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1 Introduction 

1.1 Model 

Consider a set of n subjects such that for the ith subject in this set, the countmg 
process N, s {N*(t), t 2 0) mdicates the number of observed events experienced 
over the passage of time. The sample paths of the N, are assumed to be right 
continuous step functions with jumps of size +l and wrth value zero at trme 
zero The intensity functron for N, at time t is given by 

K(t) dA(t,z*(t)) (1) 
where Y,(t) is a left continuous O-l process mdicating whether the ith subdect 1s 
in the risk set at time t, and Z,(t) 1s a p dimensional vector of left continuous 
covarrate processes having right hand limits Unless specrfied otherwise, we will 
assume that 

dA(t, Z,(t)) = exp(P’ZW) dAo(t) (‘4 
for cumulative hazard fimctlon An and vector of regression coefficients b We 
assume that As is an absolutely continuous function and that no two processes 
jump at the same time, so that (IV,, Nz, . , N,) is a multivarlate counting 
process. 

Several familiar survival models fit into this framework. The Anderson-Gill 
(1982) generalization of the Cox(1972) model arises when An(t) is completely 
unspecified The further restriction that NZ(t) = 1 a Y,(s) = 0 for all s > t 
yields the Cox model The parametric form An(t) = Xt yields a Poisson (if 
there are multiple events) or an exponential (If there 1s only a single event) 
model, and A,(t) = (Xt)p a Weibull model. Our attention ~111 focus prims&y 
on the Anderson-G111 and Cox models, however, the methods to be developed 
~111 largely apply to both the parametric and semi-parametric case. 

1.2 Martingales 

For measure theoretic reasons, assume our model IS endowed with a right con- 
tinuous non-decreasmg family (F*, t E [O,co)) of fl algebras, where LFt can be 
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thought of as containing all of the mformation through time t In particular, 
X,(t),Y,(t), and Z%(t) are all measurable with respect to T It follows that 

I 
f 

M,(t) = J-J,(t) - Y,(s)efJ’zwfho(s) 
0 

is a local square Integrable martingale. The term local can be dropped If 
E(N,(t)) < co for all t and If, for j=1,2,. ,p, sup,(Z,(t)), is bounded Here- 
after, assume this to hold. 

1.3 Martingale Residuals 

In the parametric or semi-parametric models above, the vector of regressIon 
parameters p and the baseline hazard Ao are commonly estimated by max- 
mum hkelihood or partml hkehhood methods Well known techniques are then 
employed to develop the relevant tests of hypotheses and confidence intervals 

Of importance in such regression analyses are &agnostic tools for assessing 
model adequacy We will discuss certain types of residuals which are useful dx- 
agnostic tools, focusing in particular on graphlcal apphcatlons We ~111 consider 
the use of residuals to assess‘ 

1. 

2 

3. 

4. 

the functional form for the influence of a covariate, in a model already 
accountmg for other covariates, 

model adequacy, partxularly with respect to proportional hazards as- 
sumptions, 

the leverage exerted by each subject in parameter estimation, 

the accuracy of the model in predicting the outcome for a partxular sub- 
Ject 

The martingales defined in (3) form the basis for these residuals In par- 
ticular, let /3 and ho be estimated by maximum hkehhood for the parametric 
models, and for the non-parametric models let p be estimated by the maximum 
partial likehhood estimator and the cumulative hazard by the Breslow(l974) 

(Other estimators of A, are available for bhe serm-parametric case, our reaSons 
for preferring the Breslow estimate ~111 become clear ) Then the martmgale 
residual is defined to be 

G&q = N,(t) - /f~(s)e”‘z~‘“‘dAo(s) 
Jo 
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with %* as a shorthand for %,(co). The residual can be interpreted, at each t, 
as the difference over [O,t] m the observed number of events minus the expected 
number given the model, or as excess deaths Note that for a Cox model with 
constant (non time-dependent) covariates this residual reduces to the simple 
form 

a residual that has been proposed from a different perspective by Kay(1977). 

2 Properties 

2.1 Sum 

The next lemma will be useful m estabhshing properties of the residuals in 
parametric models. 

Lemma 2.1 Consider the model given by (l), where A IS differentiable and 
specified parametrically. If i is the MLE estimate for h and the solution space 
is scalable, 1.e , for any potential solution A then E& is also m the solution space 
for all k > 0, then 

2 jmdN,(s) = 2 jmY,(s)dri,(s) 
r=l o r=1 O 

Proof: For parametric A we can write the hkehhood as 

L = fi fl(l _ X,(s))Y.(.)(‘-dN*(‘)) (,qs))KWW 
1=1 S>O 

(5) 

(where A = dh) so that 

log,5 = ~/mlu(X.(s))diV,(s) -y,(s)dA,(s) 
,=I O 

Note that IY, dN, = JdN,, since a process cannot be observed to Jump when 
not under observation. The maximized value of the log likelihood can be written 

I = c J (I&(s))dN(s) - ~,(s)kc&(s)) , 
where the nmsance parameter t has been added The maximum with respect 
to B occurs when 

0 = g = c/ +z(s) - .+s)di,(s). 

By hypothesis this occurs when k = 1 0 
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Using lemma 2 1, we must have CzS(co) = 0 for any parametric model 
that satisfies (1) and is scalable A sufficient condition for a scalable solution 
space is a De term is the exponent, similar to the condition that guarantees the 
residuals will sum to zero in a lmear model. 

The lemma does not directly apply to the semi-parametric model, which 
arises in (2) when A, is unspecified. However, it is easy to verify that when the 
Breslow estimate IS used the even stronger condrtlon 

pQct) = 0,vt (6) 

holds independent of the estimate b of 0. 

The converse is also true: equatron (6) uniquely defines the Breslow estimate. 

2.2 Expectation 

Let b besome estimate, not necessarily the MLE, of /3 If perchance b = 0, 
then E(M,(t)) = 0 for either the parametric or semi-parametric models For 
the semi-parametric model, we also have mean zero when b = 0 

1 
El@(t) = E J{ 

dN,(s) _ Ns) Cd4 (4 
0 C5(s) 

=E t {dN,(s) - Y,(s)dAo(s)} 

- ~*~C{d~(s)-Y,(s)dAo(s)}] , 

which is the expectation of the sum of a zero mean martingale and zero mean 
martmgale transform ^ - 

For b = p, E(M,(t)) converges to zero by standard martingale convergence 
theorems The asymptotrc covarrance of gZ and %, goes to zero, whrle 

var(Gi(t)) + 1’ Y.(S) @“zz(s) d&(S) 
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2.3 Score Vector and Score Residuals 

For the semi-parametric model arising m (2) when As IS unspecified, we can 
write the partial likehhood as 

so that, for k=l, . . ,p, 

(7) 

is a weighted mean of the covariates over the risk set at time s. If 6 denotes the 
maxnnum partial likelihood estimate of p, 

= kJ-= (Z*r(4 - ZdAs)) m(5) 
r=l Q 

In parallel, consider the parametric model. The derlvatlve of log L m (5) 
with respect to the betas is 

Evaluating at the maximum likehhood estimate, 



Define L,k(-) as the score process, and L,t(co) as the seers restdual of the 
ith subject and the kth variable (0 ur use of the same symbol for both the 
parametric and semi-parametric models is an abuse of notation, but the proper 
definition will always be clear from the context) In both the parametric and 
semi-parametric cases, the score vector’s terms appear m the form f(data,) * 
residual,, a form remmiscent of that found in the generalized linear models 
hterature 

The score residuals are an example from the broader class of mnrttngale 
tmnsform restduals. In particular, let the process IV, = {WZ(s), s 2 0) be 
bounded, predictable, and adapted with respect to our family (7, t E [O,oo)) of 
0 algebras (e.g., it suffices for IV, to be an adapted left continuous bounded pro- 
cess with right hand limits) Then J W,(s)dW ( ) 1 I s is a martmgale transform and 
hence also is a martingale In turn, Jsw lK(s)c@(s) is a martingale-transform 
residual. If each component of the random variable Z,,(t) IS bounded, it fol- 
lows that the score residual is a martingale-transform residual These reslduals 
will be found quite useful in diagnosis of each subject’s leverage on parameter 
estimates and in assessmg model assumptions such as proportional hazards 

2.4 Deviance residuals 

One deficiency of the martingale residual G,, particularly m the one event set- 
ting of the Cox model, is its skewness. In a one event setting, its maximum 
value is 1 while its minimum is -co. As a visual aid in certain plots, particu- 
larly when assessing the accuracy of the model in predicting the failure rate of 
a given subject, it may be helpful to transform the residual to achieve a more 
normal shaped distribution. One such transformation IS motivated by the de 
viance residuals found in the general lmear models literature (McCullagh and 
Nelder(1983)) Define the deviance as 

D = 2 {loglik(saturated) - loghk(p)} , 

where a saturated model is one in which p is completely free, i.e , each ob- 
servation is allowed its own private b vector. There may be other nuisance 
parameters 8 which are held constant across the two models, such as u* m a 
normal errors linear model. In our models the nuisance parameter IS the actual 
baseline hazard As Let h, be the individual per-subject estimates of p, then 
the deviance for non time-dependent covariates is 

D = 2s;p I{ /(lnehLzs - lned’zl)dN,(s) 

- {J ( K(s) AZ* - eb”, d&(s) . 
) 1 

Because terms separate, we may optimize h, for each subject separately Ap- 
plying a similar argument to that of lemma 2 1 to these samples of size 1 (with 

6 



A z exp(h:Z,) Au), 

I 03 E;,(s)eh:z~dAO(s) = dpv; (4 0 
Let zz(t) E N,(t) - ~,‘exp@‘Z,)dAo(s), i.e , the martingale residual with p 
e&mated and A known. Substitutmg grves 

D = -2x z+l { t n(g) /dN,(a)) 

zz -2 c z, + N, (ca) In 

The last step above requires a factorrzatmn 

I Yz(s)efi’z’dAo(s) = cFZt 
I 

K(s)dAo(s) 

which is not v&d for time dependent Z. 
For the Gaussian density the nuisance parameter o cancels out complete& 

not2 here. We need to estimate A,, whrch results in the replacement of M, 
by MI in the formula. Equation (9) is equivalent to the deviance formula for a 
Poisson model found m McCullagh and Nelder (1983) wrth y, replaced by A\(W) 
and p = it, replaced by the observed cumulative hazard SK(s) exp(@Zz)dAs. 
The devmnce residual IS defined as the signed square root of this expressron. 
Note that the devrance residual is zero if and only if M, = 0 Also note that for 
the Cox model the deviance residuals are 

4 = sign($) 
J 

-2(1% + 6, ln (& - 1%)) 

The log function “expands” resrduals close to one, while the square root con- 
tracts the large negatrve values. 

3 Functional Form 

A key aspect of the model (2) is the functional form exp@‘Z) specified for the 
covariates Perhaps one of the variables Z, should be replaced by &, or by 
I~z,~), or by some other transform? To mvestigate this for the semi-parametric 
model, consider a model with a single non timedependent covarlate and 

A(& Z) = h(Z)Ao(t) 



for some unknown positive function h. We can think of the outcomes (Y( ). N(.)) 
as coming from a mrxture distribution m Z with a crude hazard function 

A(t) = As(t) E(h(Z) at time t) 

= no(t) SW(L~) = 1) h(rw-z(z) 
JP(Y(t, t) = 1) #z(z) 

E ho(f) F&(t) 

where Fz(r) is the distribution functron of Z Then after fitting a model will 
a11 the variables except the 2 of interest (a null model m this case), 

J 

1 
E@(t)IZ) = E(N(tIZ)) + E -Y(slZ)dA(s) 

0 

+ E otY(s,Z) (hi(s) - dho(s)) 
J 

= term1 + term2 + term3 

Consrder these terms individually. 
Term3. If there are no other covarrates in the model, then 

term3 = E c 
J 

$$-$(K(s)d~(s) - dX,s)) 

Since Y(slZ)/ CY, (s) IS a predictable process, the entire term 1s the expectation 
of a mean zero martingale, so term3=0 

Term2: Using the expressron for A above and then centering about X(t,) for 
some fixed time t,, 

J 

* 
term2 = -E 

i;(b) 

0 
Y(slZ) h(~) h(Z) dAo(s) 

-E 
J 

* Y(slZ) (h(s) - h(L)) d&,(s) 

= qt.; ---E(N(t)lZ) + remamder. 
h(Z) 

Thus 

E(%(t)/Z) = (1 - $$) E(N(t)lZ) + remamder 

Equation 10 has a natural mterpretatron. 

E(# excess deaths) x (1 - hazard ratlo) E(# events per subJect) 

Figures 1, 2, and 3 show the results of three calculatrons In each Z IS uni- 
formly spaced over (O,l), and h(z) is exp(.z), exp(5a), and exp(5z) respectively. 
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Figure 1. Martingale Residuals with fl= 1 and no censoring 

There is no censormg m figures 1 and 2, and a censoring of 50% in figure 3 (cen- 
soring is an mdependent uniform variable) The value oft is co. Plotted are the 
actual value of E(ii?]Z) (sohd line) f or a Cox model, calculated by a straight- 
forward simulation with 1000 replications and a sample size per replication of 
100, and the function - ln[l - E(M]Z)/E(N]Z)] (dashed line) This latter IS 
obtained by solvmg equation (10) for ln(h(Z))-ln(h(t,)) This is the functional 
that should be placed in the exponent of a proportional hazards model (The 
term ‘ln(A(tO))’ IS just a multiplicative constant, though, and would be absorbed 
into A0 when a model is run) Note that E(N(Z) E 1 for figures 1 and 2, and 
that E(E(N(t)JZ)) = .5 for figure 3. 

In figures 1 and 3 the function E(w]Z) 1s nearly straight, suggesting that 
when this is rewritten in the form of equation (2), with f(z) s ln(h(t)). that 
the further approximation is tolerable: 

( > 1 - & E(N(t)]Z) = (1- ef-I> E(N(t)lZ) 

= (f - fl WW(WN 
= (f - f) . constant 

Thatis, if the fit IS not “pushed down” by the +l boundary, a smoothed plot of 
the && versus a covariate will give approxrmalely the correct functional form to 
place m the exponent of a Cox model. A major advantage to plotting the “raw” 
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Figure 2: Martingale Residuals with /3 = 5 and no censoring 
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Flgure 3. Martingale Residuals with 6 = 5 and 50% censoring 
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Figure 4: Martingale Ftesrduals, Stage Dl Prostate Cancer 

martingale residuals rather than the transformed function is interpretability, 
the y axis is in a direct scale of excess deaths. 

Figure 4 shows the result of such a fit for a data set of patients with surgically 
treated stage Dl prostate cancer and is taken from Winkler et al (1988). The 
z variable, percent of cells in g2 phase, IS a measure of the proliferation rate 
of the resected tissue, and the y variable is the martmgale residual from a null 
Cox model explormg time to recurrence of drsease. Before the study began, a 
provlsronal cutoff of 13% had been set as “mean + 3 s.d n of thzg2% values 
from 60 non-cancerous trssue specrmens. A smooth fit to the M,, usmg the 
lowess functron of S (Becker and Chambers, 1984), bears out the initml guess. 

One of the desirable features of assessing functional form through the mar- 
tingale residuals is illustrated in figure 4 The display of the smooth fit in 
relation to the individual residuals provrdes insight into both the variabrhty of 
and the influence of specific indivrduals on the estimate of the functional form. 

The remainder term m (10) was small m our simulations, and one might 
expect it to always be so since rt is based on a difference in means, a “l/n” 
effect compared to the lead term This is difficult to make precise without 
further restrictions in Y, however. Two special cases are 

1. Y(.) independent of Z. Such would be the case m data from a Poisson 
process situation, where observatron time for each obJect rs not affected 
by the number of events produced. In this case h(t) is constant, and the 
remainder is zero. 
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2 A Cox model with uncensored data Then Y(t) has exactly one hump from 
1 to 0 foreachsubject, andE(Y(tlZ)) = P[Y(t,Z) = l] = exp(-Aa(t 
Some further manipulation shows the remainder to be of the form 

where A 1s the cumulative hazard at the time of f&me, B has mean zero, 
and E(A) = 1 A Taylor expansion of this has a leadmg term of 0(1/n) 

The argument given above extends to multiple covarmtes m a straightforward 
way. It does not apply to the parametric models, since term3 j+ 0, nor to time 
dependent variates These latter areas need exploration. 

4 Model Adequacy 

An important use of residuals is in the graphical or analytical assessment of the 
vahdity of model assumptions. One such, functional form, has been discussed 
above. Three others, the hmiting value of ho, proportional hazards, and overall 
lack of fit are discussed below. 

4.1 Crude and net hazards 

One subtle model assumption relates to the interpretability of the function 
x(t; Z,(1)) By defimtlon, this function satisfies the relationship 

E{IvJt + dt) - X,(t)1F*} = E;(t) A@; z,(t)) a. (11) 

Thus, the interpretation of X IS intrinsically tied to the censoring process Y( ). 
To understand the impact of this more clearly, consider the classical no covarlate 
settmg m wluch T, and V, represent an absolutely contmuously distributed true 
survival time and censormg time for the Ith subject. If X, = min(T,, U$) IS the 
observation time, suppose Y,(t) E I{x,ttl and N,(t) E I{x,<~,x,=TJ In this 
setting, It can be shown that the X in (11) 1s the “crude hazard”, 

and that the Breslow estimate in section 1.2, (which reduces to the Nelson (1969) 
estimate since there are no covariates), 1s a consistent estimator for J &(s)ds 
The problem of interpretability arises m that one often interprets the parameter 
X m (11) in this classical setting to be the “net hazard” 
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Figure 5: Two possible non-proportional hazards. 

which is independent of U If one does wish to interpret X in (11) to be A,, then 
this would represent an additional assumption to the structure already imposed 
by (1) and (2) Unfortunately, this mumption is untestable (see Tsiatis 1975) 
using martingale residuals or any other approach. 

4.2 Proportional Hazards 

In this section, we will focus on the use of martingale and score residuals in the 
evaluation of the proportional hazards assumption, in the model where Z(t) is 
independent of t 

For motivation, begin by considering the special case m which our model 
has a single dichotomous covariate, i.e., 2 = H. In this setting, we wish to 
determine whether the-hazard ratio X(t;Z = l)/A(t;Z = -l), estimated in 
the model to be exp(2@), is mdeed independent of t. Consider the two non- 
proportional hazards situations illustrated in Figure 5 Because the martmgale 
residuals sum to zero, it follows for t,=O, 1, or 2 that 

n 

In either illustration (a) or (b), it is clear that IA( will be stochastically 
much larger than would be the case if proportional hazards were valid. Setting 
Z(b,s) as m (7), one might reject the proportional hazards assumption if a 
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“large” value is obtamed for sup f CL,(t) where 

L,(t) = 
J 

*p, - Z(j, s)} &(s) 
0 

If Z is any discrete or continuous covariate, this proportional hazards test statis- 
tic should be quite sensitive to alternatives for which 

A@; 2 = p) 
qt; 2 = a) 

Vcr < /? is monotonically strictly decreasmg (increasing) in t. 

(12) 
To derive the distribution of the statistic sup, 1 L,(t) , consider U(b,t), the 

partml likelihood score statistic (using information over [O,t]). Then, 

In turn, C:=, L,(t) = 0 for t = 0 and t = 03, by the definition of j The next 
lemma establishes that a standardized version of this process converges asymp- 
totrcally to a tied down Browman Bridge process The lemma also addresses 
the p > 1 covariate vector situation and generalizes an earher result obtained 
by Wei( 1984) 

Lemma 4.1 As in section 2.1 let iY(fi,t) d enote the score vector process and 
a denote the maximum partial hkehhood estimate of p Define the information 
matrix 

where UJ, E exp(@‘Z,), and aB2 = au’ for any column vector a. Denote the 
in probabihty limit of n-‘Z&7, -) by S(.) (defined m Anderson and Gill(1984)). 
Then 

a. Let B(.) be a mean zero vector of Gaussian processes having independent 
increments and covariance matrix C( ) Then under regularity conditions 
specified in Anderson and Gill(1984), 

where 3 denotes weak convergence over the relevant interval 

b. If (E(t)),, = 0 for all k # j and for any t, then for j = 1,2,. ,p, 

where CT,,(~) 3 C(t)], and where {W(t) : 0 5 t 5 1) is distributed as a 
Browman Bridge 
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Proof: 

a. By Taylor’s series expansion, 

&y/i, .) = $Y(B, .) - ~(~, .)dQ -PI7 (15) 

for some p* on a hne segment connecting p and b. In turn, 

Inserting this into (15), we obtam 

Now (13) follows from Anderson and Gill’s results, based upon the mar- 
tmgale structure of U(p, ), which establishes that -$U(p, ) 3 XI(.) and 
iZ(p, ) + C(.) in probabihty. 

b. To obtam the large sample covariance structure of * U(/.?, .), observe for 
any set s 5 t 

w3s) - C(s)IC(co)}-lB(03)1[B(t) - w@(~)I-l~(~r) 
= C(s) - c(s){c(cm)}-lx(t) 06) 

When (C(t))j, = 0 for any k # 3 and for any t, (14) follows from (16) and 
Andersen and Gill’s result that $X(6, co) 3 C(a) m probability. 0 

When the jth component of the covariate vector satisfies the proportional 
hazards assumption, (14) Indicates that the proportional hazards test statistic 

&JiGii sup* C, L,(t) asymptotically has the well known distribution of 
supoCt<r IV,,(t), as long as (C(t)),, = 0 for any t In essence, this condition 
requi<ei 2, to be orthogonal to the other covariates. In fact, by its defimtion in 
Lemma 4 1, the consistent estrmator +Z(p, oo) of C(c0) can be interpreted to 
be the sum over death times of the covariance of Z at each death time. Thus, 
for example, (E(t))+ x 0 in intervention studies in which the jth covariate 
represents randomly assrgned treatment, as long as strong treatment by factor 
mteractions do not exist. Further efforts are necessary to address the situatron 
in which the assumption (E(t)),t = 0 fails to hold 

For the parametric model, analogous results hold. A proportional hazards 
test statrstic based on the standardized supremium of the score process C, L,L( ) 
also is distributed asymptotically as a time transformed Brownian bridge 
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When one has adequate data, it IS often desirable to have flexrble graphical 
and analytical methods to detect more general proportional hazards departures 
not characterized by (12), such as the alternative m figure 5(b). By choosing 
band widths A and 6, we can make graphical assessments by plotting 

as a function oft, for selected values of I. For discrete covariates, one can 
set A = 0. ‘E-ends in the plots of fA,$(z, .) signal the nature of the departure 
from proportional hazards. To enable analytical inferences, one can obtain an 
expression for the conditional distribution of any term 

where A is any subset of {1,2, , n} and s 5 t Specifically, TA(s,t) can be 
thought of as a sum over the L distmct failure trmes occurrmg over the interval 
(s, t]. At the lth of these L failure times, t(r), C,,4AN,(t(r)) is the number 
of failures occurring in the set A. In turn, CIEA AN,($)) has the distribution 
arnnng from samphng C,sA x@(r)) items without replacement from a set of 
X:=1 Y,(t(rI) Items, which mcludes I:=, AN,(+)) total failures, and where each 

item has a relative probabihty Y,(t(l))eB’zx/ Ck Yk(t(r))~$~’ of bemg sampled 
In particular then, CEA AN,($)) has expectation 

so indeed T,(s, t) has zero expectation in this sampling framework. Finally, the 
distribution of TA(s, t) is obtamed by taking {CtEA AN,(tt,I) : I = 1,2, _. _, L} 
to be a collection of mdependent random varrables 

Many other methods for testmg proportional hazards have been proposed, 
notably by Schoenfeld(l980), Andersen (1982), and Aranda-Osdaz (1983). One 
advantage of the the statistic m (14) is the lack of the need for an arbitrary 
discretizatlon of the continuous time axis. 

As an illustratron of these ideas, we will use a data set which has been 
collected to model survival in patients suffering from primary biliary cirrhosis, a 
chrome and eventually fatal hver disease (Dickson, et al, 1988). A population of 
418 patients was followed from the date of their referral to a tertiary care center 
until death or censoring at study closure. There were 161 deaths. An extensive 
database of medical variables measured at the time of referral is available A Cox 
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Figure 6. CL,(t) for two predictors of liver drsease 

regressron model using five of the covariates - total serum brhrubm, albumin, 
prothrombin time, age, and edema - was found to fit the survial experrence 
rather well. Frgure 6 shows plots of the standardrzed score process, 

t 

as a function oft for two of the predictors. If the proportional hazards assump- 
tion is correct, we would expect each of these plots to be a tied down random 
walk, this may be true for bilirubm, but the pattern m the process for prothrom- 
bin time rs obvious. One possible explanatron is that in thus disease prothrombm 
time can be readily modified by drug therapy, but bilirubin can not. The critical 
values for the supremum of a Brownian Bridge are also mdrcated on the plots 
(see Kozml and Byar (1975)). Because the predrctor variables in this data set 
are mildly correlated, the critical values may need some admstment 

The increments in the (unstandarized) process are the patiaal resrduals in- 
troduced by Schoenfeld (1982). Another test that may be applied, therefore, 
is one proposed by Harrell (1986). Th is is based on the Pearson correlation 
between the partial residuals and the rank order of the failure times, along with 
the standard z-transform of Fisher. When applied to this data set, the z-value 
for prothrombln trme was -4 64 (p<.OOOl) and for bilirubin the value wss 0.78 
(pz.44). 
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4.3 Overall Measure of Fit 

In more standard parametric models, the overall “size” of the residuals gives a 
clue to the overall fit of the model, and this holds for the parametric proportional 
hazards models also For a series of models with the same 0 in each, the sum of 
the squared deviance residuals can be used as a surrogate for the log likehhood; 
the difference in this sum for two models will be a chi-square statistic on the 
appropriate degrees offreedom For a series of Cox models A, B, C, . . . , however, 
the estimation of /?A, DE,. . by partial likelihood imphes a reestimation of Ae for 
each. The sums D = Cd,” cannot be used as a surrogate for the log hkelihoods 
as is done m GLIMs, because As does not cancel out in the derivation above 
(section 2.4). In fact, we have found in examples that the change AD between 
two nested models does not necessarily correlate with the change in partial 
likelihood. 

The “lack of size” condition is stronger than this experience. As pointed 
out by Crowley and Hu (1977), when there is no censoring the values of the 
Breslow estimate at each event time are exactly the order statistics from an 
exponential distribution. The martingale residuals at p = 0 have a distribution 
of (1 - exponential order statistics), while the martingale residuals evaluated at 
fi = p have distribution of (l- exponential data sample) Thus, for uncensored 
data at least, the global distribution of the martingale residuals is the same 
under null and perfect models 

5 Influential Observations 

The influence of an observation on model fit depends on both the residual from 
the fit and on the extremity of its covariate value, roughly (Zt - 2) * residual. 
In the Anderson-Gill model specified by (Z), 2 is a function of trme: the mean 
over the risk set at time t (see (7) above) This suggests using a “time average” 
value of Z,, - 2, , which leads to the score residual 

as an influence measure 
To formalize this, we may use the approach of Cam and Lange (1984) and 

define a weighted score vector 

where 2 is the reweighted mean at fi 



Then 

& ($) (E) =-z(B)-1%; 

evaluation of this quantity at w = 1 is the infinitesimal jackknife estimate of 
mfluence. In our case 

av, ZZ dw, J m K(s) (Z,(s) - %(s,, Ws) 
0 

The last term in the second integrand is just the component of the Breslow 
estimate of As(s), so that 

K(s) (Z,(s) - .&(fi,s)) (dN(s) - eb’zcd~o(s)) (17) 

In the special case of a Cox model (17) reduces to equation 4 of Cam and Lange 
and so generalizes their work. The influence of the ith subject on the estimation 
ofp IS then approximately the Newton-Raphson step -TS1(&(L,,, L,z, , LIP)’ 
A similar, though simpler, derivation holds for the parametric models and yields 
the score residual L,, defined in (8) 

This method may underestimate the true jackknife, especially for extreme 
values of z, because Z also changes when the observation is removed. Another 
method is to compute the l-step update m a when a single covarmte Z,+i is 
added, with Z,+, equal to 1 for subject z and equal to 0 for all others This is 
explored for the Coxmodel by Storer and Crowley (1985). For the Anderson-Gill 
model at (&i’s), 0), 

-&+1(&t) = 

u, = 

up+1 = 

y,(f)eS’Z. 
Cr Y&)&,(r) 

OforJ=1,2,...,p (smceweareatp) 

CJdm 
X(s) G,p+l(s) - ~p+lUT ~1) W(s) 

1 

J 

03 

J 

m 
Wt) - I:(s) e4’zc(a) d&(s) 

0 0 

M? 

= 

= 

The same process for the new information matrix yields 

L=( =y ;) 
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Figure 7. Comparison of two approximate measures with the jackkmfe 

where 

Y:,j = J M x(s) (z,(s) - z,(j, s)) t-(“)dii,(s) 0 
vr = J m x(s) (1 - &&s)) ebfz+) d&(s) 

0 

Then the change in p is (-Z,,,)-‘V, and using a standard formula for the 
inverse of a partitioned matrix: 

which extends the results of Storer and Crowley to the Anderson-Gill model. 
In practice, the two forms are not very far apart; lngh leverage points are 

highlighted by both For the prostate cancer data presented earher, figure 7 
presents the results of the actual jackkmfe, score residual, and on-step Influence 
measures after fitting the variable %g2 as a linear covariate. Interestingly, there 
are a few subjects for which the Storer-Crowley approach gives the wrong sign, 
but they are all of small leverage (the value of /$+I IS grossly overestimated 
at the first step for each of these subjects, compared to its value if lteratlon IS 
allowed to continue). 

Figure 8 illustrates an influential point in the liver disease data set. The score 
residuals for the variable age are plotted against age, and show that the oldest 
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Figure 8. Score residuals from the cirrhosrs data set 

mdividual has a disparate amount of influence on the coefficrent Interestmgly, 
thus observation led to the identrhcation of a data error: the true age of the 
patient was 54, not 78. 

Though the score and Storer-Crowley residuals are similar in numeric mag- 
nitude, the score residuals L, have several technical advantages: 

a) There is a simplicity of interpretation ss components of the score statrstic. 

b) They are avarlable for all values of p, not just the solution point fi. For 
instance, at p = 0 they are components of the log-rank statrstrc. 

c) As a martingale transform, powerful theoretical tools are available. Compu- 
tation of variance, for instance, is a simple exercise. 

6 Model Accuracy for Individual Subjects 

An rmportant use of resrduals 1s in graphical assessment of poor predictron by a 
model for individual subjects. The srze of the individual’s residual 2, indicates 
model accuracy with a large positive value for a subject who has more events 
than predrcted by the model (dres “too soon”) and a large negative residual for 
any with fewer events than predicted by the model (hves %o long”). In the 
one event models such as the Cox model, the martingale resrduals are heavily 
skewed and thus skewness distorts the appearance of a standard residual plot. 
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It IS nearly impossible to detect outhers of the “dred too early” type because so 
many points are crowded up close to the value il A point with value .99999 
does not appear any different than one with value of .9 The long right hand tad 
of the martingale residuals may also produce spurrous outliers among those who 
“hve too long” The deviance transform symmetrizes the martmgale resrduals 
and helps to alleviate this problem When censormg is munmal, <25% or so, the 
distribution of the deviance residuals 1s very close to a normal distribution. For 
censorings greater than 40%, alarge bolus of points with residuals near 0 distorts 
the normal approximation, but the transform IS still helpful m symmetrizing the 
set of residuals. 

Figure 9 compares the martingale and deviance residuals for the liver dis 
ease data set presented earlier For each mdividual in the data set we have 
computed both the residuals and the risk score ,L?z,. Panel A shows the martm- 
gale residuals plotted against the risk score and panel B the deviance residuals. 
The deviance transform suggests that the 3 individuals (with risk score M 8) 
who look like outliers in the martmgale plot are, m fact, not outliers at all The 
heavy censoring in this data (62%) makes the normality of the deviance residu- 
als’ tails somewhat suspect; one might wish to further check the patients with 
the 2 largest and 2 smallest residuals as a precaution The latter two patient’s 
values are not even distinguishable in the first plot. 

Simulation results have shown that constructed outhers in the form of sub 
jects who “live too long” are readily detected by the either the deviance or 
martingale residuals, though the scaling is visually more mterpretable m the 
former Outlier subjects who “died too early”, however, can be seen only in 
the deviance transform, and even then not always reliably This seems to be 
because in a proportional hazards framework even subjects with a very low risk 
have an appreciable probability of dymg early. In a semi-parametrrc model, the 
automatic scaling afforded by the Breslow estimate virtually guarantees that a 
singleton small outlier will go unnotrced. 

7 Discussion 

We have defined a residual applicable to both parametric and semi-parametric 
proportronal hazards models whrch is effective for exploration of functional form, 
model validity, leverage, and fit of mdividual subjects. The martingale formula- 
tion gives these residuals a strong theoretical underpinning and allows rigorous 
investigation of their properties. Computation of the residuals and their trans- 
forms IS straightforward, and can easily be added to existing computer routines 
for the Cox or other proportional hazards models. 

For any single one of the uses outlmed above, it might be argued that a better 
method exists, e.g., actual jackknife values for assessing leverage, or estrmating 
functional form by directly maximizing the likelihood over a spline or other 
flexible curve. A readily available residual can have unforseen benefits, however. 
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Figure 9. Martingale and deviance residuals for the cirrhosis data 
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An example from our own experience was the discovery that martmgle residuals 
from a null Cox model could be used as input to the CART (Classification and 
Regression Trees) model of Brerman, et. al (1984), and that the marriage 
seems to work qmte well Thus has allowed the direct use for survrval data of a 
methodology designed for a continuous y variate, without a major overhaul of 
the algorithm or its computer code. In one particular data set, the first splits 
produced by CART appeared to be mimicking a lmear age effect. This was 
verrfied using the plots of section 3 above, and CART rerun usmg residuals 
from a model that included age. Interactions such as this may be useful for 
other analysis methods as well 

While this paper was in draft, we became aware of some related work by 
Barlow and Prentice (1988), which includes a more thorough discussion of the 
material in our $2.3 and 2.4 for the semi-parametric case, and also has some 
overlap with our 95. 
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