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1 Introduction

1.1 Model

Consider a set of n subjects such that for the ith subject in this set, the counting
process N, = {N,(t),t > 0} indicates the number of observed events expenenced
over the passage of time. The sample paths of the &, are assumed to be right
continuous step functions with jumps of size 41 and with value zero at time
zero The intensity function for N, at time t is given by

Yi(2) dA(t, 2,(2)) (1)

where Y;(t) is a left continuous 0-1 process indicating whether the ith subject 1s
in the risk set at time £, and Z,(%) 15 a p dimensional vector of left continuous
covariate processes having right hand limits Unless specified otherwise, we will
assume that

dA(L, Z,(1)) = exp(8'Z.(1)) dho(t) (2)
for cumulative hazard function Ay and vector of regression coefficients £ We
assume that Ay is an absolutely continuous function and that no two processes
jump at the same time, so thal (Ny,N,,...,N,) is a multivaniate counting
process.

Several familiar survival models fit into this framework. The Anderson-Gill
(1982) generalization of the Cox(1972) model arises when Ag(t) is completely
unspecified The further restriction that N,(t) = 1= Yi(s) = 0 forall s > ¢
yields the Cox model The parametric form Ag{t) = At yields a Poisson (if
there are multiple events) or an exponential (1f there 1s only a single event)
model, and Ao(t) = (Af)? a Weibull model. Qur attention will focus primarily
on the Anderson-Gill and Cox models, however, the methods to be developed
will largely apply to both the parametric and semi-parametric case.

1.2 Martingales

For measure theoretic reasons, assume our model 15 endowed with a right con-
tinuous non-decreasing family (Ft,¢ € [0,00)) of o algebras, where 7, can be




thought of as containing all of the mformation through time { In particular,
N:(1),Y.(1),and Z,(¢) are all measurable with respect to F 1t follows that

M@zMM—[xMJ“%mm (3)

is a local square integrable martingale. The term local can be dropped if
E(N,(t)) < oo for all ¢t and if, for j=1,2,. ,p, sup,(Z.(t)), is bounded Here-
after, assume this to hold.

1.3 Martingale Residuals

In the parametric or semi-parametric models above, the vector of regression
parameters # and the baseline hazard Ay are commonly estimated by maxi-
mum likelihood or pariial ikelihood methods Well known technigues are then
employed to develop the relevant tests of hypotheses and confidence intervals

Of importance in such regression analyses are diagnostic tools for assessing
model adequacy We will discuss certain types of residuals which are useful dz-
agnostic tools, focusing in particular on graphical applications We will consider
the use of residuals to assess-

1. the functional form for the influence of a covariate, in a model already
accounting for other covariates,

2 model adequacy, particularly with respect to proportional hazards as-
sumptions,

3. the leverage exerted by each subject in parameter estimation,

4. the accuracy of the model in predicting the outcome for a particular sub-
Ject

The martingales defined in (3) form the basis for these residuals In par-
ticular, let 8 and Ap be estimated by maximum likehhood for the parametric
models, and for the non-parametric models let # be estimated by the maxinmm
partial likelihood estimator and the cumulative hazard by the Breslow(1974)

timat
estimate K (t) ft E‘n:]_ dN;(S)
0 = ..
’ (Z?ﬂ Y (S)eﬂIZJ(S))

(Other estimators of Ay are available for the semi-parametric case, our reasons
for preferring the Breslow estimate will become clear ) Then the marfingale
residual is defined to be

ﬁmzmm—Lme“%M@ (4)




with ]l//.?, as a shorthand for l\?,(oo) The residual can be interpreted, at each ¢,
as the difference over [0,t] 1n the observed number of events minus the expected
number given the model, or as excess deaths Note that for a Cox model with
constant (non time-dependent) covariates this residual reduces to the simple

form R N .
M, =6, — Ag(t)e? &

a residual that has been proposed from a different perspective by Kay(1977).

2 Properties

2.1 Sum

The next lemma will be useful 1n establishing properties of the residuals in
parametric models.

Lemma 2,1 Consider the model given by (1), where A 1s differentiable and
specified parametrically. i A 1s the MLE estimate for A and the solution space
1s scalable, 1.e , for any potential solution A then kA is also 1n the solution space
for all & > 0, then

> [ =3 [ weake

Proof: For parametric A we can write the hkelihood as

L= ﬁ JI(1 = A () FrXA=amD) (), (5))¥elddN:() 5)

1:=1 550

(where A = dA) so that
log L = i j " ()N, (5) — Vi(s)dAu(s)
=170

Note that [Y,dN, = [dN,, since a process cannot be observed to jump when
not under observation. The maximized value of the log likelihood can be written

HE) = / (1n(ki(s))d1v,(s) —Y,(s)kdﬂ,(s)) ,

where the nusance parameter k£ has been added The maximum with respect
to k occurs when

= %I; = Zj i—dN,(s) - ny,(s)d[x,(s).

By hypothesis this occurs when k=1 O




Using lemma 2 1, we must have ):]E(oo) = 0 for any parametric model
that satisfies (1) and is scalable A sufficient condition for a scalable solution
space is a By term is the exponent, similar to the condition that guarantees the
residuals will sum to zero in a linear model.

The lemma does not directly apply to the semi-parametric model, which
arises in (2) when Ap is unspecified. However, it is easy to verify that when the
Breslow estimate 15 used the even stronger condition

S M) =0,v (6)

holds independent of the estimate b of §.
e = ([ - [ree o)

( 52 (fanco— [ | E 1)

The converse is also true: equation (6) uniquely defines the Breslow estimate.

2.2 Expectation

Let b be some estimate, not necessarily the MLE, of 8 If perchance b = 8,
then E(M (t)) = 0 for either the parametric or semi-parametric models For
the semi-parametric model, we also have mean zero when b = 0

Y.(s) 2. dN, (8)}
2 Y(s)

=5 [[ am - vionants))

- *_____Y,(s) 5)-Y (s s
[ SEL S a9 - veyana(a)| |

which is the expectation of the sum of a zero mean martingale and zerc mean
martingale transform
For b = 3, E(M (1)) converges to zero by standard martingale convergence

EM,(t) =E / {sz(s)—
0

theorems The asymptotic covariance of M, and M goes to zero, while

var(M;(2)) — /D t Y.(s)eP 5(3) dAg(s) .




2.3 Score Vector and Score Residuals

For the semi-parametric model arising 1n (2) when Ag 1s unspecified, we can
write the partial likelihood as

’ an,
I, = f[ 1] L “
bR Aorzzol S

1=1s>0

so that, for k=1, ..,p,

where

dlog L,

éf)}

Zi(b,s) =

= Z/m{zﬂc(s) - Zk(ﬁ, 5)}dN,(s) ,
=1 0

Y, (8)eY 24 2,4 (5)
Do Yi(s)eb 72

(7)

is a weighted mean of the covariates over the risk set at time s. If 5 denotes the
maximum partial hikelihood estimate of 3,

0

dlog L,
Op

; fo " () - Zalhy) dN,(s)

S [ (o) 2t o) ()

B=p

ZLik(Bi OO)

In parallel, consider the parametric model. The derivative of log I m (5)
with respect to the betas is

dlog L

0B

:E /0 Zue(5) M, (3)

Evaluating at the maximum likelihood estimate,

0

)

lil

OlogL
06s

=5
; f[, Zu(s) dM,(s)
Y Li(B, )

(8)




Define L,x(-) as the score process, and L,i(oo) as the score residual of the
ith subject and the kth variable (Qur use of the same symbol for both the
parametric and semi-parametric models 1s an abuse of notation, but the proper
definition will always be clear from the context) In both the parametric and
semi-parametric cases, the score vector’s terms appear m the form f(data,) =
residual,, a form remmscent of that found in the generalized linear models
hierature

The score residuals are an example from the broader class of martingale
transform residuals. In particular, let the process W, = {W,(s),s > 0} be
bounded, predictable, and adapted with respect to our family (7; ¢ € [0,00)) of
o algebras (e.g., it suffices for W, to be an adapted left continuous bounded pro-
cess with right hand limits) Then [ W,(s)dM,(s) 1s a martingale transform and
hence also is a martingale In tumn, fj° Fﬁ(s)dﬁ(s) is a martingale-transform
residual. If each component of the random vaniable Z,,(t) 15 bounded, 1t fol-
lows that the score residual i1s a martingale-transform residual These residuals
will be found quate useful in diagnosis of each subject’s leverage on parameter
estimates and in assessing model assumptions such as proportional hazards

2.4 Deviance residuals

One deficiency of the martingale residual E’i, particularly 1n the one event set-
ting of the Cox model, is its skewness. In a one event setting, its maximum
value 18 1 while its nininum 18 —oco. As a visual aid in certain plots, particu-
larly when assessing the accuracy of the model in predicting the failure rate of
a given subject, it may be helpful to transform the residual to achieve a more
normal shaped distribution. One such transformation 15 motivated by the de-
viance residuals found in the general linear models literature (McCullagh and
Nelder(1983)) Define the deviance as

D=2 {Ioglik(saturated) — loghk(ﬁ)} ,

where a saturated medel is one in which # 1s completely free, i.e, each ob-
servation is allowed 1ts own private ﬁ vector. There may be other nuisance
parameters  which are held constant across the two models, such as ¢ mn a
normal errors linear model. In our models the nuisance parameter 18 the actual
baseline hazard Ap Tet h; be the individual per-subject estimates of 3, then
the deviance for non tume-dependent covariates is

D = 2sup Z {j(lueh’,Z. — ln eﬁ’Z.)dN,(s)
h

= { e (5 - 5) ano

Because terms separate, we may optimize A, for each subject separately Ap-
plying a similar argument to that of lemma 2 1 to these samples of size 1 (with




A = exp(h/Z,) Aq),
& A, o) — S
fo Y, (5)eM Ao (s) A dN,(s)

Let E(t} = N,(t) - fnt exp(#'Z,)dAo(s), i.e , the martingale residual with 8
estimated and A known. Substituting gives

— Az,
_2Z{M. +In (thzl) de,(s)}
= =2 Z {ﬂﬂf, + N (oo} In (—-—-——M (23?()0;)M') } . (9)

The last step above requires a factorization

D

/‘Yf(s)eﬁlz'dﬁo(s) = eB’Z'/.Y’(“f)dAo(S)

which iz not valid for time dependent Z.

For the Gaussian density the nuisance parameter o cancels out completely,
not 5o here. We need to estimate Ag, which results in the replacement of M,
by M, in the formula. Equation (9) is equivalent to the deviance formula for a
Paisson model found 1n McCullagh and Nelder (1983} with y, replaced by N, (co)
and p = At, replaced by the observed cumulative hazard [Y,(s) exp(f'Z.)dAo.
The deviance residual 15 defined as the signed square root of this expression.
Note that the deviance residual is zero if and only if M; =0 Also note that for
the Cox model the deviance residuals are

d, = sign(M,)/-2(M, + 6,In (5, - E)) .

The log function “expands” residuals close to one, while the square root con-
tracts the large negative values.

3 Functional Form

A key aspect of the model (2) is the functional form exp(#'Z) specified for the
covariates Perhaps one of the variables Z, should be replaced by V7, or by
I175¢}, or by some other transform? To investigate this for the semi-parametric
model, consider a model with a single non time-dependent covariate and

Alt, Z) = h(Z)Ao(?)




for some unknown positive function h. We can think of the outcomes (Y( ). N(-})
as coming from a mixture distribution in Z with a crude hazard function

A(t)

Ao{t) E(R(Z) ai time t)

[ P(Y(t,2) = 1) h(2)dFz(z)
JP(Y(t,z) = 1)dFz(z)

Aoft) hit)

= Aq(?)

where Fz(z) is the distribution function of Z Then after fitting a model will
all the variables except the Z of interest (a null model m this case),

E(M(1))2)

{

E(N(|Z2))+ E /0 —Y (5| 2)dA(s)
E /; Y (512) (dA(s) — dAo(s))
= terml 4+ term?2 + termd

Consider these terms individually.
Term3- If there are no other covariates in the model, then

Y (s]2)
termd = E j (Y (s)dA(s) — dN,(s
2 | 5.0 )
Since Y(s5]Z)/ 3" Y, (s) 1s a predictable process, the entire term 1s the expectation
of a mean zero martingale, so term3=0 B

Term2: Using the expression for A above and then centering about i{¢,) for
some fixed time {,,

term2 = -F /; Y(s12) thi h(Z) dAo(s)

- & [ Y(612) (h(s) ~ h(te)) dhofs)

_h{to)

h(Z) ——LE(N(t)|Z) 4+ remainder.

Thus

E(H®)|Z) = (1 2&))) E(N(2)]2) + remamder (10)

Equation 10 has a natural mterpretation.

E(# excess deaths) ~~ (1 - hazard ratio) E(# events per subject)

Figures 1, 2, and 3§ show the results of three calculations In each Z 1s uni-
formly spaced over (0,1), and h(z) is exp(z), exp(bz), and exp(Hz) respectively.
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Figure 1 Martingale Residuals with # = 1 and no censoring

There is no censoring n figures 1 and 2, and a censoring of 50% in figure 3 (cen-
soring is an mdependent uniform variable) The value of ¢ is co. Plotted are the
actual value of E(M ]Z) (sohd line) for a Cox model, calculated by a straight-
forward simulation with 1000 replications and a sample size per replication of
100, and the function —In[1 — E(M|2)/E(N|Z)} (dashed line) This latier 18
obtained by solving equation (10) for In(h(Z))~In(h(ts)) Thisis the functional
that should be placed in the exponent of a proportional hazards model (The
term ‘In(h(t,))’ 18 Just a multiplicative constant, though, and would be absorbed
inte Ag when a model is run) Note that E(N|Z) =1 for figures 1 and 2, and
that E(E(N(t)|Z)) = .5 for figure 3.

In figures 1 and 3 the function E(ﬁ |Z) is nearly straight, suggesiing that
when this is rewritten in the form of equation (2), with f(z) = In(h(z)). that
the further approximation is tolerable:

(1 - ef—f) E(N()|2)

(f = N EEN®ID)
= (f—f) - constant

(1 - E{%) E(N(1)|2)

&

That is, if the fit 18 not “pushed down” by the +1 boundary, a smoothed plot of
the M, versus a covariate will give approzimaiely the correct functional form to
place m the exponent of a Cox model. A major advantage to plotting the “raw”
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Figure 2: Martingale Residuals with # = 5 and no censoring
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Figure 3. Martingale Residuals with # = 5 and 50% censoring
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Figure 4: Martingale Residuals, Stage D1 Prostate Cancer

martingale residuals rather than the transformed function is interpretability,
the y axis is in a direct scale of excess deaths.

Figure 4 shows the result of such a fit for a data set of patients with surgically
treated stage DI prostate cancer and is taken from Winkler et al (1988). The
z vanable, percent of cells in g2 phase, 15 a measure of the proliferation rate
of the resected tissue, and the y variable is the martingale residual from a null
Cox model exploring time to recurtence of disease. Before the study began, a
provisional cutoff of 13% had been set as “mean + 3 5.d” of the £2% values
from 60 non-cancerous tissue specimens. A smooth fit to the M,, using the
lowess function of S (Becker and Chambers, 1984), bears out the initial gness.

One of the desirable features of assessing functional form through the mar-
tingale residuals is illustrated in figure 4 The display of the smooth fit in
relation to the individual residuals provides insight into both the variability of
and the influence of specific individuals on the estimate of the functional form.

The remainder term 1n (10) was small 1 our simulations, and one might
expect it to always be so since 1t is based on a difference in means, a “1/n”
effect compared to the lead term This is difficult to make precise without
further restrictions in Y, however. Two special cases are

1. Y() independent of Z. Such would be the case in data from a Poisson
process situation, where observation time for each obgect i8 not affected
by the number of events produced. In this case h() is constant, and the
remainder is zero.

1




2 A Cox model with uncensored data Then Y (¢) has exactly one jump from
1to 0 for each subject, and E(Y (¢|Z)) = P[Y (¢, Z) = 1] = exp(—Ao(t)h(Z))
Some further manipulation shows the remainder to be of the form

E4z(inEpe*¥)

where A 15 the cumulative hazard at the time of failure, B has mean zero,
and E(A) =1 A Taylor expansion of this has a leading term of O(1/n)

The argument given above extends to multiple covariates in a straightforward
way. It does not apply to the parametric models, since term3 /- 0, nor to time
dependent variates These latter areas need exploration.

4 Model Adequacy

An important use of residuals is in the graphical or analytical assessment of the
vahdity of model assumptions. One such, functional form, has been discussed
above. Three others, the hmiting value of Ag, proportional hazards, and overall
lack of fit are discussed below.

4.1 Crude and net hazards

One subtle model assumption relates to the interpretability of the function
At; Z,(t)) By defimition, this function satisfies the relationship

E{N.(t +db) — N,(t)|F:} = Ya(0) ME; Z(1)) . (11)

Thus, the interpretation of X 1s intrinsically tied to the censoring process Y ( ).
To understand the impact of this more clearly, consider the classical no covariate
setting m which 7, and U, represent an absolutely continuonsly distributed true
survival time and censoring time for the 1th subject. If X, = min(T;, U,) 18 the
observation time, suppose Y,(t) = Ijx,»1 and N(t) = Iix, <, x,=7,) In this
setting, 1t can be shown that the A in (11) 1s the “crude hazard”,

~EP(T > 1,U > t)|us
P(T>t4U 2> u) ’

Ac(t) =

and that the Breslow estimate in section 1.2, (which reduces to the Nelson (1969)
estimate since there are no covariates), 18 a consistent estimator for { A.(s)ds

The problem of interpretability arises in that one often interprets the parameter
A m (11) in this classical setting to be the “net hazard”

~2P(T>1)

An(t) = P(T>1) '

12
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Figure 5: Two possible non-proporfienal hazards.

which is independent of U If one does wish to interpret A in (11) to be A,, then
this would represent an additional assumption to the structure already imposed
by (1) and (2) Unfortunately, this assumption 1s untestable (see Tsiatis 1975)
using martingale residuals or any other approach.

4.2 Proportional Hazards

In this section, we will focus on the use of martingale and score residuals in the
evaluation of the proportional hazards assumption, in the model where Z(t) is
independent of ¢.

For motivation, begin by considering the special case 1n which our model
has a single dichotomous covariate, i.e., Z = £1. In this setting, we wish to
determine whether the hazard ratio A({;Z = 1)/A({;Z = —1), estimated in
the model to be exp(28), is indeed independent of t. Consider the two non-
proportional hazards situations illustrated in Figure 5 Because the martmmgale
regiduals sum to zero, it follows for t,=0, 1, or 2 that

i
Z I{Z,:l}{Mz (to + 1) — M, (tO)}
=1

= — ZI{le_l}{ﬁ‘(tu + I) - ﬁ(to)}

=1

= A(t,)
In either illustration {a) or (b), it is clear that [A({o)] will be stochastically

much larger than would be the case if proportional hazards were valid. Setting
Z(b,8) as m (7), one might reject the proportional hazards assumption if a

13




“large” value is obtamed for sup; > L, (t) where

L) = [ {2~ 2p.0)} it

If Z is any discrete or continuous covariate, this proportional hazards test statis-
tic should be quite sensitive to alternatives for which

;g;i—;g; Va < B 18 monotonically strictly decreasing (increasing) in t.
(12)
To denive the distribution of the statistic sup, ¥ L,(¢) , consider U(8, ¢), the
partial likelihood score statistic (using information over [0,t]). Then,

n
Y L) =U(B,1).
1=1
In turn, 30, L,(t) = 0 for { = 0 and ¢ = oo, by the definition of § The next
lemma establishes that a standardized version of this process converges asymp-
totically to a tied down Browman Bridge process The lemma also addresses
the p > 1 covariate vector situation and generalizes an earher result obtained
by We1(1984)
Lemma 4.1 As in section 2.1 let (3,1} denote the score vector process and

B denote the maximum partial likelihood estimate of 8 Define the information
matrix

25,9=)" fo { L Y02 2w, (Ez(s)sz,)m} dN,(s),
=1

2 Yy {she, 2. Yy (s)w,

where w, = exp('Z;), and a®? = aa’ for any column vector a. Denote the
in probability limit of n='Z(3,-) by L(-) (defined mn Anderson and Gill(1984)).
Then

a. Let B(-) be a mean zero vector of (Gaussian processes having independent
increments and covariance matnx X( ) Then under regularity conditions
specified in Anderson and Gill(1984),

TRV, = B = BO{E()} Bo) (13)

where = denotes weak convergence over the relevant interval

b. If (X(t)),x = 0 for all k # j and for any ¢, then for y = 1,2,. ,p,

VI8 00),, UGB, ), = W (%) (14)

where 0;,(t) = L(t),, and where {W°(t) : 0 < ¢ < 1} is distributed as a
Brownian Bridge

14




Proof;
a. By Taylor’s series expansion,
1 1
N vn

for some 8* on a line segment connecting B and B. In turn,

UGB = 5B~ <TEWRB ), (15)

Vi ={ L5000} Lv(s00)

Inserting this into (15), we obtain
1 1

Ja VA
R L g

U(ﬁ!) = U(ﬁs )

Now (13) follows from Anderson and Gill’s results, based upon the mar-
tingale structure of (A, ), which establishes that %U (8, )= B(-) and

L7(8*, ) = ©(*) in probabihty.

b. To obtain the large sample covariance structure of VLG U(B,"), observe for
any set s <t

E([B(s) - B(s)}{x(00)}* B(eo)[B(t) — X(t}{E(c0)} ' B(0)])
= X(s) — E(s){Z(c0)} 71 E() (16)

When (2(¢));x = 0 for any k # 7 and for any ¢, (14) follows from (16) and
Andersen and Gill’s result that LZ(f, 00) = T(c0) m probability. O

When the jth component of the covanate vector satisfies the proportional
hazards assumption, (14) indicates that the proportional hazards test statistic

-8, oo),; sup, 3, L,;(t) asymptotically has the well known distribution of
SUPgcrc; Wo(t), as long as (E(t)),z = 0 for any { In essence, this condition
requires 7 , to be orthogonal to the other covariates. In fact, by 1ts defimition in
Lemma 4 1, the consistent estimator %I(B, o0) of B(co) can be interpreted to
be the sum over death times of the covariance of Z at each death time. Thus,
for example, (%(%));x = 0 in intervention studies in which the jth covariate
represents randomly assigned treatment, as long as strong treatment by factor
mteractions do not exist. Further efforts are necessary to address the situation
in which the assumption (£(2)),z = 0 fails to hold

For the parametric model, analogous results hold. A proportional hazards
test statistic based on the standardized supremium of the score process 3, Lz ()
also is distributed asymptotically as a time transformed Brownian bridge

15




When one has adequate data, it 13 often desirable to have flexible graphical
and analytical methods fo detect more general proportional hazards departures
not characterized by (12), such as the alternative in figure 5(b). By choosing
band widths A and 8, we can make graphical assessments by plotting

t4-§

faslz,t) = ZI{x ALZ, <::+A}/ sz(S)

as a function of ¢, for selected values of 2. For discrete covariates, one can
set A = 0. Trends in the plots of fa s(x,-) signal the nature of the departure
from proportional hazards. To enable analytical inferences, one can obtain an
expression for the conditional distribution of any term

Ta(s,t) = Z/ dM,(u) ,

1IEA

where A is any subset of {1,2, ,n} and s <t Specifically, Ts(s,t) can be
thought of as a sum over the L distinet failure times occurning over the interval
(5,2]. At the ith of these L failure times, tq), 3., AN,(t(;)) is the number
of failures occurring in the set A. In turn, 3°,_ , AN,({(;)) has the distribution
ansing from samphing 3 . , Yi({()) items without replacement from a set of
Yoy Yi(ty) 1tems, which mcludes 3 . =1 AN, 1(t(ny) total failures, and where each

item has a relative probability Y,(t(,))eﬂ DI AN e#'Zx of beng sampled
In particular then, } . s AN,{¢7;)) has expectation

IR AUO e
Z [{ 2ok Yk(t(,))eﬁ'z,, } Z AN’“(t(I))}

tEA
=Y Yi(tn) e 2 Aholty)
t€EA

go indeed T4 (s, 1) has zero expectation in this sampling framework. Finally, the
distribution of T4 (s,?) is obtaned by taking {3, ., AN,(t@)) : 1=1,2,..., L}
to be a collection of independent random variables

Many other methods for testing proportional hazards have been proposed,
notably by Schoenfeld{1980), Andersen (1982), and Aranda-Osdaz (1983). One
advantage of the the statistic 1n (14) is the lack of the need for an arbitrary
discretization of the continuous time axis.

As an 1llustration of these ideas, we will use a data set which has been
collected to model survival in patients suffering from primary biliary cirrhosis, a
chronic and eventually fatal liver disease (Dickson, et al, 1988). A population of
418 patients was followed from the date of their referral to a tertiary care center
until death or censoring at study closure. There were 161 deaths. An extensive
database of medical variables measured at the time of referral 1s available A Cox
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Figure 6. 5" L, () for two predictors of liver disease

regression model using five of the covariates — total serum bilirubin, albumin,
prothrombin time, age, and edema — was found to fit the survial expenence
rather well, Figure 6 shows plots of the standardized score process,

\/ 1—1(}@’ OO)JJ ZL'J (t);

as a function of ¢ for two of the predictors. If the proportional hazards assump-
tion is correct, we would expect each of these plots to be a tied down random
walk, this may be true for bilirubin, but the pattern 1n the process for prothrom-
bin time 18 obvious. One possible explanation is that in this disease prothrombin
time can be readily modified by drug therapy, but bilirebin can not. The critical
values for the supremum of a Brownian Bridge are also mdicated on the plots
(see Koziol and Byar (1975)). Because the predictor variables in this data set
are mildly correlated, the critical values may need some adjustment

The increments in the (unstandarized) process are the pariial residuals in-
troduced by Schoenfeld (1982). Another test that mey be applied, therefore,
is one proposed by Harrell (1986). This is based on the Pearson correlation
between the partial residuals and the rank order of the failure times, along with
the standard z-transform of Fisher. When applied to this data set, the z-value
for prothrombin time was -4 64 (p<.0001) and for bilirubin the value was 0.78

(p=-44).
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4.3 Overall Measure of Fit

In more standard parametric models, the overall “size” of the residuals gives a
clue to the overall fit of the model, and this holds for the parametric proportional
hazards models also For a series of models with the same 8 in each, the sum of
the squared deviance residuals can be used as a surrogate for the log likehhoad;
the difference in this sum for two models will be a chi-square statistic on the
appropriate degrees of freedom For a series of Coxmodels A, B, C, ..., however,
the estimation of B4, Bz, . . . by partial likelihood imples a reestimation of Ag for
each. The sums D = §_ d? cannot be used as a surrogate for the log likelihoods
as 1s done 1n GLIMs, becaunse Ay does not cancel out in the derivation above
(section 2.4). In fact, we have found in examples that the change AD between
two nested models does not necessarily correlate with the change in partial
likelihood.

The “lack of size” condition is sironger than this experience. As pointed
out by Crowley and Hu (1977), when there is no censoring the values of the
Breslow estimate at each event time are exactly the order statistics from an
exponential distribution. The martingale residuals at # = 0 have a distribution
of {1 - exponential order statistics), while the martingale residuals evaluated at
B = B have distribution of (1- exponential data sample) Thus, for uncensored
data at least, the global distribution of the martingale residuals is the same
under null and perfect medels

5 Influential Observations

The influence of an observation on model fit depends on both the residual from
the fit and on the extremuty of its covariate value, roughly (Z, — Z) * residual.
In the Anderson-Gill model specified by (2), Z 1s a function of time: the mean
over the risk set at time t (see (7) above) This suggests using a “time average”
value of Z,, — Z,, which leads to the score residual

Ly = ] " (2 () — 2 (B, 5)) i (5)

as an influence measure
To formalize this, we may use the approach of Cain and Lange (1984) and
define a weighted score vector

=Y w [ 00,0 - ) dN
=1 o

where Z is the reweighted mean at 8

T Yi(tyue? 20 2, (1)
3 Vi(t)wel 2

ZJ )=
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Then

a8 88\ [ oU o, OU

=== = ~T(B) = ;
Jw, (BU) ((‘7w,) ) Ow;
evaluation of this quantity at w = 1 is the infinitesimal jackknife estimate of
influence. In our case
ou, i ~
G = | Y8 (Zu(e) — B () dN(s)

s 0

WEAD

- ;wi /:o Yi(s)Y(8) (Zay () — 5} (s) (Ek Yk(s)wkeﬁ'z"(’)) dNi(s)

The last term in the second integrand is just the component of the Breslow
estimate of Ag(s), so that
ovu,
S,

[l

w=1
p=8

j Y.(5) (Z(5) — %, (B, )) (@Ni(s) — F edho(s)) (17)

= LlJ

In the special case of a Cox model (17) reduces to equation 4 of Cain and Lange
and 50 generalizes their work. The influence of the ith subject on the estimation
of 3 15 then approximately the Newton-Raphson step —Z~(3)(Ls1, Lea, . - -, Inp)’
A similar, though ssmpler, derivation holds for the parametric models and yields
the score residual L,; defined in (8)

This method may underestimate the true jackknife, especially for extreme
values of z, becanse 7 also changes when the observation is removed. Ancther
method is to compute the 1-step update m B when a single covariate Zpys is
added, with Z;,; equal to 1 for subject 1 and equal to 0 for all others This 1s
explored for the Cox model by Storer and Crowlsy (1985). For the Anderson-Gill

model at (1%}, 0),

_ ~ Y; 1 eﬁ’zs
Zp11(8,2) ——‘()—77
Zk Yk(t)cﬁ £(2)
U = 0fory=12...,p (s1nce we are at f)

Ui = 3 [ ¥ g (8) = Zyaa (B 9) ami(s)
i

o2 o0 A .
= / dN,(t) — / Y, (s) e 20 dhg(s)
0 0
= M
The same process for the new information matrix yields

1., = ( Z(8) » )

7; 77:
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Figure 7© Comparison of two approximate measures with the jackknife
where

Yy = f " Yi8) (Buy(5) — 2y (B 5)) 8 549D do(s)

mo= fom Yi(s) (1= Zpya(By8)) o 4 dhy(s)

Then the change in 8 is (—Zpew)”'U, and using a standard formula for the
inverse of a partitioned matrix:

-1
—=Z(8) _ T ﬁ}; ,
h — 7:1-(6)_173
which extends the results of Storer and Crowley to the Anderson-Gill model.
In practice, the two forms are not very far apart; high leverage points are
highlighted by both ¥or the prostate cancer data presented earher, figure 7
presents the resulis of the actual jackknife, score residual, and one-step influence
measures after fitting the variable %g2 as a linear covariate. Interestingly, there
are a few subjects for which the Storer-Crowley approach gives the wrong sign,
but they are all of small leverage (the value of 8,41 18 grossly overestimated

at the first step for each of these subjects, compared to its value if 1teration 1s
allowed to continue).

By =

Figure § illustrates an influential point in the liver disease data set. The score
residuals for the variable age are plotted against age, and show that the oldest
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Figure 8- Score residuals from the cirrhosis data set

individual has a disparate amount of influence on the coefficient Interestingly,
this observation led to the identification of a data error: the true age of the
patient was 54, not 78.

Though the score and Storer-Crowley residuals are similar in numeric mag-
nitude, the score residuals L,, have several technical advantages:

a) There is a simplicity of interpretation as components of the score statistic.

b) They are available for all values of §, not just the solution point [; For
mstance, at # = 0 they are components of the log-rank statistic.

¢) As a martingale transform, powerful theoretical tools are available. Compu-
tation of variance, for instance, is & simple exercise.

6 Model Accuracy for Individual Subjects

An 1mportant use of residuals 1s in graphical assessment of poor prediction by a
model for individual subjects. The size of the individual’s residval M, indicates
model accuracy with a large positive value for a subject who has more events
than predicted by the model (dies “too soon”) and a large negative residual for
any with fewer events than predicted by the model (lives “too long”). In the
one event models such as the Cox model, the martingale residuals are heavily
skewed and this skewness distorts the appearance of a standard residual plot.
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Tt 18 nearly impossible to detect outhers of the “died too early” type because so
many points are crowded up close to the value +1 A point with value .99999
does not appear any different than one with value of .9 The long right hand tail
of the martingale residuals may also produce spuricus outliers among those who
“hve too long” The deviance transform symmetrizes the martingale residuals
and helps to alleviate this problem When censoring is minmmal, <25% or so, the
distribution of the deviance residuals 18 very close to a normal distribution. For
censorings greater than 40%, a large bolus of points with residuals near 0 distorts
the normal approximation, but the transform is still helpful 1n symmetrizing the
set of residuals.

Figure 9 compares the martingale and deviance residuals for the liver dis-
ease data set presented earlier For each individual in the data set we have
computed both the residuals and the risk score B'z,. Panel A shows the martin-
gale residuals plotted against the risk score and panel B the deviance residuals.
The deviance transform suggests that the 3 individuals (with risk score & 8)
who look like outliers in the martingale plot are, 1n fact, not outliers at all The
heavy censoring in this data (62%) makes the normality of the deviance residu-
als’ talls somewhat suspect; one might wish to further check the patients with
the 2 largest and 2 smallest residuals as a precaution The latter two patient’s
values are not even distinguishable in the first plot.

Simulation results have shown that constructed outhers in the form of sub-
jects who “hve too long” are readily detected by the either the deviance or
martingale residuals, thongh the scaling is visually more mterpretable n the
former Qutlier subjects who “died too early”, however, can be seen only in
the deviance transform, and even then not always reliably This seems to be
because in a proportional hazards framework even subjects with a very low risk
have an appreciable probability of dying early. In a semi-parametric model, the
automatic scahng afforded by the Breslow estimate virtually guarantiees that a
singleton small outlier will go unnoticed.

7 Discussion

We have defined a residual applicable to both parametric and gemi-parametric
proportional hazards models which is effective for exploration of functional form,
model validity, leverage, and fit of individual subjects. The martingale formula-
tion gives these residuals a strong theoretical underpioning and allows rigorous
investigation of their properties. Computation of the residuals and their trans-
forms 1s straightforward, and can easily be added to existing computer routines
for the Cox or other proportional hazards models.

For any single one of the uses outlined above, it might be argued that a better
method exists, e.g., actual jackknife values for assessing leverage, or estimating
functional form by directly maximizing the likelihood over a spline or other
flexible curve. A readily available residual can have unforseen benefits, however.
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An example from our own experience was the discovery that martingle residuals
from & null Cox model could be used as input to the CART (Classification and
Regression Trees) model of Breiman, et. al (1984), and that the marriage
seems to work quite well This has allowed the direct use for survival data of a
methodology designed for a continuous y vanate, without a major overhaul of
the algorithm or its computer code. In one particular data set, the first splits
produced by CART appeared fo be mimicking a limear age effect. This was
verified using the plots of section 3 above, and CART re-run using residuals
from a model that included age. Interactions such as this may be useful for
other analysis methods as well

Whule this paper was in draft, we became aware of some related work by
Barlow and Prentice (1988), which includes a more thorough discussion of the
material in our §2.3 and 2.4 for the serm-parametric case, and also has some
overlap with our §5.
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