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Abstract

The issue of strati�cation and its role in patient assignment has gen-

erated much discussion, mostly focused on its importance to a study

[1,2] or lack thereof [3,4]. This report focuses on a much narrower prob-

lem: assuming that strati�ed assignment is desired, how many factors

can be accomodated? This is investigated for two methods of balanced

patient assignment, the �rst is based on the minimization method of

Taves [5] and the second on the commonly used method of strati�ed

assignment [6,7]. Simulation results show that the former method can

accomodate a large number of factors (10-20) without di�culty, but

that the latter begins to fail if the total number of distinct combinations

of factor levels is greater than approximately n=2. The two methods

are related to a linear discriminant model, which helps to explain the

results.
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1 Introduction

This work arose out of my involvement with lung cancer studies within the

North Central Cancer Treatment Group. These studies are small, typically 100

to 200 patients, and there are several important prognostic factors on which we

wish to balance. Some of the factors, such as performance or Karnofsky score,

are likely to contribute a larger survival impact than the treatment under

study; hazards ratios of 3{4 are not uncommon. In this setting it becomes

very di�cult to interpret study results if any of the factors are signi�cantly

out of balance.

With these small samples, however, there is concern that including too

many strati�cation factors will place us in the situation of the old proverb

that \He that attempts to please everyone pleases no one," i.e., that in trying

to balance on all of the factors there may be balance on none. To investigate

this simulations were performed using two methods of treatment assignment,

dynamic allocation and strati�ed assignment. The imbalance of a single factor

was examined in cases where the chosen proceedure is attempting to balance

on the relevant factor concurrently with from 0 to 11 others.

It must be pointed out that the issue of strati�cation is a controversial one.

Peto et. al. [3] hold the view that it is unnecessary, especially in large trials

where complete randomization is fairly e�cient, and also because retrospective

strati�cation by means of an analysis involving covariates takes care of possible

imbalances. The opposing view, articulated in Begg and Iglewicz [2], among

others, is that balancing provides a more e�cient comparison of treatments

for trials of the typical size and, more important, that trials in which the
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prognostic factors are well balanced are far more convincing to a scienti�c

audience than sophisticated covariate analysis alone. This report addresses a

more narrow problem: assuming that balance is desired, how many factors can

be managed?

2 Methods

The North Central Cancer Treatment Group and the Mayo Comprehensive

Cancer Center use a method of dynamic allocation to assign patients. This is

based on a technique found in Pocock and Simon [7] and in Taves [5]. Minor

changes have been made that allow easier computation by the randomization

personnel. The numer k of categorical randomization variables or factors on

which balance is desired usually ranges from 1 to 5, a factor commonly has

between 2 and 4 levels. The use of the word allocation rather than randomiza-

tion is purposeful: with this and other minimization techniques the treatment

assignment of nearly every patient, given the prior assignments, is fully deter-

mined. A coin or other randomizing device is rarely used.

As an example, with three factors the method works as follows: A new

subject arrives with values for the three factors of F1 = 1, F2 = 0, and F3 = 0.

A table like the one shown in Table 1 is constructed and �lled in with the

number of patients who fall into each category. The row labels of the table are

based on the new patient's characteristics, the counts within it are based on

the patients randomized to this point. The columns of the table correspond to

the treatment group. A given patient may count multiple times in a column.

The column totals T1, T2, etc. are compared, and the subject is assigned
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Table 1: Example of a Working Table

to the treatment with the smallest total. If there is a tie between two or

more treatment groups, then the treatment with the smallest total number

of patients on study (ignoring the factors) is chosen. If there is still a tie, a

random choice is made bewteen the tied groups.

Note that the construction and contents of the table did not depend on

the number of levels for each factor, but only on the realized values of them

for the patient about to be assigned.

If the additional rule to \break ties based on the treatment totals" is

dropped this has little e�ect on the performance of dynamic allocation. It

turns out that the column totals in table 1 rarely are tied unless the overall

treatment totals are also tied. To see this, assume that treatment group A has

more total patients than B. Then treating each row of the table as a sample

from the total study, in expectation the total sum for A will be larger than

that for B.

Another common way to control balance is by blocked randomization within

cells. The sample space is divided into the L1 �L2 � : : :�Lk unique cells formed
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by the k strati�cation factors, where Li is the number of levels for factor

number i. Balance is maintained separately within each cell using random-

ized blocks or some other simple method. This method will be refered to as

strati�ed assignment.

For simplicity, the simulation experiments were evaluated with two treat-

ment groups, and the k strati�cation factors had either 2 or 3 levels with corre-

sponding probabilities of 1=2, 1=2 or 1=3, 1=3, 1=3. An experiment consisted of

randomizing either 100, 200 or 400 patients to a `trial' using k = 1; 2; : : : ; or 12

factors. The imbalance I for any experiment is computed as the number of

patients with factor F1 = 0 on treatment A minus the number with F1 = 0 on

treatment B. By symmetry, I will be positive or negative with equal likelihood

and E(I) = 0.

If only factor F1 is considered, the best concievable assignment scheme

would achieve an imbalance of 0 whenever possible, i.e., whenever the total

number of patients with F1 = 0 was even. When there was an odd number with

F1 = 0 the imbalance would be �1. The least e�ective assignment method

is represented by a randomization scheme that paid no attention whatever to

factor 1. (Of course, a maliciously designed method could do even worse by

striving for imbalance, but this is not of interest here).

Thus, the simulation experiments quantify how the balance on one partic-

ular factor will be degraded by addition of other \extraneous" factors to the

balancing scheme. The relative placement of the expected imbalance between

the best case and worst case values provides a measure of randomization \ef-

�ciency" with respect to that factor. A strategy whose expected imbalance

for F1 is no better than it would be if that factor had been ignored has by
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de�nition an e�ciency of 0 | there is no return bene�t for the investigator's

time and e�ort to collect and use the strati�cation data. A strategy, if any,

that matches the ideal imbalance would have an e�ciency of 1.

Experience with dynamic allocation has revealed that when there are two

treatment groups, the total number on treatment is nearly always balanced

after every second patient. To make randomization within cells not appear

worse only because of a global treatment imbalance, the method used within

a cell was a randomized block of length 2.

3 Results

3.1 Best case imbalance

Let p = P (F1 = 0) and q = 1 � p. By adding the binomial expansions for

(p + q)n and (p� q)n, we see that the probability that the study will contain

an even number of patients with F1 = 0 is :5 + (q� p)n=2 = :5 + �, where n is

the number of subjects. Thus the imbalance I takes on values of 0, 1, and -1

with probabilities :5 + �, :25� �=2 and :25� �=2, respectively.

For p = :5 or n!1 we have � = 0 exactly. For p = :05, an extreme case

that might arise if F1 had several levels, and n = 100 the probability of an

even total is .500027. For any realistic n and p, then, the best case will have

E(jIj) = E(I2) � 0:5.
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Table 2: Simple Randomization

3.2 Worst case imbalance

If the chosen factor F1 were ignored in the randomization scheme then there

are two important possibilities for it's imbalance, depending on whether the

overall assignment scheme is based on simple randomization or restricted ran-

domization. In the case of simple randomization each subject is assigned

independently, e.g., by a coin ip. For the purposes of balance, we can view

each assignment as the realization of a multinomial with probabilities as shown

in table 2. The imbalance I will be the di�erence in counts between the two

cells in the top row. By symmetry, E(I) = 0, and simple calculation using the

moments of a multinomial yields E(I2) = np.

If the overall study design uses some form of restricted randomization, then

at the end of assignment there will be n=2 patients in treatment group A and

n=2 in B. Since factor F1 is not used in the balancing process, each of the n=2

patients on treatment A will independently have F1 = 0 with probability p,

similarly for the patients on treatment B. Thus I is the di�erence between two

independent binomial variables, and has variance npq=2 + npq=2 = npq. The

exact distribution of I can be enumerated by a simple computer program.
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3.3 Strati�ed assignment

The k strati�cation variables or factors divide the subjects into c = L1 � L2 �
: : : � Lk cells. When assignment is completed, any of these cells which has an

even number of patients will be balanced between treatment groups A and B,

and any with an odd number will have one extra assignment to either A or B.

Application of formula (1) of Hallstrom and Davis [8] yields

E(I2) =
X
i

Pr(celli has an odd number of subjects)

=
X
i

[1� (1� 2pi)
n] =2; (1)

where the sum is over those cells with F1 = 0, and pi is the probability that

a new patient's strati�cation factors will lie in the ith cell. For strati�ed

assignment with a blocksize greater than 2 the variance would be larger, since

cells with an even number of subjects may also be unbalanced.

E(I2) is equal to the expected number of cells with F1 = 0 which recieve

an odd number of assignments. If factor F1 is independent of the others,

then E(I2) = pE(n�), where n� is the total number of odd cells and p is the

probability that F1 = 0. If c >> n, then with high probability every cell will

have either 0 or 1 subjects, and E(n�) ! n. That is, for a large number of

factors strati�ed assignment will behave like simple randomization.

An important special case is when all of the cells have equal probability.

(This does not imply that p = :5, since factor F1 may have > 2 levels.) Then

E(n�) is c times the probability that a binomial(n, 1=c) is odd giving

E(I2) = p
c

2

�
1�

�
1� 2

c

�n�
:
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Figure 1: Imbalance versus number of strati�cation factors for n = 100. Lower

dotted line, ideal imbalance of
p
:5; upper dotted lines, imbalance for worst

case.

Some algebra shows that for c = n=2, E(n�) � n=4. If p = :5 this suggests

that strati�ed assignment would have about half the variance of restricted

randomization.

3.4 Simulation results

The imbalance distribution for strati�ed assignment and for dynamic alloca-

tion was approximated by simulation, using 500 replications. The main results

are shown in �gure 1 for sample size of n = 100 (50 patients per treatment

group). The root mean square imbalance
q
E(I2) for factor F1 = 0 is plotted

versus the total number of factors in the study. Three comparison lines are

also present. The lower represents the ideal balance of .5, and the upper the
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expected absolute imbalance for the worst case of F1 ignored and simple ran-

domization. The middle line is intermediate, with F1 ignored but assuming

restricted randomization for the study as a whole. From this �gure it is appar-

ent that the strati�ed method has completely degraded by the time there are

11 factors (2048 cells), and is equivalent to unstrati�ed simple randomization.

The method has lost about half of its e�ciency, as compared to restricted

randomization's error of
q
100=4 = 5, with 5 factors (32 cells). The value for

6 factors is is close agreement with the argument in the prior section, that the

squared error would be about half of npq for n=2 = 50 cells.

Dynamic allocation, on the other hand, is only mildly e�ected by the other

factors. With 11 competing factors, it has lost only about 20 percent of its

e�ciency for balance on F1, with respect to the ideal method for that factor.

Figure 2 shows the actual distribution of the imbalance for dynamic allocation

with 2, 5, and 10 factors. As the number of factors grows the distribution

grows wider and the absolute imbalace increases, but the maximum imbalance

is still very well controlled. Figure 3 shows the same information for strati�ed

allocation. The expected imbalance distribution with F1 ignored and restricted

randomization is included on both �gures.

Because dynamic allocation is focused on the univariate margins, it might

be expected to do well in the situation above. Figure 4 shows results from

the same set of simulations as �gure 1, but it displays the imbalance for the

smaller subgroup where both factor F1 and factor F2 are equal to 0. The

�rst point on each plot is rather high | both methods do poorly when one

of the salient factors has been ignored. For 2 factors, strati�ed allocation

attains nearly the minimum possible imbalance. As more factors are added
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Figure 2: Distribution of the imbalance for factor 1 by number of factors for

dynamic allocation.

Figure 3: Distribution of the imbalance for factor 1 by number of factors for

strati�ed allocation.
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Figure 4: Imbalance of the F1 = F2 = 1 cell by number of factors, n = 100.

Lower dotted line, ideal imbalance of
p
:5; upper dotted lines, imbalance for

worst case.

its behavior degrades, and any bene�t of the strati�cation process has been

lost when there are 10 factors. Dynamic allocation controls the two unvariate

margins F1 = 0 and F2 = 0 very well, giving a hypergeometric behavior to the

combination F1 = F2 = 0, which attains about 50% e�ciency. The dashed

line on �gure 4 shows the behavior of dynamic allocation when the balance is

performed on all 2 factor interactions rather than on the univariate margins.

That is, for 6 factors, the allocation was performed as if each of the
�
6

2

�
= 15

pairs were a separate 4 level factor, rather than using the six 2 level factors

directly. The results are encouraging, especially since in actual practice only

the few factors whose interactions are of particular interest would need to be

treated in this way. Table 3 (see below) shows that the univariate margins
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remain well balanced with this proceedure.

Multiple other simulations were done, including sample sizes of 200 and

400, multi-level factors, correlated factors, additional randomization, and a

relationship to linear models. Most of the results are summarized in Table 3.

The explanations below are indexed to the table.

1. The case shown in �gures 1{3, n = 100, root mean square imbalance on

the univariate margin F1 = 0.

2. The same data as case 1, but using E(jIj) rather that
q
E(I2) as the

measure of imperfection. The values are somewhat smaller, but the

overall trend is the same. Because the absolute value is harder to work

with, this example is its only use in the paper.

3. The case shown in �gure 4, n = 100, RMS imbalance on the bivariate

margin F1 = 0 F2 = 0. For strati�ed assignment and k � 2 we can apply

the exact results by treating F1 and F2 as a single 4 level factor with

p = :25.

4. The �rst line shows the RMS imbalance on the bivariate margin F1 = 0

F2 = 0, using dynamic allocation on all pairwise factor combinations.

The second line shows the imbalance for the univariate margin F1 = 0.

5. RMS imbalance for n = 400, and 2 to 12 binary factors. As n is in-

creased, the plots for strati�ed assignment have the same initial behav-

ior, but reach a higher asymptote. The behavior of dynamic allocation,

on the other hand, is essentially unchanged by n. The reason for this
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stability can be seen by looking at Table 1: the outcome of a calculation

is invariant to whether the average cell has 4{6 or 104{106 as its entry.

6. RMS imbalance for n = 100 and 2 to 12 three level factors. The behavior

of strati�ed assignment is more closely related to the total number of

cells L1 � L2 � : : : � Lk than to the total number of factors k. Dynamic

allocation, however, is largely independent of the number of levels per

factor, for the same reason that it is independent of n.

7. The table shows results for n = 100 and 1 to 12 binary factors, where

adjacent factors have a correlation of
p
2=2 = :71. Correlation among

the strati�cation factors is somewhat bene�cial to strati�ed assignment;

it appears to give a smaller e�ective number of cells. (Or equivalantly,

cells with very low probability which add little to the sum in equation

1). For dynamic allocation correlation makes very little di�erence, for

correlation, unless it is extreme, has only a small e�ect on the marginal

distribution of any one factor.

8. In practice, strati�cation totals will often be kept by a computer pro-

gram, and the computer system may su�er periods of unavailability dur-

ing which an ordinary coin ip or similar method used for assignment.

Dynamic allocation appears to be quite robust against such outage, as

shown by this simulation in which 20% of the assignments were made

randomly.

About half of the random assignments will agree with what the com-

puter would have recommeded had it been available. If we ignore the
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fact that computer down time will normally occur in blocks, this sim-

ulation is equivalent to augmenting the dynamic allocation proceedure

with a biased coin rule with p = 0:9, i.e., each assignment suggested by

the dynamic allocation proceedure is accepted with probability p. Pro-

ponents of the biased coin method often suggest p = 2=3. Results for

this value are also in the table, and show that the proceedure's ability

to maintain balance is badly compromised.

9. Strati�ed allocation is equivalent to the following procedure: Fit a linear

discriminant model in the strati�cation factors F1, F2, etc. to patients

1 to n, including all 2; 3; : : : ; k-fold interaction terms, with treatment

group as the dependent variable. Use the strati�cation factors of patient

n+1 to compute class probabilities based on the model, and then assign

the patient to the group with the lowest probability. Use treatment

totals to break any ties. (This is equivalent to a linear model with one

term for each of the L1 � : : : �Lk cells, so prediction depends only on the

contents of the cell). This equivalence also holds, trivially, for dynamic

allocation with a single factor. For multiple factors, the discriminant

analysis approach based only on main e�ect terms does not give patient

by patient assignments identical to dynamic allocation. However, it has

identical overall behavior in terms of imbalance: the table shows the

results of such a \linear model" allocation under the conditions shown

in case 1. Thus, another way to look at �gure 1 is in terms of a main

e�ects versus a full interaction model, and case 4 above would be similar

to a model with all pairwise interactions.
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Number of Factors

Case 2 4 6 8 10 12

1 strati�edy 1 2 3.9 5.9 6.7 7.0

dynamic 0.8 1.0 1.2 1.4 1.5 1.6

2 strati�ed 0.7 1.6 3.2 4.7 5.5 5.8

dynamic 0.5 0.8 0.9 1.1 1.1 1.2

3 strati�edy 0.7 1.4 2.8 4.2 4.8 4.9

dynamic 2.4 2.4 2.7 2.7 2.7 2.7

4 bivariatey 0.7 1.0 1.5 1.9 2.1

univariate 0.9 1.1 1.3 1.4 1.4

5 strati�edy 1 2 4 7.8 11.8 13.5

dynamic 0.8 1.0 1.1 1.4 1.5 1.6

6 strati�edy 1.2 3.5 5.4 5.7 5.8 5.8

dynamic 0.8 1.1 1.3 1.5 1.6 1.8

7 strati�ed 1.0 1.9 2.7 3.6 4.5 6.0

dynamic 0.8 1.0 1.2 1.3 1.5 1.7

8 bias=.9 1.0 1.3 1.4 1.7 1.9 2.0

bias=2/3 2.5 3.0 3.2 3.5 3.7 3.9

9 linear 0.7 1.0 1.2 1.4 1.6 1.7

Table 3: Imbalance for Various Cases. A ymarks exact results, others are by

simulation.
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4 Discussion

Across several con�gurations using various sample sizes and 2 or 3 level factors,

there was a fairly consistent rule of thumb for the strati�ed strategy: when

the number of cells is approximately n=2, then the e�ciency for balancing

on any single factor is about 1=2. For any particular con�guration, a more

precise comparison can be obtained by comparing equation 1 to the limit npq.

With a su�cient number of factors, performance is actually worse than using

an appropriate unstrati�ed assignment method for the study. Studies that

use strati�ed assignment should not attempt to balance on more than a few

important predictors.

Dynamic allocation is able to deal with a large number of factors: an

extension of �gure 1 (not shown) showed that .5 e�ciency for this case occurs

with approximately 30 factors. If a particular factor*factor substratum is

deemed important, then that pair of strati�cation variables can be entered

as a single factor with a larger number of levels. Similar behavior would be

expected from other procedures that work with only the �rst order or linear

terms in their balance attempts, such as that of Begg and Igelwicz [2].

The scope of this report has been purposefully restricted to a single ques-

tion: whether the methods actually achieve their goal of creating balance

between the treatments. Before choosing a method of assignment other issues

need to be explored as well, these include the actual need and utility of study

balance, and appropriate analysis methods when a deterministic rather than

random assignment of patients has occured.
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