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1 Introduction 

This work began in an effort to Implement expected survival routines in the S pack- 
age, similar to the functionality contained in the SAS procedures survf it and survdif. 
The tables of survival probabilities used by those two programs form the basis for the 
calculations. These tables had been compiled over several years by members of the 
Department of Health Sciences Research, and are documented in [2] and [12]. Initial 
exploration was focused on plots of this data, in order to understand its structure, and 
some data anomalies were discovered in this process. The lion’s share of the data, as 
currently used, is discussed in section 2. Further detail on the West North Central data 
set is in appendix 2. Section 3 shows how these rate tables can be used to construct the 
survival curve for an individual subject. 

Exploration of some recent papers on expected survival for a cohort of subjects has 
cast doubt on the computational method chosen for the original SAS procedures. Section 
4 contains an overview and comparison of the competing methods. Sections 5 and 6 
discuss new S and SAS functions that implement these techniques. Examples are given 
that use both the US population and user-created rate tables. 

2 Expected Survival Rates 

2.1 Corrections 

The expected survival data consists of 5 groups of tables: US, Minnesota, Florida, Ari- 
zona, and West North Central (WNC). The WNC region consists of the states Nebraska, 
Kansas, Missouri, North and South Dakota, Iowa and Minnesota. All are divided by 
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age. sex and calendar year, with optional further divisions by race, and are derived from 
published US and regional mortality data. The data tables are published for decade 
years, usually with about a 5 year lag, e.g., we expect to have the 1990 data avarlable 
by 1995. Each table is based on the average of 3 years, e.g., 1989-1991. The table entry 
qrsGoz4,F would contain the probability that a female who became 24 years old sometime 
in 1960 will die on or before her 25th birthday. 

Because of some rounding errors that were discovered. as well as the need to add 
Florida and Arizona tables, ail of the tables were re-entered in January 1994. This 
will cause some differences bet.ween the answers given by the new routines and those 
obtained with the older SAS surtiit procedure. As well, some concerns were noted with 
the West North Central data set, which is derived from a number of sources and would 
have been quite difficult to recreate “from scratch”. These issues and the corrections 
are detailed in appendix 2. 

2.2 Sources 

The following are the sources for the US and state tables. 

2.2.1 United States 

1960 United States Lifetables 1959-61, Public Health Service Publication No. 1252, 
Volume 1. No. 1 

1970 U.S. Decennial Lifetables 1969-71, DHE\v Publication No. HRA 75-1150, Volume 
1, X0. 1 

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 85-1150-1, \lol- 
ume l.No. 1 

2.2.2 West lVorth Central 

See table 1 in [2]. 

2.2.3 Minnesota 

1950 Unknown (the files cont.ain a photocopy, without reference). 

1960 Minnesota State Lifetables 1959-61, Public Health Service Publication No. 1252 : 
Volume 2, No. 24 
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1970 U.S. Decennial Lifetables 1969-71, DHEW Publication No. HRA 75-1151 , Volume 
2, No. 24 

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 86-1151-24 , 
Volume 2, No. 24 

2.2.4 Florida 

1970 U.S. Decennial Lifetables 1969-71, DHEW Publication No. HRA 75-1151 , Volume 
2, No. 10 

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 86-1151-10 , 
Volume 2, No. 10 

2.25 Arizona 

1970 U.S. Decennial Lifetables 1969-71, DHEW Publication No. HRA i5-1151 , Volume 
2, No. 3 

1980 U.S. Decennial Lifetables 1979-81, DHEW Publication No. PHS 76-1151-3 , Vol- 
ume 2, No. 3 

2.3 Computer Tables 

The following rate tables have been created. All of the tables are by age (O-109), sex 
and calendar year. Only the decade calendar years are included; intervening year’s data 
is created within the functions by linear interpolation. The S version of the WNC table 
has separate rates for 0 - 6 months and 6 months - 1 year and yearly ages beyond that. 
All other tables are by year of age. 

2.3.1 S 

The tables are part of the survival package, and are automatically attached when Splus 
is invoked. The master copy for the tables is on the RCF machine feynman, along with 
that for the remainder of the survival functions. Details on the internal format are given 
in the section of S examples. 

survexp.us United States total for calendar years 1960 - 1980. 

survexp.usuhite US white for calendar years 1950-1980. 
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survsxp.nsr US survival for calendar years 1960-1980, by race. The race groupings are 
white, non-white, and black. Data for blacks was not available in the 1960 and 
1970 data, and the non-white values were used. 

survsxp.az Total survival for Arizona. calendar years 1970-1980. 

survexp.az.r Arizona survival by race, white and non-white. for 1970-80. The non-white 
values for 1970 were unavailable, and the 1980 non-wbte was used. 

survexp.fl Total survival for Florida, calendar years 1970-1980. 

survexp.flr Florida survival by race, white, non-white and black, for 1970-80. The 
black values for 1970 were unavailable, and the 1970 non-white was used. 

survexp.mn Total survival for Minnesota, calendar years 1970-1980. 

survexp.rmnnuhite Minnesota white survival for calendar years 1950-80. 

survexp.unc West North Central white survival for 1920-1980. 

2.3.2 SAS 

The receIat!,, ontonvl nnm,lat;nn rlatza ;c ctnrd nn tha mnvalot 2rc~aives ,2nder member = -_.1 -_-I ~‘-I--I" ---. --"- -I -" ---- I__ "-_- ~---.--" 

D1540201 with the following format: 
Co1 1-2 = population (MN.US,FL,AZ,WN) 

3 = race (T=tota.l,B=black,W=white, N=non-white) 
4 = sex (M,F) 

5-8 = year (1960,1970,1980) 
9-11 = age (0,109) (whole years only) 

12-17 = proportion dying during year (q) entered without a decimal point 

The popuiation data used by SAS are stored in five SXS datasets. 

1. It-us. ssdO1 contains the US population data 

2. ltsm.ssdOl contains the Minnesota population data 

3. It-uric. ssdOi contains the West North Central population data 

4. lt.fl. ssdO1 contains the Florida population data 

5. It=. ssdOi contains the Arizona population data 
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Each dataset contains one observation per hazard value, and has the following vari- 
ables: 

pop = 3 character population name (US,MN,WNC,AZ,FL) 

year = decade specification (1910-1980) 

se= = 1 character sex (m,f) 

~-ace = 2 character race (t=total, w=white, b=black, nw=non-whrte) Please note 
b and nw are not mutually exclusive. 

age = age (o-109) (whole years only) 

q = probability of dying before next birthday (from life table) 

hazard = calculated daily hazard = -Iog(l-q)/365.241 

These datasets are stored on the following libraries: 

1. on unix, under /usr/local/sasmac 

2. on IBM,on hsrp.jlk.sLi0400.pops 

Within the SAS macros using these populations, the following selections are possible 
for the parameter POP. These specifications use all or portions of the above populations 
selected in the documented ways: 

us-t US Total for 1960-1980 

us-w US White only for 1950-1980 

us-unu US White vs Non-white for 1960-1980 

us-ba US White vs Black for 1980 

uncs West North Central White only for 1910-1980 (note - 1970 and 1980 use MN 
White rates) 

mu-t Minnesota Total for 1970-1980 

mns Minnesota White only for 1950-1980 

fl-t Florida Total for 1970-1980 

fl-w Florida White only for 1970-1980 
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fl-unv Florida White vs Non-white for 1970-1980 

fl-bu Florida White vs Black for 1980 

az-t Arizona Total for 1970-1980 

az-u Arizona White only for 1970-1980 

az_unu Ariznna White vs Non-white for 1980 

2.4 Extrapolation 

There is a time lag of 4-5 years between each census and the publication of the corre- 
sponding rate tables; we expect that the 1990 tables will become available some time 
in 1994 or 1995. Until then, the last available year’s data is used for all follow-up after 
1980. A look at figure 7, however, shows that the death rates for most ages have shown 
a steady decline over the years. The present method, which amounts to extrapoIat- 
ing these curves to the right by horizontal lines, does not appear to be a very wise 
extrapolation rule. 

There are plans to improve this, using a 1994 summer student as the extra labor. 
When completed year 1990 and 2000 “data” will be added to the rate tables to produce 
the annmnriato outrannlatinn withnnt nwdinrr tn rhnnw the S nr SAS fmnrtions. This -~r--~----- -____ - r -------7 _._.--. -------. .- ----.o- ._.. _ . _~~_ ~~~ 
will be documented in a later technical report. 

3 Individual Expected Survival 

3.1 Population rate tables 

In the published life tables, each entry is the probability that a given subject, in a given 
calendar year, will reach his/her next birthday [14]. The entry for a 20 year old male 
in 1950: for instance, contains the probability that a subject who turns 20 years of age 
in 1950 will reach his 21st birthday. The log of this survival probability p, is related to 
the cumulative hazard A(t) 

- log(p,) = A(2 + 1) - A(i) 

Assuming that the cumulative hazard is linear over each interval, each subject’s cumula- 
tive hazard curve is a piecewise linear function with ‘elbows’ at each birthday, somewhat 
as depicted in figure 1 for a subject born on 11/g/1931. 

The table of U.S. hazards has data only for the decades 1960, 1970, etc. Linear 
interpolation is used for intervening years, e.g. the 1962 value is .8+(1960 value) + 
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Figure 1, Cumulattve hazard vs calendar izme. 

.2*(1970 value). The rates for the earliest available calendar year are used for all years 
before this year and the rates for the latest calendar year in the table are used for all 
years after that year. The rates for the oldest age (109) are used for all subsequent ages. 

For integer years of follow up the total survival for a subject can be expressed either 
using hazards as exp(-A(t)) or as a product of conditional yearly probabilities np,, the 
two forms give identical answers. For partial years of follow-up the interpolation can 
be done either on the hazard scale (i.e. as in the figure above) or on the survival scale. 
The former is used by the new routines described in this paper, the latter was used by 
survf1t. 

In detail, the hazard based computation is as follows: we assume that each subject 
experiences a daily hazard of ho/day over the first year of life, hr/day over the second 
year, . . . . The cumulative hazard A(t) is the sum of the daily hazards, and the ex- 
pected survival at time t is exp(-A(t)). Th e major advantage of the cumulative hazard 
formulation, as opposed to multiplying the conditional probabilities, is that it is much 
easier to deal with partial years of follow-up. For example, a woman born on 8/31/42 
enters a study on 5/10/63. What is the expected 1 and 2 year survival? The subject 
is 20 years old on 8/31/62. From the US white female table for 1960, the conditional 
probability of surviving from the 20th to 21st year is 0.999434 and the corresponding 
hazard per day is - log(.999434)/365.24 = .0000015550. In 1970, the values are .999355 
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and 0.0000017724. respectively. Using linear interpolation on the hazard scale. the 1962 
hazard rate would be: .8 *(1960 value) + .2*(19iO value) = .0000015985. In like fash- 
ion, the hazard from her 21st to 22nd birthday would be .0000016410. Using the hazard 
formulation, her cumulative hazard for the first year is 10m6 times 

5/10/63 to 8/30/63 = 113 days @ 1.5985 = 180.628 
8131163 to 5/9/64 = 253 days Q 1.6410 = 415.165 

So, the 1 year probability of survival is exp (-.0005960) = .9994044. (rounded numbers 
are printed here, but the computations used exact values). 

Using the linear interpolation found in survflt, the survival using the event rates 
would be computed from the 2 yearly survival rates of exp(-365.24*.0000015985)= 
.9994163 and .9994008 as 

5/10/63 to g/30/63 = 1 - (113/365)(1- .9994163) = .999819 
8131163 to 5/g/64 = 1 - (253/365)(1- .9994008) = .999585 

which are multiplied together to obtain an overall survival of .9994041. The numeral 
difference between the two methods is trivial, but the hazard calculation is more con- 
venient since it is a simple sum. 

A more substantial difference comes from alignment. In the example above. snrvfit. 
would actually not do the calculation that was outlined, but rather it would report the 
. _“_ r -A,.*.,.,, lYoL value or .YYY410.3 as the one year probdbiliiy of suivivd. That is, survf~i acts as 
though t.he subject were 20.0 years old on the entry date of 5/10/63. (For the usual 
program request of 1, 2, etc year expected survival values this considerably simplifies 
the calculations.) Essentially, we treat patients as being slightly older than survfat 
does. The amount of difference that this makes depends on the patient’s age, follow-up 
time, and the time between enrollment and the last birthday. 

There are two reasons for using 365.24 instead of 365.25 in our calculations. First, 
there are 24 leap years per century, not 25. Second, the use of .25 led to some confusing 
S results when we did detailed testing of the functions, because the S round function 
..“,.^ uaT;o a nezes: p,re;; number -,-‘- : - .-m...rlr+ Cl = .-^.."lC1 EI -9 Tn 3,h,l Altl nf LULZ, I.L., L”ulLY\r .“, iiuulau\r.u, -e. .I. Y.\ X.LUI ".'"-, -. 

course, this niggling detaJ won’t matter a bit. 

3.2 User created rate tables 

The ITS and state populat.inn tables are somewhat specmll in that many other sources 
for rate data are reported not as a probability of survival p but as T = events per 100,000 
subjects per year. The daily hazard table for the computer program could, presumably. 
he created using either one of these two formulae: 

- log( 1 - IO-'~)/365.24 
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For rare events, these two forms will give nearly identical answers. For larger rates, the 
proper choice depends on whether the rate is computed over a population that is static 
and therefore depleted by the events in question, or a population that is dynamic and 
therefore remains approximately the same size over the interval. The first case applies 
to the standard rate tables, the second may more often apply in epidemiology. 

4 Cohort Expected Survival 

The prior section discussed the computation of an expected survival for an individual, 
here we outline how these are combined to give an overall expected survival for the 
group. There are several different methods. The various papers in which they are de- 
scribed can be somewhat difficult to compare because they are confounded with different 
approximation methods for the individual curves, i.e., the subject of the last section. 

Let X,(t) be the expected hazard function for subject 2, drawn from a population 
table, and matched with subject e based on age, sex, and whatever. Then 

St(t) = exp(-h(t)) 

A,(t) = l,t USPS 

are the expected cumulative hazard and expected survival curves, respectively, for a 
hypothetical subject who matches subject i at the start of follow up. For simplicity 
in some later expressions, also define h,(t,s) = A,(t + s) - A,(t), the total hazard 
accumulated by subject i from time t to time t + s. 

The expected cumulative hazard and survival for the combined cohort of subjects 
i=l,..., n are defined as 

Se(t) = exp[-A,(t)1 , 

where q(t) depends on the method. Suggested choices for w are 
the eract method of Ederer, Axtell and Cutler [5] 

(1) 
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the cohort method of Hakulinen and Abeywickrama [7] 

m,(t) = S*(t)G(f), 

the cond~ttonal estimate of Ederer and Heise [6] 

(2) 

4.1 The Exact Method 

This is perhaps the most intuitive way to weight the expected hazards. The term under 
the integral is the average of the hazards at time s, and the weights are the probability 
of a subject being alive at that time. It is thus an average over those still expected to be 
alive. The exact method gives the survival curve of a fictional matched control group, 
assuming complete follow-up for all of the controls. This is perhaps easier to see if we 
rewrite the formula as 

Se(t) = exp(-A,(t)) 

= exp ; logUl/n) i: St(u)1 1 1 du 
r=l = (l/n) x S;(t). (3) 

r=l 

Equation (3) is the usual definition of the exact method. It is interesting to note 
that in the paragraph just above this definition ([5] page 110), the verbal description 
of the method suggests an average over those who actually survive to time t, which is 
the conditional estimate of Ederer and Heise. A third expression, and the form actually 
used by the program, is easily derived from the above. 

;se(? + s) = c I?\ 1 w,(t)e-hJ*,s) 
“ei ’ Cull(t) ’ 

where m,(t) E S,(t). This gives the total survival as a product of conditional survivals. 
One technical problem with the exact method is that it often requires population 

data that is not yet available. For instance assume that a study is open for enrollment 
from 1980 to 1990, with follow-up to the analysis date in 1993. If a 11 year expected 
survival were produced on l/93, the complete expected follow-up data for the last subject 
enrolled involves the year 2001 US population data. 

The procedure used m the past by our department, survfit, is based on the exact 
method. 
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4.2 The cohort method 

Several authors have shown that the Ederer method can be misleading if censoring is 
not independent of age and sex (or whatever the matching factors are for the referent 
population). Indeed, independence is often not the case. In a long study it is not 
uncommon to allow older patients to enroll only after the initial phase. A severe example 
of this is demonstrated m Verhuel et al. [13], concerning aortic valve replacement over 
a 20 year period. The proportion of patients over 70 years of age was 1% in the first ten 
years, and 27% in the second ten years. Assume that analysis of the data took place 
immediately at the end of the study period. Then the Kaplan-Meier curve for the latter 
years of follow-up time is guaranteed to be “flatter” than the earlier segment, because 
it is computed over a much younger population. The Ederer curve will not reflect this 
bias in the K-M, and give a false impression of utility for the treatment. 

In Hakulinen’s method [7, 81, each study subject is again paired with a fictional 
referent from the cohort population, but this referrent is now treated as though he/she 
were followed-up in the same way as the study patient. Each referrent is thus exposed to 
censoring, and in particular has a maximum potenttal follow-up, i.e., they will become 
censored at the analysis date. In the Hakulinen weight (equation 2), c, is a censoring 
indicator which is 1 during the period of potential follow-up and 0 thereafter. If the 
study subject is censored then the referrent would presumably be censored at the seme 
time, but if the study subject dies the censoring time for his/her matched referrent will 
be the time at which the study subject would have &en censored. For observational 
studies or clinical trials where censoring is induced by the analysis date this should be 
straightforward, but determination of the potential follow-up could be a problem if there 
are large numbers lost to follow-up. (However, as pointed out long ago by Berkson, if a 
large number of subjects are lost to follow-up then any conclusion is subject to doubt). 

In practice, the program can be invoked using the actual follow-up time for those 
patients who are censored, and the maximum potential follow-up for those who have 
died. By the maximum potential follow-up we mean the difference between enrollment 
date and the most optimistic last contact date, e.g., if patients are contacted every 3 
months on average and the study was closed six months ago this date would be 7.5 
months ago. It may true that the (hypothetical) matched control for a case who died 
30 years ago would have little actual chance of such long follow-up, but thrs is not 
really important. Almost all of the numerical difference between the exact and cohort 
estimates results from censoring those patients who were most recently entered on study. 

Assume that for some time interval (t,t + s) the weights w,(.) are constant for all t, 
i.e., that the potential risk set remains constant over the interval. Then using the same 
manipulation as in equation (3), equation (4) is found to hold for the cohort estimate 
as well, with S,(t)ct(t) as the weights. This is the estimator used by the program. 
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This formula differs somewhat from that presented in Hakulinen [8]. He assumes 
that the data are grouped in time intervals, and thus develops a modification of the 
usual actuarial formula. The numerical difference, however, should be trivial if the 
midpoints of these grouped intervals were used in (4). 

4.3 Conditional Expected Survival 

The conditional estimate is advocated bv Verhuel ]13], and was also suggested as a 
computation simplification of the exact method by Ederer and Heise [6]. The weight 
Y,(t) is 1 if the subject is alive and at risk at time t, and 0 otherwise. The estimate 
is clearly related to Hakulinen’s cohort method, since E(Y,(t)) = S,(t)c,(t). However, 
when considered as a product of conditional estimates, it’s form is somewhat different 
than (4); in this case 

Se(t + s) = S,(t) exp (- “~Y~()~(r)) _ 

As for the cohort estimate, the derivation requires that x(.) be constant over the interval 
(i, t + s), i.e., no one dies or is censored in the interior of the interval. 

One advantage of the conditional estimate, shared with Hakulinen’s method, is that 
it remains consistent when the censoring pattern differs between age-sex strata. This 
advantage was not noted by the Ederer and Heise, and the “exact” calculation was 
adapted as the preferred method [5, 71. A problem with the conditional estimator is 
that it has a much larger variance than either the exact or cohort estimate. In fact, the 
variance of these latter two can usually be assumed to be zero, at least in comparison 
to the variance of the Kaplan-Meier of the sample. Rate tables are normally based on 
a very large sample size so the individual rates X, are very precise, and the censoring 
indicators c,(t) are based on the the study design rather than on patient outcomes. The 
conditional estimate of S=(t), however, depends on the observed survival up to 1. 

The main argument for use of the conditional estimate is that we often want to 
make conditional statements about the survival. For instance, in studies of a surgical 
intervention such as hip replacement. the observed and expected survival curves often 
will initially diverge due to surgical mortality, and then appear to become parallel. It 
is tempting to say that survival beyond hospital discharge is “equivalent to expected”. 
This is a conditional probability statement, and it should not be made unless a condi- 
tional estimate was used. 

A hypothetical example may make this clearer. For simplicity assume no censoring. 
Suppose we have studies of two diseases, and that their patients’ age distributions at 
entry are identical. Disease A kills 10% of the subjects in the first month, independent 
of age or sex, and thereafter has no effect. Disease B also kills 10% of its subjects in 
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the first month, but predominately affects the old. After the first month it exerts a 
continuing though much smaller force of mortality, still biased toward the older ages. 
With proper choice of the age effect, studies A and B will have almost identical survival 
curves; as the patients in B are always younger, on average, than those in A. Two 
different questions can be asked under the guise of “expected survival”: 

. What is the overall effect of the disease? In this sense both A and B have the same 
effect, in that the 5 year survival probability for a diseased group is r% below that 
of a matched population cohort. The cohort estimate would be preferred because 
of its lower variance. It estimates the curve we “would have gotten” if the study 
had included a control group. Using the cohort method, the expected survival 
curves for study A and B are identical, which is logical since the hypothetical 
control groups for the two studies would be identical. 

l What is the ongoing effect of the disease? Detection of the differential effects of 
A and B after the first month requires the conditional estimator. The expected 
curves computed in this way are not the same; that for disease A will become 
parallel to the KaplanMeier of the group, and that for B would show continued 
divergence. 

Other suggestions for exploring conditional effects can be found in the literature 
under the heading of relative survival. Hakulinen [9] f or instance, suggests dividing the 
patients into disjoint age groups and computing the ratio of observed/expected survival 
separately within each strata. However, this estimate can have an unacceptable variance 
due to small numbers in the subgroups. 

4.4 Approximations 

The above equations (4) and (5) are “Kaplan-Meier like” in that they are a product of 
conditional probabilities and that the time axis is partitioned according to the observed 
death and/or censoring times. They are unlike a KM calculation, however, in that the 
ingredients of each conditional estimate are the n distinct individual survival probabil- 
ities at that time point rather than just a count of the number at risk. For a large 
data set this requirement for O(n) temporary variables may be a problem, particularly 
for the SAS macro. An approximation is to use longer fixed width intervals, and allow 
subjects to contribute partial information to each interval. For instance, in (5) replace 
the O/l weight Y%(t) by J*‘+‘Y,(u)dti/s, which is the proportion of time that subject z 
was at risk during the interval (t, t + s). A similar proportionality correction can be 
made to the weights in equation (4) for the cohort estimate: c,(t) is replaced by the 
proportion of time that subject i was uncensored during the interval (t, t f s). 
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If those with fractional weights form a minority of those at risk during the interval 
the approximation should be reliable. (More formally, if the sum of their weights is a 
minority of the total sum of weights). By Jensen’s inequality, the approximation will 
always be biased upwards. However, the bias is usually very small. For the Stanford 
heart transplant data used in the examples below an exact 5 year estimate using the 
cohort method is 0.94i28, a computation using half year intervals yields 0.94841. Even 
with these very wide intervals the difference is only in the third decimal place. 

The Ederer estimate is unchanged under repartitioning of the time axis. 

4.5 Recommendation 

If the expected survivaI curve is going to be compared to the observed (K-M) survival 
curve, either graphically or numerically, then the exact method should not be used unless 
there is convincing evidence that censoring is unrelated to any of the factors (age, sex. 
etc.) used to match the study group to the referent population. Such evidence is difficult 
to come by. It remains the easiest calculation to do by hand, but computer programs 
would seem to have made this advantage irrelevant. 

The conditional estimate is the next easiest to compute, since it requires only the 
follow-up time and status indicators necessary for the Kaplan-Meier. The actual curve 
generated by the conditional estimator remains difficult to interpret, however. One wag 
in our department has suggested caliing it the ‘lab rat” estimator, since the control 
subject is removed from the calculation (“sacrificed”) whenever his/her matching case 
dies. Andersen and V&h make the interesting suggestion that the difference between 
the log of the conditional estimate and the log of the Kaplan-Meier can be viewed as 
an estimate of an additive hazard model 

where X is the hazard for the study group, X, is the expected hazard for the subjects and 
a the excess hazard created by the disease or condition. Thus the diffwence h~tvee~ 
curves may be interpretable even though the conditional estimate S,(t) itself is not. 

We suggest that Hakulinen’s cohort estimate is the most appropriate for common 
use, and particularly for any graphical display alongside of the Kaplan-Meier of the 
data. If there is a question about delayed effects the conditional estimator can be used 
to create a plot of a(t) for inspection. In the example given above, the plots for disease A 
and B would have a marked change in slope after the first month (the plot for A would. 
presumably: actually become horizontal). A new Kaplan-Meier and cohort expected 
curve then could be plotted using only those patients who survived at least one month. 
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4.6 Total expected deaths 

All of the above discussion has been geared towards a plot of S,(t) = exp(-A,(t)), 
which attempts to capture the proportion of patients who will have died by t. When 
comparing observed to expected survival for testing purposes, an appropriate test is the 
one-sample logrank test (0 - E)‘/E [lo], w h ere 0 is the observed number of deaths 
and 

n 
E = -& 

r=l 

(6) 

is the expected number of deaths, given the observation time of each subject. This 
follows Mantel’s concept of ‘exposure to death’ [ll], and is the expected number of 
deaths during this exposure. Notice how this differs from the expected number of 
deaths in the matched cohort at time t: n.!?,(t). In particular, E can be greater than n. 
The SAS ltp macro and the S a&vexp function (with the coh&=F option) both return 
the individual expected survivals exp( -e,). 

Equation (6) is referred to as the person-years estimate of the expected number of 
deaths. The logrank test is usually more powerful than one based on comparing the 
observed number of deaths by time t to n&(t); the former is a comparison of the entire 
observed curve to the expected, and the latter is a test for difference at one point in 
time. 

Tests at a particular time pc$nt, though less powerful, will be appropriate if some 
fixed time is of particular interest& such as 5 year survival. In this case the test should be 
based on the cohort estimate. The HO of the test is “is observed survival at t the same as 
a control-group’s survival would have been”. A pointwise test based on the conditionaf 
estimate has two problems. The first is that an appropriate variance is more difficult 
to construct. The second, and more damning one, is that it is unclear exactly what 
alternative is being tested against. 

Berry [3] shows how the individual expected hazards e, may be used to adjust 
regression models. (As an aside, in his background discussion he neatly summarizes the 
major issues found in both Hartz et al. and their respondents). The one-sample logrank 
test is seen to be equivalent to the test for intercept=0 in a Poisson model with log(e,) 
as an offset term, replacing the usual offset of log&). This may be extended to more 
complicated regression models, e.g., to compare the excess death rates among multiple 
groups. An offset of log(e,) may also be used in a Cox model, to correct for differential 
background mortality. 
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5 S Implementation 

The program is implemented as a single S function surverp0. along with the rate 
tables described in section 2. Each of the rate tables is a multi-way array with age, sex, 
calendar year, and optionally, race as a dimension. As an example, we will calculate 
expected survival for the Stanford heart transplant data set, as found in the JASA 
article of Crowley and Hu [4]. This data set contains birth, entry, and last follow-up 
dates, treatment, and prior surgery as covariates. Sex will be assumed to be male, and 
we will use the US total population as the comparison data set. The last potential 
follow-up date for any subject was April 1 1974. 

The following code will calculate the Ederer or “exact” estimate, with separate 
curves for the two treatment arms. 

# exact estimate 
attach(Jasa) 
TX <- lls.na(tx.date) 
age <- (entry.dt - birth.dt) # age in days 
expl <- survexp( - IX t ratetable(age=age, year=entry.dt, sex=l), 

data=jasa, ratetable=survexp.us, tlmes=(0:4)*182.5) 

The ratetable function is used to match the data set’s variable names to the age, sex 
aud year -YILII"I"kLY "I "UC "" .a."G2. a:mnn&r\nc ,ftb TTC + Ll TX., _ ,.,?..-,. -+" cr. -_L-A-L_I _ ..^_ I..^ :.. ---_ --1-- 

111c UL~U"'.zUb" C" .LcIcDca_yIn LadI "1: 111 cL.LlJ "LUC'1. 

The times argument specifies that an output estimate should be computed at half year 
intervals for 2 years. The resultant curves can be listed or drawn using print and plot 
functions. 

The cohort estimate uses potential follow-up on the left hand side, along with the 
condltlonal argument. The potential follow-up time for a censored subject is the ob- 
served follow-up time, but for someone who dies it is the amount of time they might 
have been followed had the death not occurred. 

# cohort estimate 
ptime <- mdy.datsi4,1.74j - sntry.dt 
ptlme <- ifelse(fustat==l, ptlme. futlme) 
exp3 <- survexp( ptlme - rx + ratetable(age=age, year=entry.dt, sex=i), 

data=jasa. ratetable=survexp.us, times=(0:4)*182.5, 
condltional=F) 

If the times argument is omitted, an estimate is returned for each unique follow-up time. 
To compute the conditional estimate, follow-up t.ime is included on the left hand 

side of the formula. 

# conditional estimate 
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futlme <- fu.date - entry.dt 
exp2 <- survexp( futlme w rx + ratetable(age=age, year=entry.dt, sex=l), 

data=Jasa, ratetable=survexp.us. tlmes=(0:4)*182.5) 

By default, the survexp function returns a survrval curve for the entire cohort of 
subjects. To use expected survival as a covariate in a model a single number per subject 
is desired, i.e., the subjects’ expected hazard on their last follow up date. For instance, 
the following computes the one sample logrank test (the test for intercept=0 in f ltl) 
and a test for treatment difference after controlling for baseline mortality due to age 
(the test for rx=O in iits). Note the argument cohort=F. The vector has will contain 
the individual values e, of equation (6). 

# lndlvldual expected survival 
haz <- -log(survexp(futlme N ratetable(age=age. year=entry.dt, sex=l), 

data=jasa, ratetabfe=surverp.us, cohort=F)) . 
fit1 <- glm(fustat N offs@(log(haz)), data=jasa, family=poisson) 
flt2 <- glm(fustat N rx + offset(log(haz)), data=-jasa, family=poisson) 

By default the internal computations used in survexp partition the time line at every 
censoring or death point, thus equations (4) and (5) hold exactly. For very large data 
sets the npolnts option may be used to replace this with the approximation discussed 
in section 4.4. 

User created rate tables may be used in place of the provided populations. Table 
1 shows yearly death rates per 100,000 subjects based on their smoking status [15]. A 
stored raw data set contains thiidata, with the “Never smoked,” data replicated where 
the lower table shows blanks, followed by the data for females (female data IS not shown 
in the table for space reasons). A rate table is created using the following S code. 

temp <- matr~x(scau("data.smoke"), ncol=8, byrow=T)/lOOOOO 
smoke.rate <- c(rep(tempC.l1.6), rep(tempC,21,6), tempC,3:81) 
attrlbutes(smoke.rate) <- list( 

dlm=c(7,2,2,6.3), 
di~~es=list(c("45-49","50-64","55-59","60-64","85-69","70-74","76-79"), 

c("l-20", "21-P). 
c("gale","Female"), 
,.("<I", "l-2", "3-5", "6-lo", "il-1511, ~~>=16"), 
c('Tever", "Current", "Former")), 

dlmld=c("age", "amount", "sex". "duration", "status"). 
fact0r=c(0,1.1,0.1), 
cutpoints=l~st(c(45,50,55,60,65,70,75).WLL, IULL, 

c(O,l,3,6,11,16),Huu), 
class='ratetable' i 
1 

is.ratetable(smoke.rate) 
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Males 

Age 
45-49 
50-54 
55-59 
60-64 
65-60 
70-74 
75-79 

Never Current 
Smokers (l-20 cig/day) 

Former Smokers: Duration of abstinence (vr) 
‘” Smoked Smokers <1 1-2 3-5 6-10 11-15 ‘2 16 

186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5 
255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4 
448.9 lJ32.4 945.2 728.8 729.4 590.2 447.3 436.6 
733.7 1,981.l lJ77.7 1,589.2 1,316.5 1,266.g 875.6 703.0 

1,119.4 3,003.O 2,244.g 3,380.3 2,374.g 1,820.2 1,669.l 1,159.2 
2,070.5 4,697.5 4,255.3 5,083.O 4,485.0 3,888.7 3J84.3 2J94.9 
3.675.3 7,340.6 5.882.4 6,597.2 7,707.s 4,945.l 5.618.0 4J28.9 

Age 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
3-79 

Smokers (2 2i cigjdayj 
Never Current Former Smokers: Duration of abstinence (yr) 

Smoked Smokers < 1 l-2 3-5 6-10 11-15 2 16 
610.0 497.5 251.7 417.5 122.6 198.3 193.4 
915.6 482.8 500.7 488.9 402.9 393.9 354.3 

1.391.0 1,757.l 953.5 1,025.e 744.0 668.5 537.8 
2,393.4 1,578.4 1,847.2 1,790.l 1,220.7 1,100.O 993.3 
3,497.g 2,301.8 3,776.6 2,081.O 2,766.4 2,268.l 1.230.7 
5,861.3 3.174.6 2.974.0 3.712.9 3.988.8 3.268.6 2468.9 
r: 9r;n n “,I.,“.” 4,000.0 4.424.8 7329.8 . 6385.0 3 . 7666.1 1 --*-- 

J.ll4G.i 

T&e i Deaths per100,ODO per year based on smokzng status 
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The smoking data cross-classifies subjects by 5 characteristics: age group, sex, status 
(never, current or former smoker), the number of cigarettes consumed per day, and, for 
the prior smokers, the duration of abstinence. In our S implementation, a ratetable is 
an array with added attributes. In order to cast the above data into a single array, the 
rates for never and current smokers needed to be replicated across all 6 levels of the 
duration, we do this in first creating the smoke.rate vector. The array of rates is then 
saddled with a list of descriptive attributes. The dim and dimnames are as they would 
be for an array, and give its shape and printing labels, respectively. Dimid is the list 
of keywords that will be recognized by the ratetable function, when this table is later 
used within the survexp or pyea.rs function. For the US total table, for instance, the 
keywords ae “age”, “sex”, and “year”. These keywords must be in the same order as 
the array dimensions. The factor attribute identifies each dimension as fixed or mobile 
in time. For a subject with 15 years of follow-up, for instance, the sex category remains 
fixed over this 15 years, but the age and duration of abstinence continue to change; 
more than 1 of the age groups will be referenced to calculate his/her total hazard. For 
each dimension that is not a factor, the starting value for each of the rows of the array 
must be specified so that the routine can change rows at the appropriate time, this is 
specified by the cutpoints. The cutpoints are null for a factor dimension. Because these 
attributes must be self-consistent, it is wise to carefully check them for any user created 
rate table. The 1s .ratetable function does this automatically. 

As a contrived example, we can apply this table to the Stanford data, assuming that 
all of the subjects were current heavy smokers (after all, they have heart disease). 

# user supplled rate table 
p2 <- ptme/365.24 
erp4 <- survexp(p2 - ratetable(ege=(age/365.24). status="Current". 

amount=2. duration=l. sex='Hale'), 
data=]asa, ratetable=smoke.rate, conditional=F, scale=l) 

This example does illustrate some points. For any factor variable, the ratetable function 
allows use of either a character name or the actual column number. Since I have chosen 
the current smoker category, duration is unimportant, and any value could have been 
specified. The most important point is to note that age has been resealed. This table 
contains rates per year, whereas the US tables contained rates per day. It is crucial that 
all of the time variables (age, duration, etc) be scaled to the same units, or the results 
may not be even remotely correct. The US rate tables were created using days as the 
basic unit since year of entry will normally be a julian date; for the smoking data years 
seemed more natural. 

An optional portion of a rate table, not illustrated in the example above, is a summary 
attribute. This is a user written function which will be passed a matrix and can return 
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a character string. The matrix will have one column per dimension of the ratetable, in 
the order of the dimid attribute, and will have already been processed for illegal values. 
To see an example of a summary function, type attr(survexp.us, ‘summary’) at the S 
prompt. In this summary function the returned character string lists the range of ages 
and calendar years in the input. along with the number of males and females. This 
string is Included in the output of survexp, and will be listed as part. of the printed 
output. This printout is the only good way of catching errors in the time units; for 
instance, if the string contained -age ranges from .13 to 26 years”, it is a reasonable 
guess that age was given in years when it should have been stated in days. 

The data could have been organized in other ways, for instance as a 2 by i by 15 
array based on sex, age, and a 15 level grouping variable with levels “Never smoked”, 
“Current smoker of l-20 cig/day”, “Current smoker of > 20 cig/day”, “Former smoker 
of l-20 but ceased for < 1 year”, . . . . The SAS example in the next section uses this 
arrangement. 

As an aside, many entries in the smokerate table are based on small samples. In 
particular, the data for females who are former smokers contains 2 zeros. Before serious 
use these data should be smoothed. As a trivial example: 

nearate <- smoke.rate 
temp <- newrater ,1.2, .31 
fit. <- gem(temp - s(rou(temp)) + s(cnl(temp))) 
newrate[,1,2,,31 <- predictfflt) 

A realistic effort would begin and end with graphical assessment, and likely make use 
of the individual sample sizes as well. 

6 SAS Implementation 

These techniques are implemented in SAS as two macros Xsurvexp and %ltp, with a 
third macro %gethaz used in the background to read in the populations and compute 
the linear interpolation. These macros replace the expected portions of the old SXS 
procedures survfit and survdlf. The %ltp macro adds an additional variable Itp to 
each subject in the input dataset. This variable contains the life table probability that a 
mat.ched subject would survive to their follow-up time, given age, sex, etc. The %survexp 
macro computes the expected survival curve for the input dataset, using any of the 3 
met.hods presented earlier. Optrons for computing the one-sample logrank test and/or a 
graph of the observed vs expected curves are available in Xsurvexp. Both macros allow 
the various populations options described in section 2.3.2, or using a user defined rate 
table. 
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Using the same JASA example, the the code to add the ltp variable to each obser- 
vation would be: 

%ltp(pop=US-T. blrthdt=blrth-dt, flrstdt=entrydt, tlme=fu_tlma. data=Jasa. 
sex=sex) ; 

If you are using a population that is subset by race, the parameter race should also 
be specified. The parameter flrstdt. refers to the entry date or beginning time, birthdt 
references the birth date, and time is the observed follow-up time to death or censoring. 
The dates must be SAS date variables, and the follow-up time must be in days. 

To calculate the expected curve values using the exact method (method=l), but not 
printing or plotting, the statement would be: 

* Exact method; 
%survexp(data=]asa, pop=US-T. blrthdt=birth-dt. flrstdt=entry_dt, 

sex=sex, msthod=l, points=0 to 3650 by 182.6); 

If you want to print a summary table and one-sample logrank test statistic for this 
data, you must add the additional parameters printop, plotop, time for the follow-up 
time, event. for the event variable, and ten-VI for the censoring value. This is similar to 
%surv, and %surv is actually called to calculate the observed Kaplan-Meier estimates. 
When the logrank test is computed Y,ltp is called to compute the expected deaths. 

To produce the cohort estimate, the code would look like this: 

* Cohort method; 
if fu_stat.=i then pt.date=mdy(4,1.74); /* death=fu_st.at=l */ 

else pt_date=fudate; 

%survexp(dat.a=-jasa, pop=US-T, blrthdt=birthdt. flrstdt=entry_dt. 
sex=sex, method=2, lastdt=ptdate); 

In this example we use the potential follow-up date of 4/l/74 for all the subjects who 
died, and the actual censoring date for those censored. The parameter lastdt containing 
censoring or potential follow-up date is required for the cohort method. Again, for a 
summary table and plot the above mentioned additional variables must be added. No 
polnts parameter was specified, therefore estimates will be calculated for 100 points, (0 
to 3650 by 36.5). By specifying points=. you may request the calculations be done at 
the all the death or censoring time points found in the data set (see section 4.4). This 
will work fine unless the dataset is quite large (> 500); depending on your environment 
SAS may not have enough space for the macro’s arrays. 

For the conditional estimate, the statement would be: 
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* CondItional method; 
%survexp(data=]asa. pop=US~UBY, birthdt=blrthdt , f lrstdt=sntrydt , 

time=fu_tims, so~=sex, race=race, method=3, 
pomts=O to 3660 by 18.26); 

The conditional method uses the same time as the Kaplan-Meier, therefore the param- 
eter time is required. Using the points parameter as stated will generate estimates at 
every 18.25 days for 10 years. The population selected is one using race, hence the 
parameter race is included. Printing and plotting options are available, as above. 

If you want to use a user population, as in the smoking example shown earlier, you 
must first create the population dataset similar to that described in Section 2.3.2. To 
use a covariate other than age. sex or calendar year wit.hin a user population, you must 
“borrow” the race variable (set it to your covariate). The SAS code to create the user 
smoking hazard values for use within Xsurvexp or %lpt would be as follows. An initial 
dat.a step that reads the tabular data to create the smoke data set is not shown. 

data It-user; 
set smoke; /a smoking rates stored as one obs. per rats 

with the variables: 
sex (m,f) 

age !4s,s4.se.e4,ae,7a,79! 

smokmg (a 2 character variable havang 16 
values corresponding to the 15 
possible smokmg classes) 

rate=rate value */ 
keep pop year 881 race age q hazard; 
retain oldage; 

pop='smok'; /* pop can be any character value */ 
race=smokmg; /* use the variable Race for your covariate */ 
year=1970; /* use an arbitrary decade value */ 

If age=49 then oldage=O; 
cage=age; 

do l=oldage to cage; /* generate one obs. per age, bagInning at 0 */ 
age%; 
q=rate/lOOOOO; /* convert from rate to hazard */ 
hazard=-log(i-q)/365.241; 
output; 
end; 

oldage=cage; 

22 



if cage=79 then do; /* generate obs up to age 109 */ 
do 1=80 to 109; 

age=1; 
q=rate/iOOOOO; 
hazard=-log(i-q)/366.241; 
output ; 
end; 

end ; 
return; 

‘/,survexp(data=-Jasa, pop=user, birthdt=birthxlt, f irstdt=entrydt , 
sex=ssx, method=Z, pomnts=O to 7300 by 182.5, lastdt=pdate. 
race=sm-stat.) ; 

In the above call to ‘/,survexp, the parameter race is pointing to the smoking status 
variable smstat within the input dataset. This would be a two character variable, 
containing the same codes a& were used in the reference population out _ smoke further 
above. 

Append%: Differences between S and SAS 

A few small differences exist in the implementation of the S and SAS functions for these 
methods. As a result., the computed estimates may differ in the sixth or seventh decimal 
place. They are documented here to forstall any worries that this might cause. 

I 

6.1 Approximations ’ 

As documented in section 4.4, the calculations done at each observed death or censoring 
time may be replaced by an approximate calculation using longer intervals of time. By 
default, the SAS code uses the approximate calculation with time intervals of 30.5 days 
and the S code uses the exact calculation. In each this is an option that can be reset 
by the user. 

6.2 Leap year 

The S calculations are controlled by the cutpolnts attribute of the rate table. The age 
dimension of this attribute is the rounded value of (0:109) * 365.241 which gives 365, 
730,1096,1461,. . . . Depending on the relationship of a subject’s birth year to the next 
leap year, he/she might be 366 days old on their first birthday rather than 365 days old. 
The error that this introduces is extremely small: a subject might be given 1 extra day 
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at the age 21 rates and one less at the age 20 rates, for instance, than he would have in 
a “perfect” computation. 

The SAS code uses date subtraction to compute all of its intervals, e.g., 3/l/89 - 
3/l/88 to compute the number days spent in an interval from March 1 to March 1. 
The code automatically creates a subject’s birthdates and the anniversary of his/her 
enrollment date by repeatedly adding +1 to the year. The avoids the leap year problem 
mentioned above; however, the code fails if a the birth or entry date is Febuary 29, since 
adding 1 to the year will give an invalid date. To avoid this any birth or entry date of 
Feb 29 is changed to Feb 28. 

6.3 User rate tables 

A potential difference between user entered tables and the US population data concerns 
the special interaction found in the latter between age and calendar year. In an arbitrary 
rate table containing these variables, we would usually use the (20, 1963) entry to 
compute a 20 year old subject’s one-day hazard on 5/10/63, rather than the (20, 1962) 
entry as is done in the US tables, based calendar year of that subject’s last birthday 
(S/30/62). In the S implementation, the US and state rate tables have a special flag 
which signals the “US” behavior to the surveq function. This flag also causes automatic 
interpolation over calendar year. This flag will normally not be present in a user created 
r&e table. 

The SAS macro will always use the US behavior. 

Appendix2: Corrections to the data 

Figure 1 shows an excerpt from the original US data used in proc surtiit. The US 
rates for ages > 100 are very unstable. Plots of data for the Minnesota data tables 
(not shown) reveal the same problem. The published tables from which these data were 
entered contain both a column of survival probabilities p, and an integer column L, 
grvmg the expected number still alive out of a cohort of 100,000 subjects 

L, = round( 100,000 x p,) . 

For convenience, it was this latter number which was transcribed when the Xayo com- 
puter tables were first created. The survivai probabilities p, were then recovered as 
6, = L,/L,-1. For the higher ages. however, L, may be less than 10, which introduces 
significant round off error. Even for the lower ages the accuracy will not be the full 5 
digits contained in the original data. The actual impact in most studies would be very 
small, however. since very few person years are contributed by these extreme ages. 
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85 90 95 100 105 110 

Figure 2. Sumval Probabahtres for US whrte males rn 1950 

The raw data for the WNC data is arranged by age, sex and calender year. The 
years are the decades from 1910 to 1980, and the age groups are O-6 months, 6 months 
to 1 year, and then integer years 2, 3, . . . , 109. This data was gathered from several 
different sources; details are found in [2]. Pulling all of this together was an outstanding 
piece of work, and the issues discussed below are relatively minor in comparison. 

Plots of the WNC data are shown in figures 3 to 5 for males, and figures 6 to 8 for 
females. The hazard over an interval is, by definition, the logarithm of the conditional 
survival for that interval. Plots are based on the log hazard, which helps to spread 
out the curves. Each curve is labeled with the second digit of the age. The plots are 
interesting as a marker of population patterns. There is a general decrease in death rate 
from 1920 to 1980, with notable exceptions: Figure 3.3 shows the transient increase in 
hazard for young men aged 21-25 in 1970, and for those aged 25-30 in 1930. The curves 
for females generally mimic the structure for males, but with fewer unusual features. 

The rounding problem found in the US tables is not present here, so no new data 
had to be re-entered. However, the source for the WNC table was the Minnesota rate 
table for any years after 1960 (DHEW ceased to publish a WNC table), so the 1960 to 
1980 WNC rates were replaced with the new Minnesota rates to preserve consistency. 

There is a clear data error in Figure 4.2 for males aged 58 and 59. In response, the 
two data points have been replaced by a linear interpolation (on the log hazard scale) of 
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Flgure 3 Log Hazard for West North Central Males Ages O-40 



Lo
g 

H
az

ar
d 

Lo
g 

H
az

ar
d 

-4
.0

 
-3

.6
 

-3
.2

 
-6

.0
 

-5
.5

 
-5

.0
 

-4
.5

 

lll
J1

. 
\\\

\\\
 

W
W

-4
W

W
C 

l/I
I 

///
//I

 
~N

w
Pc

nw
~w

w
o 

I 
I 

I 
, 

I 
I 

I 
I 

I 
/ 

-ro
w

Pm
w

-4
w

w
o 

I 
, 

I 
, 

, 
I 

I 
I 

I 
I 

--r
lu

w
Pm

w
~w

w
o 

,,,
,,I

III
I Lo

g 
H

az
ar

d 
Lo

g 
H

az
ar

d 

-2
.8

 
-5

.0
 

-4
.6

 
-4

.2
 

-3
.8

 



Ages 81-90 Ages 91-100 

1920 1960 1920 1960 

Ages 101-109 

1920 1960 

28 

Figure 5: Log Hazard for West North Central Males Ages 81-109 
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Figure 6: Log Hazard for Wesi North Central Females Ages O-./O 
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Figure 7: Log Hazard for West North Central Females Ages 41-80 
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Figure 8: Log Hazard for West Norih Central Females Ages 81-109 



the data at ages 57 and 60. This appears consistent wrth the 1920 and 1940 data which 
flank the outlying values. Figures 4.3, 4.4, and 5.1 show rather anomalous behavior for 
some of the 1920 rates, but. no action has been taken to correct them. For years prior 
to 1960, [2] states that the rates for ages 85 and above were created by extrapolation. 
Figures 5.2, 5.3, 8.2 and 8.3 reveal some possible shortcomings of this action, but again 
no action has been taken. 

For the data used in survfit, interpolation between calendar years was done using a 
seventh degree polynomial. a separate polynomial was fit to each age-sex combination. 
Figure 9 shows WNC female survival rates along with their interpolated curves for 3 
selected ages. The coefficients of the curves are listed in [2]. The curve for age 59 shows 
an actual decrease in survival probability between 1970 and 1975, a result of the convex 
shape from 1930 to 1960, but all of the curves are unstable in the outer l/3 of the the 
interval of calendar years. A further concern with the polynomial method has been that. 
the values for all years are changed whenever a new decade’s data becomes available. 
For these reasons polynomial interpolation has been replaced by linear interpolation in 
the new S and SAS functions. Because linear interpolation can be done “on the fly” 
by the functions themselves, it has also allowed us to extend interpolation to other 
populations besides the WNC. 

The final change to the original data concerns the WXC half year probabilities of 

Figure 9 Suruwal Pn?babtlziy wzth Polynomtal for West North Central Females Ages 54.59.64 
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survival 

pi E P(survival to age -5) 

p!s G P(survival from age 5 to age 1). 

These numbers were derived from a different source than the whole year probabilities 
pt z P(survival from age i to age i + 1). A s a consequence of using different sources, 
po # pbp’,. Also, data was available for all years and not just the decades. Figure 
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Figure 10: Ratro of Log Hazard for West North Central Ages O-Gmonths us 7-llmonths 

10 shows a plot of the proportion of the first year’s hazard that occurs in the first 6 
months, i.e., log(p~)/log(p~,). These rates are based on small numbers of subjects 
and are quite variable. New values for the decade years 1910, 1920, . _ . were obtained 
by fitting a 3 degree of freedom natural spline to this plot, and partitioning the one 
year hazard log(pr) accordingly. The WNC rate table in S incorporates this half year 
probability. The half year data was not included in SAS since the macro is less flexible. 
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