + age + prior.rx, data=veteran)
> print(fit.vet)

coef exp(coef) se(coef) z P

rx 0.319242 1.376 0.20949 1.5239 .13
celltypelarge -0.799691 0.449 0.30305 -2.6388 .008

celltypesmallcel -0.328601 0.720 0.27632 -1.1892 .23
celltypesquamous -1.236709 0.290 0.30491 -4.0560 .0005
karno -0.032886 0.968 0.00553 -5.9471 <.0001

months -0.000269 1.000 0.00914 -0.0295 .98

age -0.009646 0.990 0.00932 -1.0346 .30

prior.rx 0.084866 1.089 0.23312 0.3640 .72

Likelihood ratio test=62.7 on 8 df, p=1.39e-10 n= 136
> zph.vet <- cox.zph(fit.vet, transform=’log’)

> for (i in 1:4) {
plot(zph.vet, var=i)
abline(0,0, 1lty=3)
title(main="Veteran data, test for PH")

}

Karnofsky score and cell-type were the only significant predictors in the Cox
model. Smoothed scaled Schoenfeld residuals plots for these predictors are shown in
figure 6 and provide a visual interpretation of the non-proportionality. Because the
survival times have a long-tailed distribution, log(tx) is used for the z-axis. Use of
the Kaplan-Meier values for the z-axis (Peto-Prentice scores) does a slightly better
job of equi-spacing the plot points, but the figure is quite similar. Smoothed curves
are shown along with pointwise 90% confidence intervals. Plots for the remaining
four predictors (not shown) did not suggest significant nonproportionality. Table 1
summarizes individual predictor test statistics, using (5) with log(event~times) for
g(t). (It differs from the results in [16], whose table 1 is an amalgamation of the
tests from individual univariate models.)

The impact of Karnofsky score clearly changes with time. Early, a low score is
protective. However, the effect diminishes over time and is effectively zero by 100
days. Another way of interpreting this would be that a 3-4 month old Karnofsky
score is no longer medically useful. The downturn at the right end of the plot is likely
an artifact of small numbers and disappears if the last four points are excluded.

The effect of each cell type is less clearly marked. The plots suggest that the
increased relative risk due to small cell or adenomatous as compared to large cell
may not persist beyond 100 days and that the squamous cell type may be protective
in long-term survivors (beyond 100 days) as compared to large cell.
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The transform argument of the cox.zph function allows for any monotone time
transform, but the identity, logarithm, rank, and Kaplan-Meier options are the most
commonly used. The %schoen macro only supports the four common options. The
default is the Kaplan-Meier scale, and is based on the following rationale: if the
transform g were such as to push most of the data to one end of the plot, leaving
only 1 or 2 isolated points on the other extreme, then the test for slope=0 would be
dominated by those extreme points. The K-M seems to do the most reliable job of
spreading the data evenly over the horizontal range.

One problem with the K-M transform is that time may not vary smoothly over
the range of the x axis of the plot. For final presentation, then, one of the simpler
transformations may lead to plot that is easier to grasp.

5.3 Stratified models

Both S-Plus and SAS currently return the scaled Schoenfeld residuals based on an
overall estimate of variance V(¢) ~ Z/d. This average over the risk sets is appro-
priate if the variance matrix is fairly constant over those risk sets. One case where
this may not be so is with stratified models. If there are stratum by covariate inter-
actions, the averaging is almost certainly unwise. Consider the following example:
assume that the 0/1 variable rx contains the treatment arm and that rx1 is defined
as

x] — rx if center =1
"] 0 otherwise

Assume rx2, rx3 and rx4 are defined similarly and that center has values 1, 2, 3
and 4 for four participating centers in the study. The model could be

coxph(Surv(time, status) ~ rxl + rx2 + rx3 + rx4 + strata(center))

Clearly, the variable rx1 is identically zero in stratum 2, it has variance 0 within
that stratum, and hence those data “points” can contribute no information on the

Covariate Chi-square d.f. P

Cell type 7.39 3 0.0604
Karnofsky score 11.68 1 0.0006
Months since diagnosis 1.67 1 0.1955
Age 6.58 1 0.0103
Prior therapy 3.90 1 0.0482
Treatment 0.05 1 0.8287
Global test 27.22 8  0.0006

Table 1: Tests for the Veterans Administration data with g = log(time)
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Figure 6: Veteran Data, test of PH for Karnofsky score

appropriateness of proportional hazards.

At present there is only a partial solution to this problem. First fit the overall
model to the data. Then refit each stratum separately, using the iter=0 and initial
options to force the same coefficients as the overall fit. Since the variance will be
summed only over the individual strata, this will produce scaled Schoenfeld residuals
appropriate to the subsets.

6 Multiple events per subject

6.1 Introduction

There is increasing interest, and need, to apply survival analysis to data sets with
multiple events per subject. This includes both the cases of multiple events of the
same type, and events of different types. Examples of the former would be recurrent
infections in AIDS patients or multiple infarcts in a coronary study. Examples of
the latter are the use of both survival and recurrence information in cancer trials, or
multiple sequelae (toxicity, worsening symptoms, etc) in the management of chronic
disease. With the increasing emphasis on quality-of-life, rehospitalization, and other
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secondary endpoints such analyses will become more common.

A major issue in extending proportional hazards regression models to this situa-
tion is intra-subject correlation. Other concerns are multiple time scales, discontin-
uous intervals of risk, strata by covariate interactions, and the structure of the risk
sets. Several approaches for dealing with such data have appeared in the literature.

e A counting process approach, usually called the Andersen-Gill model [1]. Each
subject is treated as a multi-event counting process with essentially indepen-
dent increments. Any interrelation between events is modeled as one or more
time-dependent covariates. This approach is simple, but the assumptions are
strong and may be untenable.

e A marginal method as developed by Wei, Lin and Weissfeld [49]. They show
the utility of the method for both a data set with multiple dissimilar out-
comes (death and recurrence of cancer) and another with repeated outcomes
(recurrence of bladder cancer).

e Frailty models, such as that described in Oakes [39]. He illustrates this using a
data set from the MDPIT trial of Diltiazem; the main outcomes of interest are
cardiac events. Use of the second and subsequent events gave a 10% reduction
in the variance of the treatment effect.

e A more ambitious plan is to model the subject’s correlation directly within the
Cox framework. Prentice and Cai [41] explore this for a sample of industrial
failure data. The method is very computer intensive, however, and as pointed
out by the discussant of their paper, required the estimation of 226 parameters
from only 20 pairs of data.

In this section we focus on the AG and marginal models. This is partly due
to the ready availability of software for this approach in both the S-Plus and SAS
packages. As well, the method affords great flexibility in the formation of strata
and risk sets, manipulation of the time scale, and has a well developed variance
estimator. In each case the analysis is based on 3 steps:

e Decide on a model (issues such as strata, time dependent covariates, etc.) and
structure the data set accordingly.

e Fit the data with an ordinary Cox model, ignoring the possible correlation.

o Replace the naive variance with a robust, corrected estimate.
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In the sections below we will first deal with the third issue, then the first and
second, and finally present a set of examples. The final example is the most interest-
ing. Several aspects of the rhDNase study require serious thought: from 0-5 events
per subject, intervals without risk, and an apparent treatment by time interaction.
When applied to this data different models give apparently different answers.

6.2 Robust Variance
6.2.1 Approximate jackknife estimate

If one suspected that some element of the Cox model were misspecified, a natural
correction would be to use the jackknife estimate of variance (J—J)'(J—J), where J;;
is the change in [3]- when observation i has been removed from the data set and J =
11'J/n is a matrix containing the column means of J. An natural approximation to
the jackknife variance is D' D, where D is the approximate case influence introduced
in section 3.3. (Remember that 1D = 0).

D can also be used to approximate a grouped jackknife, e.g., the sum of rows
1-3 of D approximates the change in B if observations 1-3 were removed from the
data set. (This estimate is obviously cruder than for a single subject, with respect
to pairs of outliers for instance). In particular assume that the sample were formed
from m groups of observations, of size ni,nsg,...ny,, with possible within-group
correlation. Then one might form the collapsed m X p leverage matrix D, where

ni
Dij = > Dy

i=1

nl+n2

Dy = Y Dy
1=1+n1

The kth row of D is an estimate of the leverage of the kth group, and D'D approx-
imates the grouped jackknife estimate of variance. The most common use of this
estimate in our work will arise when there are multiple observations per subject. In
this case the rows of D represent the per observation influence and those of D the
per subject influence. Plots of both of these are useful in their own right for checking
a fitted model.
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6.2.2 Survey sampling method

A Cox model that includes case weights has been considered by Binder [4] in the
context of survey data. If w; are the weights, then the modified score statistic is

U(B) = Y w(), ©)

where the u; are the score residuals of section 3.3. (It can also be defined as a
weighted sum of Schoenfeld residuals; the equation’s solution is the same). Other
formulae change in the obvious way, e.g., the weighted mean Z is changed to include
both the risk weights r and the external weights w. The information matrix can
be written as 7 = Y §;w;v;, where §; is the censoring variable and v; is a weighted
covariance matrix. Again, the definition of v; changes in the obvious way from
equation (3). If all of the weights are integers, then for the Breslow approximation
this reduces to ordinary case weights, i.e., the solution is identical to what one would
obtain by replicating each observation w; times. (With the Efron approximation or
the exact partial likelihood approximation, of course, replication of a subject would
result in the computer algorithm applying a correction for ties.) Residuals from the
fit are such that the sum of weighted residuals equals 0.

If the observations are independent, the robust sandwich estimator is D'W D,
where W is a diagonal matrix of the weights. When there is clustering, a standard
survey sampling estimator based on linearization followed by a between cluster es-
timate has been used for many years, see for example Cochran [10]. This standard
estimate reduces, in the Cox model case, to D'W D [4].

6.2.3 Sandwich estimates

A rigorous motivation is based on the sandwich estimate of variance
V = ABA’

where A=! = T is the usual information matrix, and B is a correction term. The
genesis of this formula can be found in Huber [21], who discusses the behavior of
any solution to an estimating equation

n

i=1

Of particular interest is the case of a maximum likelihood estimate based on dis-
tribution f (so that ¥ = dlog f/08), when in fact the data are observations from
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distribution g. Then, under appropriate conditions, B is asymptotically normal with
mean 3 and covariance V = ABA’, where

and B is the covariance matrix for U = 3" ¥(z;, ).

As a simple example consider generalized linear models. McCullagh and Nelder
[34] maintain that overdispersion “is the norm in practice and nominal dispersion
the exception.” To account for overdispersion they recommend inflating the nominal
covariance matrix of the regression coefficients A = (X'W X)~! by a factor

2

C:Z%/(n—p),

=1

where V; is the nominal variance. Smith and Heitjan [46] show that AB may be
regarded as a multivariate version of this variance adjustment factor, and that ¢ and
AB may be interpreted as the average ratio of actual variance (y; — p;)? to nomi-
nal variance V;. By premultiplying by AB, each element of the nominal variance-
covariance matrix A is adjusted differentially for departures from nominal dispersion.

For the Cox model the matrix A is the usual variance-covariance matrix Z~! and
B = U'U where U is the matrix of score residuals. (B is the empirical covariance
of the score vector). Thus V.= ABA = D'D. If there is correlation, B is based on
the collapsed score residuals U and then V = D'D.

6.2.4 Relation to other methods

These estimates are also familiar from other contexts, although the general form
D’'D has not always been emphasised. Using the same method of derivation as Cain
and Lange [5], the results for a linear model are U;; = X;;(y; —9:), D = U(X'X)~!
and D'D is the robust variance estimate proposed by White [50, 51] for linear models
with heteroscedasticity or other model violations.

For a generalized linear model with log-likelihood function I(5)

~_ Ol on,
Y On; 0B;

and D'D is the working independence estimate of variance proposed by Liang and
Zeger [25] for generalized estimating equation (GEE) models.

Lipsitz, Laird and Harrington [27] use the Six Cities dataset to compare several
estimators of variance for logistic regression with correlated data: the usual MLE
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estimate, the actual jackknife variance estimate, the approximate jackknife D'D,
and a more refined one-step approximation that corrects as well for changes in the
information matrix Z due to deletion of an observation. (To derive the refined
formula, frame logistic regression as an iteratively reweighted least squares problem
and then apply the exact jackknife formula for a linear model to the last step of the
iteration). Using a sample size of 30 and 2 covariates plus an intercept the most
accurate confidence interval coverage was given by D’D. The refined approximation
did less well and the actual jackknife did poorly; it appears to be overly sensitive
to individual data points. At m = 60 the two approximate methods were nearly
identical, with the jackknife still somewhat inferior.

Reid and Crépeau [44] derive D for the Cox model, and apply it to measure the
leverage of individual cases. In an appendix they mention the possible use of D'D
as a variance estimate but do not pursue it.

Lin and Wei [29] show the applicability of Huber’s work to the Cox partial
likelihood, and derive the ordinary Huber sandwich estimate V = Z-1(U'U)Z~!
= D'D. They also discuss situations in which this is estimate is preferable, including
the important cases of omitted covariates and incorrect functional form for the
covariate.

Lee, Wei and Amato [24] consider highly stratified data sets which arise from
inter observation correlation. As an example they use paired eye data on visual loss
due to diabetic retinopathy, where photocoagulation was randomly assigned to one
eye of each patient. There are n/2 = 1742 clusters (patients) with 2 observations per
cluster. Treating each pair of eyes as a cluster, they derive the modified sandwich
estimate V = D'D, where D is obtained by summing D over each individual’s pair
of eyes. A subject with only one studied eye would have one (identical) row of data
in both D and D.

Assuming a data set eyes with variables subject.id, time, status (0=censored,
1=failure) and treatment, and with two observations (rows of data) per subject, one
S-Plus program to perform the analysis is

> fit <- coxph(Surv(time, status) ~ treatment, data=eyes)
> Dtilde <- residuals(fit, type=’dfbeta’, collapse=subject.id)
> newvar <- t(Dtilde) %xJ Dtilde

The first statement fits an ordinary Cox model, without regard to the clustering
variable subject.id. The second statement retrieves a copy of the collapsed score
residuals matrix D, and the third forms the modified sandwich estimate of variance.
(In S, %*% is matrix multiplication, t is the transpose function, and Surv is a ‘pack-
aging’ function that allows both time and status to be part of the left hand side
of a model formula). A second example given in Lee, Wei and Amato concerns a
litter-matched experiment. In this case the number of rats/litter may vary. The
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resulting estimator is shown to be much more efficient than an analysis stratified by
cluster.

Wei, Lin and Weissfeld [49] consider multivariate survival times, an example
being the measurement of both time to progression of disease and time to death for
a group of cancer patients. The S-Plus code to perform their suggested analysis is
similar to the above. The data set again contains 2n observations, time and status
variables, subject id, and covariates. It also contains an indicator variable etype
to distinguish the event type, progression vs. survival. The suggested model is
stratified on event type, and includes all strataXxcovariate interaction terms.

Lin and Wei [30] use the difference between Z~! and D'D as a goodness of fit
test for the Cox model. The variance estimate is quite complex, however, and I am
not aware of any implementations of the method.

6.3 Setting up the problem

The prior section has dealt with the estimation of variance for a multi-event model.
In this section we will discuss the options for setting up the data set. It turns out
that the actual fitting of the model is extremely easy given these two steps.

One aspect of multiple event data sets is that there are a number of choices to
be made in setting up the model. These include the choice of strata and member-
ship within strata, time scales within strata, constructed time-dependent covariates,
strata by covariate interactions, and data organization. For a “standard” Cox model
these issues are fairly well understood:

e Stratification, if used, is based on external variables such as enrolling institu-
tion or disease subtype. These generally correspond to predictors for which we
desire a flexible adjustment, but not an estimate of the covariate effect. Each
subject is in exactly one stratum.

e The time scale is almost invariably time since entry to the study.

e Time dependent covariates usually reflect time dependent data such as re-
peated lab tests. Strata by covariate interactions, i.e., separate coefficients
within each stratum for some covariate, are occasionally used.

e The counting process form may be used for a time dependent covariate, but
normally the data set will consist of one observation per subject.

In a multiple events data set there are possible extensions in each of these four areas.

The first issue is to distinguish between data sets where the multiple events have
a distinct ordering and those where they do not. An example of the first is multiple
sequential infections. An example of the second would be the times to death and
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progression for a set of cancer patients. For unordered outcomes setup of the data
is usually straightforward — each outcome is coded as a single observation, there
are multiple observations per subject, and each subject has the same number of
observations. Often, the analysis is stratified by observation type, e.g., we assume
that the baseline hazard functions for time-to-death and time-to-progression may
differ. In the competing risks case, where each subject may have at most one event,
there is some empirical evidence that the usual variance estimator may still be used
despite the correlation, see Lunn and McNeil [33]. The authors also compare models
which stratify on the event type to ones which use event type as a covariate.

For ordered outcomes, i.e., multiple events of the same type, several suggestions
have been offered. The most common approaches are the independent increment,
marginal, or conditional models. All three are “marginal” regression models in
that B is determined from a fit that ignores the correlation followed by a corrected
variance D' D, but differ considerably in their creation of the risk sets. Lin [31] gives
a detailed comparison of the three approaches on four different data sets.

6.3.1 Independent Increment model

This is usually referred to as the “Andersen-Gill” formulation, although we prefer
this title. It is the simplest method to visualize and set up, but makes the strongest
assumptions. It is closest in spirit to Poisson regression, and can in fact be accurately
approximated with Poisson regression software in the same manner that Laird and
Olivier [23] approximate an ordinary single event Cox model.

Using the counting process style of data input, each subject is represented as
a set of rows with time intervals of (entry time, first event], (first event, second
event|, ..., (mth event, last follow-up]. A subject with 0 events would have a
single observation, one with 1 event would have 1 or two observations (depending
on whether there was additional followup experience after the first event), and etc.
Depending on the time scale, the first observation may or may not begin at zero.
One alternative time scale, corresponding to a renewal process, is ‘time since entry
or last event’ and has intervals of (0,¢1], (0,22 — 1], ....

No extra strata or strata by covariate interaction terms are induced by the
multiple events. Strata, if they are used, would be based on the same considerations
as for an ordinary single event model.

The key assumption of the model is that of independent increments, i.e., that
the multiple observations for a given subject are independent. If this is so then the
three variance estimates Z=!, D'D and D'D should all estimate the same quantity.
(Nevertheless, it is wisest to use the per subject jackknife estimate D 5) A second
assumption is that time-dependent covariates may be used to capture the changes,
if any, between event types. For instance, let z be the time dependent covariate
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“number of prior events”. A model might include both treatment, z and their
interaction.

6.3.2 Marginal model

The marginal data model is used by Wei, Lin and Wiessfeld [49] in their analysis
of bladder cancer data, and is sometimes referred to as the “WLW” method. For
this method, each event or event type is modeled as a separate stratum. Within
each stratum, the data used is the marginal data, that is, “what would result if the
data recorder ignored all information except the given event type”. As a result, each
patient normally appears in all of the strata, barring deletion due to missing values.
Since all the time intervals start at zero the model can be fit without recourse to
the counting process style of input.

In the WLW paper, all strata by covariate interaction terms were included in
the model. In this case the individual coefficients can be obtained (and were) by
fitting each stratum as a separate data set. The combined coefficient vector was
then the concatenation (Bl, Ba, Bs, ,34) from the four fits and the combined variance
was estimated as

D'D, DiDs DjDs DjDy

DyDy DyDy DyD3 DyDy

DiDy D3iDs DiDs DiDy

D\D, D)D, D)Ds D)Dy
where D1 is the matrix of dfbeta residuals from the first fit, Dy that from the second
and etc. This is algebraically equivalent to 4 and D'D from a combined fit over all
four strata, where the combined model includes all covariate by strata interaction
terms. Using a global fit rather than separate fits for each event type has some
practical advantages:

e It is easier to code, particularly when the number of events per subject is large.

e Other models can be encompassed, in particular one need not include all of
the strata by covariate interaction terms.

e There need not be the same number of events for each subject. The method
for building up a joint variance matrix requires that all of the leverage matrices
be of the same dimension, this would be violated if information on one of the
failure types was not collected for some subjects.

6.3.3 Conditional model

As with the marginal model, each event or event type is assigned to a different
stratum. However, the risk interval for later events does not start at zero. For
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instance, assume that a patient had non-fatal myocardial infarctions on days 100
and 185, and has now been followed to day 250. In the marginal analysis this subject
would be at risk in stratum 2 from time 0 to 185. For the conditional model, the
assumption is made that a subject cannot be at risk for event 2 until event 1 occurs;
in strata 2 this subject would be at risk from time 100 to 185. Oakes [39] argues
strongly for the conditional approach, and states that the marginal method will be
inefficient.

6.3.4 Comparison

Assume a subject with events at %1, 2, and t3, with no further followup after time ts.
In all three formulations, he will be represented in the data set by 3 observations:

Interval Stratum

(Oa tl] 1
A-G (t1,t2) 1
(t2,13) 1
(Oa tl] 1

marginal (0, %2)
(07 t3) 3
(03 tl] 1

conditional  (¢1,%2)
(t27 t3) 3

Another way to look at the difference is to consider the risk sets. Suppose that
subject “Smith” has experienced his second event on day 32. Who are the subjects
at risk? When looked at in this way, the three methods have a natural ordering.

A-G: All subjects who were under observation on day 32.

marginal:  All subjects who were under observation on day 32,
and have not yet had a second event.

conditional: ~All subjects who were under observation on day 32,
have not yet had a second event,
and have experienced a first event.

For all three setups, it is also possible to use “time since last event” as the time
scale. This is uncommon with the independent increment and marginal models, but
has been explored for the conditional case by Prentice, Williams and Peterson [43].
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6.4 Examples

Comparison of the three methods, and understanding of the variance estimator, is
most easily done through a series of examples. The first three examples involve
data where the events are unordered, with one fictitious and two real data sets. The
remaining examples concern ordered events. The fictitious data in this latter case
is very revealing, and serves as a guide for the analysis of the real data sets.

6.4.1 Doubled data

As the simplest example consider a data set with doubled observations, e.g., suppose
that through some programming error each line of data has been entered twice. As a
specific example we will use the 85 observations for time to first event of the bladder
cancer data discussed in section 6.4.5. The variable id contains the subject identifier.
The code below fits the data using S-Plus. A single addition + cluster(id) to the
model formula identifies the potential clustering, and causes an adjusted variance
D'D to be computed as well as the usual estimate.

fitl <- coxph(Surv(futime, status) ~ rx + size + number + cluster(id),
data=double)

print (fitl)
coef exp(coef) se(coef) robust se z P
rx -0.5299 0.589 0.2234 0.3174 -1.669 0.0950
size 0.2403 1.272 0.0537 0.0748 3.214 0.0013
number 0.0701 1.073 0.0719 0.0893 0.785 0.4300

In this case, the uncorrected variance is exactly half of the correct value. The
robust jackknife value captures this correction almost perfectly (the ratio above is
2.02). The coefficients are identical to those from the correct data.

A fit using SAS is more clumsy since the phreg does not directly handle the
clustering. But it is instructive since it shows how the robust estimate can be
obtained using only the dfbeta residuals; the technique should be useful in many
other packages.

proc phreg data=double;
model futime * status(0) = rx + size + number;
output out=templ dfbeta= rx size number;
id id;

proc sort data=templ; by id;

proc means data=templ noprint; *add up rows to get D tilde;
by id;
var rx size number;

41



output out=temp2 sum=rx size number;

proc iml; *compute matrix product;
use temp2;
read all varrx size number in x;
v = x’ % x;
reset noname;
vname = "rx", "size", "number";
print, "Robust variance matrix",, v[colname=vname rowname=vname] ;

An extension of this example that merges the coefficients and robust variance
into a single printout can be found in the SAS manual for phreg.

6.4.2 Diabetic Retinopathy study

This example is used in Lee, Wei and Amato [24] to motivate the robust estima-
tor. Between 1972 and 1975 seventeen hundred forty-two patients were enrolled in
the study to evaluate the efficacy of photocoagulation treatment for proliferative
diabetic retinopathy; photocoagulation was randomly assigned to one eye of each
study patient, with the other eye serving as an untreated control. A major goal
was to assess whether treatment significantly delayed the onset of severe visual loss.
Several other potentially important covariates such as age, gender, and length of
diabetes were also recorded.

The set up for this problem is as easy as that for the doubled data. Since each
eye is at risk of failure both before and after its companion has failed, the final data
set consists of 2n observations each at risk from time 0 onwards. There is no obvious
stratification variable; the risk set when an eye fails is all eyes that have not yet
failed.

The authors show that the resulting estimate and its variance are much more
efficient than a matched analysis, which places each pair of patients into a separate
stratum. Interestingly, the robust variance estimate D'D is smaller than the ordi-
nary estimate in this case. Because the treatment is balanced within subjects there
is an improvement analogous to a paired t-test.

6.4.3 UDCA in Patients With PBC

Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized
by progressive destruction of the bile ducts. PBC frequently progresses to cirrhosis,
which may lead to death from liver failure unless liver transplant is offered — an
extensive and costly procedure. Trials have been held for several promising agents,
but an effective therapy remains elusive. Although progression of disease is inex-
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UDCA Placebo

Death 6 10
Transplant 6 6
Drug toxicity 0 0
Voluntary withdrawal 11 18
Histologic progression 8 12
Development of varices 8 17
Development of ascites 1 5
Development of encephalopathy 3 1
Doubling of bilirubin 2 15
Worsening of symptoms 7 9

Table 2: Total numbers of events in the UDCA trial

orable the time course can be very long; many patients survive 10 or more years
from their initial diagnosis before requiring a transplant.

A randomized double-blind trial of a new agent, ursodeoxycholic acid (UDCA),
was conducted at the Mayo Clinic from 1988 to 1992 and enrolled 180 patients.
The study is reported in Lindor et al [26]. For this analysis, we exclude 10 patients
who had incomplete follow-up for some of the event types (they were the last 10
enrolled in the study). The endpoints of the study were pre-defined and are shown
in table 2. Although nearly all of the comparisons favor UDCA, none are significant
individually. The primary report was based on an analysis of time to the first event;
58/84 placebo and 34/86 UDCA patients have at least one event. An analysis that
used all of the events would seem to be more complete, however, since it would be
based on 93 placebo and 52 UDCA events, a gain in “information” of 57%.

The endpoints for a subject are all unique, i.e., no single patient had more than
one instance of death, transplant, doubling of bilirubin, etc. Thus, time ordering
of the events within an event type is not an issue. Three possible methods of
analysis present themselves. The simplest of course is time to the first adverse
event. Kach patient has a single observation and correlation is not an issue. The
second is a marginal analysis. The data set for the marginal method is essentially a
concatenation of the 9 individual data sets that would be created for an analysis of
time to death (censoring all other causes), time to transplant, time to withdrawal,
etc. A third, but less compelling alternative is to use an Andersen-Gill model,
treating all of the events as though they were a single type.

Summaries of the first two approaches are shown in Table 3. The covariates
in the model are treatment and two of the stratification factors used in treatment
assignment. Two outcomes are immediately obvious. First, the naive variance is
an underestimate in the multiple event model — accounting for the within patient
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B se(B) robust se

Time to first event
treatment | -0.94  0.22 0.22
bilirubin 0.74 0.19 0.20
stage -0.02  0.25 0.25

Marginal model
treatment | -0.80  0.17 0.23
bilirubin 0.77  0.18 0.25
stage 0.06 0.21 0.28

Table 3: Results of 2 models for the UDCA data

correlation is important. The second is that the robust variance is just as large as
it was for first events only; the use of multiple events has added no information to
the analysis! The standard error for treatment in the marginal model is actually
somewhat higher.

A closer look at the data reveals the cause of the difficulty. Patients on the study
returned for evaluation once a year, which is the point at which most of the outcomes
were measured (excluding death and transplantation of course). One patient who
had 5 events, for instance, has 4 of them recorded on 20 July 1990, followed by death
on July 22. Similar outcomes are seen for many others. Figure 7 shows the event
times for the 31 subjects with multiple adverse outcomes, with a circle marking
each event. The data has been jittered slightly to avoid overlap. It appears that
the use of multiple event types was useful in this study only to make the detection
of “liver failure” more sensitive. Given that failure has occurred, the number of
positive markers for failure was irrelevant. This example shows that multiple event
analysis does not always lead to gains.

6.4.4 Hidden variable data

We now turn to the more complicated case of repeated events of the same type, where
the ordering of the events must be addressed. In the marginal method, these are
treated as though they were unordered but distinguishable events, i.e., first event,
second event, etc are treated in the same way that survival, liver transplant, and
worsening of symptoms were treated in the UDCA data set. Both the independent
increments and conditional methods treat the data as time-ordered outcomes, dif-
fering only in their use of stratification (a difference which can cause major changes
in the conclusions).

We will first illustrate the methods with a simple test case, one which shows
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Figure 7: Multiple failure times for the UDCA data

that each method has potential biases. Let the time to next event be exponential
with rate exp(z; — z3), where z; is uniformly distributed between -2 and +2 and
z2 is a randomly assigned 0/1 treatment covariate independent of z;. Sequential
events were independent. The follow-up time for each subject was 1 year, which
gave a mean number of events of 1.3. The sample size was 2000, which allows us
to illustrate any biases in the estimates. For simplicity of presentation, the few
subjects with more than 7 events were censored after their seventh. The number of
events experienced was

Number of events

‘ 0 1 2 3 4 5 6

Control | 367 312 174 88 39 13 5
Treatment ‘ 680 250 50 14 6 0

jes
S N

To do the A-G and conditional analyses the data is set up in the counting process
form. Assume that subject ‘10’ is on treatment with a covariate value of .2, and
has events on days 100 and 200, with follow up to day 365. The subject will be
represented as 3 rows of data with variables
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id start stop status enum 1z 9

10 0 100 1 1 2 1
10 100 200 1 2 2 1
10 200 365 0 3 2 1

For the marginal analysis we need a slightly different organization. Since at least
one patient in the study had a seventh event, then all patients must be coded for
that event type. The data rows for our fictional subject are

id time status enum x1 79

10 100 1 1 2 01
10 200 1 2 2 01
10 365 0 3 21
10 365 0 4 2 1
10 365 0 5 2 1
10 365 0 6 2 1
10 365 0 7 2 1

The modeling statements to fit the data for the three methods are similar. S-Plus
statements for the A-G, conditional and marginal models, respectively, are

coxph(Surv(start, stop, status) ~ x1 + x2 + cluster(id),
data=datal)
coxph(Surv(start, stop, status) ~ x1 + x2 + cluster(id) +
strata(enum), data=datal)
coxph(Surv(time, status) ~ x1 + x2 + cluster(id) + strata(enum),
data=data2)

Consider testing for an overall treatment effect. An important point of com-
parison is the performance of the fit when z; is not included in the model. This
corresponds, in real data sets, to those important covariates which are unmeasured
or unknown to us. (The unmeasured covariate z; was purposely chosen to have a
larger effect than the intervention.) In table 4 we see that the independent incre-
ments or AG model does fairly well in it’s estimate of 5. The standard error of the
coefficient, however, is underestimated. When z; is included then the AG models is
correctly specified, and both the coefficients and their standard errors are estimated
without bias.

When z; is included then the conditional model is correctly specified as well,
and the estimates are stable. When z; is unknown the conditional model seriously
underestimates the treatment effect. This is due to a loss of balance in the unmea-
sured covariate. The mean level of z; for the first stratum (event number 1) is near
0 for both treatment and control. For stratum 2, however, the mean levels were 0.6
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without covariate with covariate
52 B2 B
Andersen-Gill
coefficient -0.92 -0.93 1.05
variance .066, .084 .066, .066 .056, .056
marginal
coefficient -1.23 -1.60 1.82
variance .066, .113 .069, .117  .063, .113
conditional
coefficient -0.67 -0.91 1.03
variance .070, .068 .073, .069 .065 , .064

Table 4: Simple models, with both the naive and robust variance estimates

and 0.8, respectively: high risk patients are more likely to have an event, and since
treatment is effective the treated patients must be, on average, of higher risk than
controls to have had one. By strata 4, the baseline risk for the treatment arm is
40% greater than that for control. This is a serious problem and may preclude use
of the conditional estimator in randomized trials.

Table 5 shows the estimated treatment effects within stratum for the marginal
and conditional models, ignoring z; in the fit. (These can be obtained either by
adding an interaction term rx * strata(enum) to the overall model, or by fitting
each stratum separately). For stratum 1, time to first event, the conditional model
is correct and reliable. The estimated treatment effect then steadily decreases for
strata 2, 3 and 4. By stratum 5 there are only 6 treated patients, none of whom have
an event, as compared to 13/39 control subjects. This leads to an infinite relative
hazard (which is not, however, significantly different from zero by the likelihood
ratio test). Strata 6 and 7 have no treatment subjects under the conditional setup.

The marginal model on the other hand overestimates the treatment effect, and
inclusion of the covariate z; into the model does not rectify the problem. The
per-stratum fits of table 5 show a steady growth of the estimated coefficient. (For
stratum 1 the data set and fit are identical to the conditional model). The problem
here is that the data for strata 2, 3, etc no longer obey the proportional hazards
model. Strata 3, for instance, contains all 2000 subjects, so randomization over z;
is not an issue. The time to first event, however, is the sum of three exponentials.
It is easy to show that for exponentials that the hazard ratio for strata k is (A1 /o)*
at time 0 and then decays to an asymptotic value of A\;/Xe. Per strata checks of
the proportional hazards assumption should be done when utilizing the marginal
approach. Figure 8 shows the cox.zph plot with confidence bands for the first
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Figure 8: Tests of proportional hazards for the marginal model, strata 1-3
‘ rxl =2 rx3 rx4 x5 rx6 rx7
marginal | -0.99 -1.7 -21 -23 -42 -42 -4.2
conditional | -0.99 -0.9 -0.6 -0.3 —oco NA NA
Table 5: Models with interaction
stratum, with the curves for strata 2 and 3 overlaid. A horizontal line at § = —1

shows the true hazard ratio. The lack of proportional hazards for the latter strata
is clear.
In summary, this example suggests

e The independent increment or Andersen-Gill model gives a nearly unbiased
estimate of the treatment effect, even when an important covariate has been
omitted. The naive estimate of variance may be too small, but the robust
estimate D'D corrects for this.

e The conditional model gives seriously biased estimates when an important
covariate is omitted, due to swift loss of balance in the later strata.

e The marginal model may violate the proportional hazards assumption, even
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when the overall data set does not. Such violation can and should be tested
for.

6.4.5 Bladder Cancer

The bladder cancer data is listed in Wei, Lin and Weissfeld [49] (WLW). The data
set contains recurrence times in months for 86 subjects, each subject has between 0
and four recurrences. There may be follow-up beyond the last recurrence.

Number of Recurrences
‘ 0 1 2 3 4

Number of Subjects 39 18 7 8 14

Follow-up after last event ‘ 38 17 5 6 12

One of the subjects (the one with no follow-up after the Oth recurrence in the table
above) has no events and 0 months of follow-up. For simplicity, this subject was
removed from the data set since he adds nothing to the likelihood. The covariates
are initial size, initial number, and treatment group.

In order to accommodate all 3 analysis types, two data sets were created. Blad-
der2 contains 4 lines per subject with variables

id subject id, 1 to 85

futime  follow-up or recurrence time

status 1=recurrence, 0=censoring

number initial number

size initial size

X treatment code, 1=placebo, 2=thiotepa
enum event number

and is used for the marginal analysis. The enum variable will be 1 for the first
recurrence, 2 for the second, etc. For a subject with recurrences at months 12 and
16 and further follow-up until month 18, the 4 observations will have values for
futime, status, and enum of (12, 1, 1), (16, 1, 2), (18, 0, 3) and (18, 0, 4). The data
set has 85*4 = 340 observations.

Note that the data set does not contain information on follow-up after the fourth
event. These observations would be in stratum number 5, which has no events and
so adds nothing to the analysis.

Data set bladder1 is constructed in the AG style. In place of the futime variable
there is a pair of variables start, stop which define the time interval of risk. Sub-
jects with no recurrences will have one observation, those with 1 recurrence have
1 or 2 observations (depending on whether there is additional follow-up after the
recurrence), and so on. Bladderl has 190 observations.
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The following lines replicate the suggested analysis in WLW:

> options(contrasts=’contr.treatment’)
> fit <-coxph(Surv(futime, status) ~ (rx + size + number) * strata(enum)
+ cluster(id), data=bladder2, method=’breslow’)

In order to match the WLW results, I have used the Breslow approximation for ties.
The output of the fit is:

coef exp(coef) se(coef) robust se P
rx -0.5176 0.596 0.3158 0.3075 0.092
size 0.2360 1.266 0.0761 0.0721 0.001
number 0.0679 1.070 0.1012 0.0853 0.430
rx:enum=2 -0.1019 0.903 0.5043 0.3265 0.760
rx:enum=3 -0.1823 0.833 0.5579 0.3916 0.640
rx:enum=4 -0.1328 0.876 0.6581 0.4968 0.790
size:enum=2 -0.0985 0.906 0.1193 0.1144 0.390
size:enum=3 -0.0662 0.936 0.1298 0.1167 0.570
size:enum=4 0.0930 1.098 0.1465 0.1175 0.430
number:enum=2 -0.1440 0.866 0.1680 0.1119 0.200
number:enum=3 -0.2792 0.756 0.2086 0.1511 0.065
number:enum=4 -0.2708 0.763 0.2514 0.1856 0.140

The second three coefficients are treatment contrasts between stratum 1 and the
others. WLW obtain their results by fitting each strata separately. This gives a
coefficient for the treatment effect in strata 2, for instance, of (-0.5176) + (-0.1019)
= -0.6195. Alternatively, specific dummy variables could have been created for use
in the model equation to give the WLW coeflicients directly, or one could create a
contrast matrix temp

100 000 000 00O
100 100 000 000
100 010 000 000O0
100 001 000 000

and compute (temp %*% fit$coef) for the coeflicients and (temp %*% fit$var %xY
t(temp)) for the variance. Such manipulations should be familiar from linear models
work.

WLW then suggest a combined treatment estimate, based on a variance weighted
average of the four individual treatment estimates. A much easier approach is to
just leave out the treatment by strata interaction:
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rx size
naive robust naive robust
coef se se coef se se
Andersen-Gill | -0.41 0.200 0.251 0.17 0.047 0.056
conditional | -0.33 0.216 0.205 0.12 0.051 0.048
marginal | -0.59 0.202 0.311 0.22 0.046 0.065

Table 6: Comparative fits for the bladder data

> fit2 <- coxph(Surv(futime, status) ~ rx + (number + size)*strata(enum)
+ cluster(id), data=bladder2, method=’breslow’)

Since none of the interaction terms were significant, we will compare the three
fitting methods using a main effects model with only treatment and size. The
Andersen-Gill, conditional, and marginal fits are obtained with the following S-Plus
code.

fita <- coxph(Surv(timel, time2, status) ~ rx + size + cluster(id),
method=’breslow’, data=bladderl)
fitc <- coxph(Surv(timel, time2, status) ~ rx + size + cluster(id) +
strata(enum), method=’breslow’, data=bladderi)
fitw <- coxph(Surv(futime, status) ~ rx + size + cluster(id) +
strata(enum), method=’breslow’, data=bladder?2)

The results are shown in table 6. The conditional model gives a smaller esti-
mate than the Andersen-Gill and the marginal model a larger one, but all are well
within one standard error of each other. Figure 9 shows a proportional hazards
plot constructed in the same way as figure 8. Although there is some evidence of
a right shift in the curves for stratum 1, 2, and 3, all of the variation is within the
pointwise confidence bands for the first stratum’s curve. For this data set, unlike
the hidden covariate example, there does not seem to be significant violation of the
proportional-hazards assumption within the later strata.

For comparison, we also show the SAS code to fit the WLW model. SAS versions
prior to release 6.10 do not have a provision to return the leverage residuals D. The
phlev macro, written by Eric Bergstralh and John Kosanke (Mayo Clinic) can be
used to obtain the necessary result, however. First the interaction variables must
be constructed, then the macro is called to obtain a phreg fit, an output data set
containing the leverage residuals D, and a data set containing the new variance
matrix. The macro also produces an output listing similar to the S listing above.

data templ; set bladder2;
rxl = rx * (enum=1);
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Figure 9: Tests of proportional hazards for the marginal model, strata 1-3

rx2 = rx * (enum=2);

rx3 = rx * (enum=3);

rx4 = rx * (enum=4);

numberl = number * (enum=1);
number2 = number * (enum=2);
number3 = number * (enum=3);
number4 = number * (enum=4);
sizel = size * (enum=1);
size2 = size * (enum=2);
size3 = size * (enum=3);
size4 = size * (enum=4);

%let xx= rxl rx2 rx3 rx4 numberl number2 number3 number4 sizel size2
size3 size4;
titlel "Bladder Cancer Example";

%phlev(data=templ, time=futime, event=status,
xvars= &xx, strata=enum, id=id, collapse=Y);

The output of the macro comprises several pages. It includes the ordinary phreg
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output along with the following table. (The printed table includes more columns).

Parameter Robust Robust

Variable Estimate SE SE Chi-Square P

rxl -0.51762 0.31576 0.30750 2.834 0.0923
rx2 -0.61944 0.39318 0.36391 2.897 0.0887
rx3 -0.69988 0.45994 0.41516 2.842 0.0918
rx4 -0.65079 0.57744 0.48971 1.766 0.1839
number1l 0.06789 0.10125 0.08529 0.634 0.4260
number?2 -0.07612 0.13406 0.11812 0.415 0.5193
number3d -0.21131 0.18240 0.17198 1.510 0.2192
number4 -0.20317 0.23018 0.19106 1.131 0.2876
sizel 0.23599 0.07608 0.07208 10.720 0.0011
size2 0.13756 0.09190 0.08690 2.506 0.1134
size3 0.16984 0.10521 0.10356 2.690 0.1010
size4d 0.32880 0.12528 0.11382 8.345 0.0039

6.4.6 rIFN-g in Patients With Chronic Granulotomous Disease

Chronic granulotomous disease (CGD) is a heterogeneous group of uncommon in-
herited disorders characterized by recurrent pyogenic infections that usually begin
early in life and may lead to death in childhood. Interferon gamma is a princi-
pal macrophage-activating factor shown to partially correct the metabolic defect
in phagocytes, and for this reason it was hypothesised that it would reduce the
frequency of serious infections in patients with CGD. In 1986, Genentech, Inc. con-
ducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients
who received Genentech’s humanized interferon gamma (rIFN-g) or placebo three
times daily for a year. The resultant data set can be found in appendix D of Flem-
ing and Harrington [14]. The primary endpoint of the study was the time to the
first serious infection. However, data were collected on all serious infections until
loss-to-followup, which occurred before day 400 for most patients. Thirty of the 65
patients in the placebo group and 14 of the 63 patients in the rIFN-g group had at
least one serious infection. The total numbers of infections were 56 and 20 in the
placebo and treatment groups, respectively. Is a multiple events regression useful?

In choosing a model for the time to recurrent infections, the analyst should
consider the biological processes of the disease. For instance, it is possible that
after experiencing the first infection, the risk of the next infection may increase.
This could happen if each infection permanently compromised the ability of the
immune system to respond to subsequent attacks. If this were the case, one would
use a model containing separate strata for each event, or perhaps incorporate a
time-dependent covariate. From practical experience, clinical scientists conducting
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| B se(B) robust se
Time to first event | -1.09 0.34 0.34
A-G | -1.10 0.26 0.31
marginal | -1.34  0.27 0.36
conditional | -0.86  0.28 0.29

Table 7: Fits for the CGD data

the rIFN-g trial suggested that the risk of recurrent infection remained constant
regardless of the number of previous infections. This suggests use of an independent
increments or A-G model.

The results of several models are shown in table 7. In the first model, time to
first infection, the ordinary and robust variance estimates agree closely; a major
disagreement would be evidence that some assumptions of the Cox model were
violated. The Andersen-Gill model gives nearly an identical coefficient. If between
subjects correlation is ignored then there is an apparent reduction in variance of
39%, from 0.112 to 0.068. Using the robust variance estimate D'D the reduction is
much smaller, only 13%. This suggests that including all events in the analysis is
worthwhile although the gain is slight.

The pattern of results for the marginal and conditional approaches is remarkably
similar to the simulated example presented earlier. The conditional model results
shown above are for time since entry, a fit using time since last event differs by
only £.01 from these. If separated coefficients are fit to the first 3 strata or event
numbers, the results for the marginal model are -1.10, -1.25 and -2.74, and for the
conditional model they are -1.10, 0.11, and -1.28. (In the conditional setup, the
treatment group has only 5 observations in stratum 3). Again, this is very similar
to the hidden covariate example.

Because of this similarity, we might expect that the independent increment and
conditional models would give closer results if the model were to include significant
covariates. The two most important factors, other than treatment, are age and
enrollment center (the first 3 digits of the subject id). Table 8 shows the results for
the treatment effect in a model that includes both age and center, the latter as a
categorical variable with 13 levels. The results again parallel the hidden covariate
data set. If center is entered as a stratification variable the results come even closer;
the coefficients for the A-G and conditional models are -1.23 and -1.19, respectively.

6.4.7 rhDNase in Patients With Cystic Fibrosis

In patients with cystic fibrosis, extracellular DNA is released by leukocytes that
accumulate in the airways in response to chronic bacterial infection. This excess
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| B se(B) robust se
Time to first event | -1.25 0.35 0.35
A-G | -1.16 0.26 0.30
marginal | -1.51  0.28 0.37
conditional | -1.00 0.29 0.29

Table 8: Fits for the CGD data, controlling for age and center

DNA thickens the mucus, which then cannot be cleared from the lung by the cilia.
The accumulation leads to exacerbations of respiratory symptoms and progressive
deterioration of lung function. More than 90 percent of cystic fibrosis patients
eventually die of lung disease.

Deoxyribonuclease I (DNase I) is a human enzyme normally present in the mucus
of human lungs that digests extracellular DNA. Genentech, Inc. has cloned a highly
purified recombinant DNase I (rhDNase or Pulmozyme) which when delivered to the
lungs in an aerosolized form cuts extracellular DNA, reducing the viscoelasticity
of airway secretions and improving clearance. In 1992 the company conducted a
randomized double-blind trial comparing Pulmozyme to placebo. Patients were
then monitored for pulmonary exacerbations, along with measures of lung volume
and flow. The primary endpoint was the time until first pulmonary exacerbation;
however, information on all exacerbations was collected for 169 days.

Table 9 shows the results on the number of exacerbations. Overall, 139/324
(43%) of the placebo and 104/321 (32%) of the rhDNase patients experienced an
exacerbation during the follow-up period. A Cox proportional hazards model using
the time to first exacerbations yeilds a hazard ratio of 0.69, with a 95% confidence
interval of (.54, .89); strong evidence that rhDNase reduces the number of pulmonary
events.

The data for second exacerbations, however, seem to point in the other direction:
42/139 (30%) of the placebo and 39/104 (38%) of the treated patients who had a
first exacerbation went on to experience a second. A multiple event Cox model can
be used to clarify and understand this result.

Since pulmonary exacerbations cause scar tissue to develop which reduces lung
function, it is reasonable to assume that the baseline hazard of each subsequent
exacerbation was different. This suggest the use of either

e a marginal model with one stratum per event number, or
e 3 conditional model with one stratum per event number,

e an Andersen-Gill model with a time dependent covariate for event number
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Number of Exacerbations | Placebo | rhDNase
0 185 217
1 97 65
2 24 30
3 13 6
4 3
5 1 0

Table 9: Frequencies of exacerbations in rhDNase trial.

Arguing against this, however, is the fact that patients are entered into the study
at various stages of disease. To attempt to control for 1 =“number of events while
on study” when zo =“number of events prior to entry” is unknown is not fruitful
in the A-G model, especially when x5 has both a larger mean and a larger variance
than 1.

Setting up the data sets for these models was more complicated than usual be-
cause of discontinuous intervals of risk. During an exacerbation, patients recieved
IV antibiotics and were not considered at risk for a new event until seven exacerba-
tion free days beyond the end of IV therapy. Figure 10 shows a plot of the time at
which an event occurred versus the time not at risk for the event. (The horizontal
coordinate mostly serves to spread out the points). There is no overall difference in
time to return between the treatments, but the treated have less events and thus
more total exposure time during the study.

Consider a single treated patient who had exacerbations at days 50 and 100 with
durations of 10, and 15 days, respectively and a final follow-up at day 180. Two
data sets were created to do the analysis. In the first, used for both the A-G and
conditional analysis, this patient would appear as 3 observations with data values

timel time?2 status rx enum
0 50 1 1 1
60 100 1 1 2

115 180 0 1 3

For the marginal analysis, they will appear as 12 observations. (Since 1 person has
5 events, all subject appear in 5 strata.)

timel time?2 status rx enum
0 50 1 1 1
0 50 0 1 2
60 100 1 1 2
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Figure 10: Time off study for dnase patients, o=placebo, x=treatment
0 50 0 1 3
60 100 0 1 3
115 180 0 1 3
0 50 0 1 4
60 100 0 1 4
115 180 0 1 4
0 50 0 1 5
60 100 0 1 5
115 180 0 1 5

A further consideration is the very small numbers of events in strata 4 and 5.
We have three possibilities to deal with this. The first is to treat them exactly like
the other strata, accepting the fact that the within stratum hazard estimates will
be very unstable, perhaps even useless. This is particularly true for the conditional
model, which has a very small sample size in this region. A second possibility is to
truncate the data set after the third event. The third approach, which we have used,
is to amalgamate stata 3—5. For the marginal model the strata may be preserved or
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‘ B se  robust se P
First event | -0.365 0.13 0.13 0.005
Andersen-Gill | -0.287 0.11 0.13 0.029
Marginal | -0.336 0.11 0.15 0.021
Conditional | -0.220 0.11 0.11 0.043

Table 10: Simple fits to the dnase data

I} se  robust se p

Marginal
rxl | -0.365 0.13 0.13 0.005

rx2 | -0.121 0.22 0.22 0.590

rx3 | -0.729 0.35 0.44 0.096
Conditional
rx1 | -0.365 0.13 0.13 0.005

rx2 | 0.208 0.22 0.21 0.310

rx3 | -0.259 0.36 0.34 0.450

Table 11: Stratum specific fits to the dnase data

not, the important change is to model a single treatment effect for events 3-5. For
the conditional model, the change is effected by capping the strata variable enum at
a value of 3.

Table 10 shows the result of simple fits to the rhDNase data, and table 11 the
results for more complicated models. The most acceptable model is the marginal
model with 3 covariates. In this we see an apparent lessing of the treatment effect in
stratum 2 and an increase in stratum 3. The individual contrasts between rx1/rx2
and rx1/rx3 are not significant, however, with p = .18 and .35, respectively. Given
the problem with non-proportional hazards exhibited in the hidden variable example,
it is best to test for this using the scaled Schoenfeld residuals. No evidence for non
proportional hazards was observed.

The results of analyzing the recurrent events from the double-blind trial sug-
gested a possible diminishing treatment effect; however no conclusion could be made
as a result of too little information. However, long term effect of rhDNase was es-
timable from data collected during a post double-blind observation period. At the
end of the 169 day trial, the treatment was determined to be efficacious and all par-
ticipating patients were given thDNase and followed for an additional 18 months.
The cross-over of placebo patients to thDNase was coded using a time-dependent
treatment covariate. Standard errors are again based on the robust estimate D'D.
Since the patients in the double-blind trial were enrolled during a six month pe-
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Exacerbation Number | Relative Risk | Standard Error
1 0.72 0.10
2 0.78 0.18
> 2 0.54 0.38

Table 12: Estimated risk of exacerbation: double-blind and follow-up periods.

Double-blind Follow-up

Placebo | rhDNase | rhDNase
Mean FVC (percent) 78 78 78
Mean FEV1 (percent) 61 61 61
Mean Age 18 19 19

Table 13: Characteristics of Patients: Double-Blind and Follow-up periods.

riod beginning in February 1992, data from months 7 through 12 of the follow-up
period were used in the analysis in order to remove any seasonal effect. The data
included observations from the placebo patients from the double-blind period and
data from all patients during months 7 through 12 of the follow-up period. The re-
sults of fitting a marginal model to the time until each exacerbation are summarized
in Table 12. The relative risk estimates of 1st and recurrent exacerbation suggest
that the treatment effect during the follow-up was sustained and consistent with
the double-blind period. Diagnostics did not indicate violation of the proportional
hazards assumption.

Approximately 9% of the patients dropped out during the extended follow-up
period. If these patients were significantly more ill than the remaining patients this
could bias the previous comparison. To test this, age and lung function at baseline
were compared to the values at month 7 of the follow-up, the results are displayed
in table 13. No difference in patient characteristics was seen.

Based on this analysis, rhDNase produced a significant and sustained reduction
in the risk of pulmonary exacerbations in patients with cystic fibrosis.
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