The addition of CB-839 to TMZ significantly reduces glioma aspartate and glutamate in an IDH mutated patient derived glioma xenograft model

Kizilbash SH1, Burgenske DM2, McBrayer S3, Devarajan S1, Gupta S2, Hitosugi T1, He L1, Schroeder MA5, Carlson BL2, Gelman M4, Kunos CA2, Reid J1, Adjei AA1, Sarkaria JN2

1Department of Oncology, Mayo Clinic, Rochester, MN; 2Department of Radiation Oncology, Mayo Clinic, Rochester, MN; 3Dana Farber Cancer Institute, Boston, MA; 4Calithera Biosciences, South San Francisco, CA; 5National Cancer Institute, Rockville, MD

Abstract

Background: IDH mutated gliomas are critically dependent on glutaminase for glutamate biosynthesis. CB-839 is a novel glutaminase 1 inhibitor which has demonstrated efficacy in both genetically engineered and patient derived IDH mutated glioma cells, especially in combination with radiation. These preclinical studies evaluate the pharmacodynamic and pharmacokinetic impact of combining CB-839 with TMZ in patient derived xenograft (PDX) glioma models.

Methods: GBM164 is a PDX model derived from an IDH1 mutant, 1p/19q codeleted glioma. D- and L-2HG levels in untreated GBM164 tumors were compared to GBM164 tumors (IDH1 wildtype glioma PDX) by GC/MS. Aminic nude mice bearing GBM164 flank tumors were treated with CB-839 (200 mg/kg PO BID x 9 doses) and/or TMZ (50 mg/kg PO daily x 5 doses). Brain, normal brain, and flank tumor. Tumor metabolomics were assessed by GC/MS. DNA damage signaling in tumors was assessed by Western blotting for KAP1 / Chk1 / Chk2 phosphorylation and H2AX / Rad51. Tumor, plasma and brain pharmacokinetics were assessed by LC-MS/MS.

Results: Total 2HG levels in GBM164 were 18-fold higher than GBM6. CB-839 monotherapy reduced tumor glutamate (18% reduction, p = 0.15) and aspartate (30% reduction, p = 0.06) when compared to vehicle, however, these changes did not reach statistical significance. The combination of CB-839 and TMZ more significantly reduced both tumor glutamate (30% reduction, p = 0.03) and aspartate (34% reduction, p < 0.001) when compared to TMZ monotherapy. CB-839 did not significantly increase DNA damage compared to vehicle, and the combination of CB-839 and TMZ did not significantly increase DNA damage compared to TMZ monotherapy. The mean tumor:plasma ratios of CB-839 concentrations were 0.68 and 0.58 in mice treated with CB-839 monotherapy and CB-839-TMZ, respectively. The mean plasma:brain ratios of CB-839 concentrations were 0.07 and 0.12 in mice treated with CB-839 monotherapy and CB-839-TMZ, respectively.

Conclusions: The addition of CB-839 to TMZ significantly reduces glioma aspartate and glutamate in an IDH1 mutant PDX glioma model, without any impact on DNA damage. Survival studies are in progress to assess the efficacy of CB-839 when used in combination with RT and/or TMZ.

Background1

Branched chain amino acid transaminase (BCAT) is necessary to synthesize glutamate from branched chain amino acids (BCAAs). Excess (R)-2HG (2-hydroxyglutarate) in gliomas with IDH mutation (e.g. IDH1 R132H) inhibits BCAT expression. This defect causes IDH mutant gliomas to become reliant on glutaminase (GLS) for glutamate and glutaminate biosynthesis from glutamine. CB-839 is a novel, potent, selective and reversible inhibitor of GLS activity. CB-839 induces further depletion of glutamate in IDH mutated glioma cells, and is associated with enhanced radiation cytotoxicity. These preclinical studies evaluate the pharmacodynamic and pharmacokinetic impact of combining CB-839 with TMZ in patient derived xenograft (PDX) glioma models.

Tumor metabolomics

GBM164 - IDH mutant glioma PDX model expresses 2-HG

GBM164 is an IDH mutant patient derived xenograft glioma model. 2-HG concentrations in GBM164 and GBM6 (an IDH1 wildtype PDX glioma model) were assessed using GC/MS. Total 2HG levels in GBM164 were 18 fold higher than GBM6.

Treatment

Ofmice mice harboring GBM164 flank tumors were randomized between four treatment arms (n = 4-7 per arm):

- CB-839 monotherapy
- TMZ monotherapy
- CB-839 + TMZ
- Vehicle

Mice sacrificed 4 hours after dose on Day 5. Tumor and plasma harvested for analysis. DNA damage signaling (tumors) - Western Blots

Pharmacokinetics

- CB-839 concentrations were 0.07 and 0.12 in mice treated with CB-839 monotherapy.
- CB-839 + TMZ concentrations were 0.68 and 0.58 in mice treated with CB-839-TMZ, respectively.

DNA damage signaling

- CB-839 reduces tumor 2-HG, glutamate and aspartate by 22%, 18% and 30%, respectively, compared to vehicle, and increases glutamine by 25%.
- TMZ + CB-839 reduces tumor 2-HG, glutamate, glutamine and aspartate by 26%, 39%, 18% and 46%, respectively, compared to vehicle. TMZ + CB-839 reduces tumor 2-HG, glutamate, and aspartate by 30%, 30%, 24% and 34%, respectively, compared to TMZ monotherapy.

Conclusions

The addition of CB-839 to TMZ significantly reduces glioma aspartate and glutamate in an IDH1 mutant PDX glioma model without any impact on DNA damage.

Support

- K12 CA06628 - Paul Calabresi Program in Clinical-Translational Research
- UM1 CA186666 - NCI Administrative Supplement

Survival Studies in progress

Survival studies are in progress to evaluate the efficacy of CB-839 in orthotopic GBM164 murine models. At day 250, the addition of concurrent CB-839 to radiation/temozolomide shows improved efficacy.