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SURVDIFF provides non—parametric statistics to compare survival curves in
independent samples. Linear rank test statistics include the Gehan—Wilcoxon
(GW)(l) and the &°*Y class of statistics where p>0, v>0. Special cases are the
Harrington-Fieming & statistics(z) (p20, y=0), the log-rank test(3) (LR) (p=0,
vy=0) and Peto-Peto-Wilcoxon(A) (PPW) (p=1, y=0). These linear rank tests have
been developed for r>2 sample situations, with corresponding one-sample
goodness—of-fit statistics defined, as well. For one-sample tests, the &°7 is
available for p>0, y=0,1,2. ¥For r=2 sample situatioms, versions of the &Y
and GW test statistics are also avallable for testing departures from a
proportional hazards model where the prespecified proportionality constant need
not be unity.

In testing for the equality of two survival curves, a generalized

(5) p (6,7)

Smirnov (GS) test statistic and a class of «

statistics, p?C, which
are nomrlinear supremum—type rank statistics, have been included.
Users should view SURVDIFF as a replacement for the SURVIEST procedure.

It is the natural complement to the SURVFIT procedure which estimates survival

CUIVES.

1 pevelopment was supported in part by Research Grant CA-24089 from the
National Cancer Institute.

2 Current address: Department of Biostatistics, SC-32, University of
Washington, Seattle, WA 98195.

3 Address correspondence to: Kenneth P. Offord, Medical Research Statistics,
Mayo Clinic, Rochester, MN 55905,




A. Statistical Development

Al. Notation., Assume the following data are available on the kth

individual, k=1, ..., N, where N indicates the total number of individuals over

all samples. Let the kth individual's observation time be denoted by Xk and

let Ak be an event indicator denoting whether the observation time is an evear-

time (Ak=l) or a censorship time (Ak=0). Also let Zk be the sample
indicator, so ZkE{O,l,...,r-l}. Letting i index the sample, then the number of

individuals in the ith sample is given by

Nk
Ny= I 1{z =i},
k=1

where I{A} refers to the indicator function for the event A. Note that

1
N=I N,.
3=0 *
k k N k k
If we set Y (x)=I{X 2;}, then Yi(x) = T Y (x) I{Z =i} represents the size
k=1

of the risk set at time x in sample i; i.e., the number of individuals in

sample i1 who are observed for at least x days. Define Nk(x)=I{XES;, Ak=l},
N ox k th
B0 Ni(x)= T N (%) I{Z =i} represents the number of observed deaths in the i

k=1
sample at or before x-days.

The notation just presented is standard among authors, such as Gill(s),
who have applied the theory of stochastic processes to survival analysis. It
also will be useful to give the alternative notation for risk set sizes and
numbers of deaths that was used by Mhntel(B) in the development of the log-
rank test.

In what follows, the subscript k will be used to index distinct, ordered,

observed death (or event) times over all samples, with k=1,2,...,d*, Note

that d* will be the total number of observed deaths only if there are no tied
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observed death times, Denote the set of ordered, distinct death times by {T

l!
1
T2, asey Td*} wvhere T1<T2<...<Td*. Then, dik = dNi(Tk) and dk - iiioti’Ni(Tk)

refer to the number of deaths occurring at Tk in the ith sample and over all

samples, respectively. The number of individuals in the risk set at death

time Tk for the ith sample and over all samples are n

1
L Y (T, ), respectively.
1=0 ik

= Yi(Tk) and

nk=

Since all statistics to be defined are nonparametric, computations will be
performed only over the interval in which risk set sizes are positive in at
least two of the r sampies. Thus, the last observed death time contributing
information to the statistics is Td’ where

d = max{ k: n_ > max i=0,1,...,r-1}].

k {0530
Clearly, d<d*.

A2, Model. Denote the true survival distribution for the ith sample by
Si(t)’ which is simply the probability that an individual in sample i will
survive from time O to time t. If we denote the cumulative hazard function in
sample 1 by Ai(t), it follows that Si(t) = exp{-Ai(t)}. Individuals in the ith
sample then have hazard function

T A,(0) = A (0) .
To help interpret the meaning of the hazard function, consider a small Atr.
Then Ai(T)Ar is approximately the probability of death occurring in the
interval 1 to 1+At, given survival to 1.
Let Ci(t) denote the probability an individual in sample i is not censored

before time t. Assuming statistical independence between the causes of death

and censorship, it follows that the distribution of observation times in the

th
i sample is given by wi(t) = Si(t)Ci(t)-
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Suppose r>2. With the exception of one important special case, all test
procedures to be discussed were developed to test the hypothesis that all r
samples have equivalent survival distributions; that is,

H: Si(t) = 5(t), 1i=0,...,r-1, (L
where S(t) is unspecified. The exception to this is that the two-sample linear

rank tests to be discussed can be employed more generally to test the

hypothesis
f. = B
Hb' Al(t) Ao(t)e ] (2)

for some fixed By Of course, Hg reduces to Ho when Boso.

A3. Two-sample linear rank tests. As background, these test statistics

are called rank tests because they depend on time only to the extent necessary
to rank deaths and censored observations. A rank test statistic is invariant
under any monotone transformation of the data because such a transformation
does not alter the ranks, They are called linear because such statistics can
be written as linear functions of the ranks.

A classic two—-sample linear rank statistic to test Ho in censored survival
data is the log-rank, proposed by Hante1(3). Conditioning on risk set sizes,
Doy and D s and on the number of events, dk’ occurring at T, , Mantel proposed
forming the difference between the observed and conditionally expected number
of events in sample 1 at Tk. The log-rank statistic, as stated in (3), is then
proportional to the sum of these differences when the sum is taken over event

times:

log-rank « ;;1 { K - (E-n%:—) dk} (3)
k=1 Ok "1k

This statistic can be generalized to provide greater sensitivity to
survival differences occurring over certain periods by employing a weight

function Q(Tk). One further generalization to test the more general
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hypothesis H;: Al(t) - Ao(t)e?U vields

A
d n.eo
N 1k
Z( ) g I Q(Tk){dlk - *—-—————7;— ko (4)
k=1 n0k+n1ke ]

Remembering that st{o,l} in the two sample setting, equivalent

(W)

formulations for Z y using Lebesgue-~Stieltjes integrals, are given by:

y z* esﬂzll{xlzg}

N o _
2Me 5 | qofz* - 42 5 } s oo (5)
k=10 ;o2 1o
2=1
© {Yo(x) Yl(x)eBD le(x) dNO(x)
=} Qx) . ey (6)
0 Yo(x)+Y1(x)e86] {Yl(X)eBO Tolx
© Yo(x)Yl(x)eBO -8 . )
= ] Q(x){ 7 fd{e POk, (x)-R,(x)} (N
0 Yo(x)+Yl(x)e 0

where (7) follows from (6) since the cumulative hazard estimator is

) x
A (x) =
1092 4

We can see from (7) that, when BO=O, these two-sample linear rank statistics

are simply a sum (integral) of weighted differences in hazard functions.

(M)

The variance, V, of Z can be proposed heuristically by using weighted

Bernoulli arguments in untied data, or in tied data with 50=0, by hyper-

geometric distribution arguments of Mantel(B). Employing the theory of
stochastic processes, Gill(s) has verified that the statistie
d nlkeBo
T oT) {4, ~C ) d,)
(N) k=1 © Ik " o eBo” Kk
Z 0k ik
0 0
v d , N5 e (n0k+n1ke —dk) 1/2
k=1 (o e gtny e 0-1)
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indeed has a standard normal distribution when M=, as long as Q satisfies some
mild regularity conditions. To be precise, this result holds in untied data
for any 50 and holds when BOEO whether or not ties exist. However, when Bo is
a fixed non-zero constant and ties exist in the data, one must be more
cautious. Formally, to study properties of statistics in tied data situations,
one considers discrete time models. To amplify, many discrete time models 7
exist which, as the discretization becomes finer, reduce to the proportional
hazards model, Al(t}=ﬁo(t)e8. The statistics under these models in general
will differ unless one is testing the hypothesis of equality; i.e., HO: 30=0.

For example, one of these discrete time models, the so called "log odds" model

(9)
(

of Cox " ~, gives rise to a partial likelihood (equation 4.14 of Kalbfleisch and

Prentice 10)) and a score statistic which agrees with our equation 8 (with
Q(t)=1) only when BUEO. Although differences between various discrete time
statistics exist when testing a nomzero BO’ they are minor unless data are
heavily tied. Thus, we suggest the use of the statistic in equation {(8) due to
its simplicity, ease of computation, and intuitive appeal. Still, one should
be cautious if 80¢0 and data are heavily tied.

Observe in equation (8) that the weighted observed number of deaths in
sample 1 is given by

d

I QT
k=1

while the weighted expected number of deaths in that sazmple 1 is

k) dlk

d n eBG

PoQ(r) (—=

= By
k=1 n0k+nlke

) 4

As mentioned earlier, the weight function Q enables one to obtain
particular sensitivity to survival differences occurring at specific points in
time. The following table indicates those weight functions which we are making
available and the name of the corresponding test statistic. § is simply the

(12)

left=continuous KaplanMeier survival estimator iIn the pooled sample.
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Q(x){weight function) Test Statistic

YO(X)+Y1(X) Gehan—Wilcoxon(l)
[8(x)1° [1~8(x)]Y Y class
1 log—rank(B)
(cP*Y, p=0, y=0)
§(x) Peto~Peto Wilcoxon(h)
(&P°Y, p=1, y=0)
[8(x)]° Harrington—Fleming P2

(GP sY , Y=0)

Briefly, relative to the log rank test, the Gehan-Wilcoxon and Peto—-Peto
Wilcoxon provide greater sensitivity to survival differences occurring earlier
in time since [Yo(x)+Yl(x)] and S$(x) are decreasing weight functions. The
Harrington=Fleming G° class includes the log-rank (p=0) and Peto-Peto Wilcoxon
(p=1) as special cases and provides greater sensitivity to early occurring
differences the larger one chooses p. For the situation in which B,;=0,

Harrington and Flemingcz)

have found the type of departures fromHo that each
of the ¢ test produces is fully efficient in detecting. Obviously, the Py
family provides considerable versatility to the user, Sensitivity to early
occurring differences is obtained by taking p»>0, ¥v»0, to middle differences by

taking p»1lsy, and to late occurring differences by taking p~0, vy>0.

A4, r—sample linear rank tests of equaliry of survival (eBOEl)

(N)
Recall in two samples from equation (8), with eBOEI, 2175 ~ N(0,1) with
v

formulation
d n
1k

I QT,) {d,, - 4q,}

e K Tk

d Do Ny (Np=d,)

2 0k 1k k "k 1/2

{z o7 2 4}

=1 (nk) (nk—l)
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This statistic can be generalized to r—-samples as Z Z QI
where
d n
(N) ik
(27); = = atrp{d, - — 4}
i k=1 k' 1ik o dk
and
d n n -d
(N) ik Lk M %%
(v, = . &@)—{(s -—) a(—)
iz -1 k nk is nk dk nk 1
where
612=1 if i=2 and 0 if i#2.
th d
The weighted, observed number of deaths in the i~ sample is I Q(Tk) dik .
k=1
with corresponding weighted, expected number of deaths
d N,
pX Q(Tk) -——-dk for i=0,1,... r-1.
k=1 P
For
ax) = [§(0)]P [1-5()]Y (9)
r—-1
we have the G”°Y class, while for Q(x) = X Yi(x), we have the Breslow-Gehan-—
i=0
Wilcoxon(ll) test statistic.

A5. One—sample linear rank, goodness—of-fit tests (eB°=1). The class of
(2)

one-sample goodness—of-fit tests which we present can be cbtained from

equation (6), with By=0 and Q(x) as defined in (9), by letting N,+=. The
hypothesis to be tested is that the true underlying survival function, S5, is
equal to some specified SO' In the one sample problem, note that NENO.

The statistic's numerator can be shown to be
k

A g T {s (x)}p {1-s (x)}Y dAn(x)
PY k=1 © 0 0 0

N
- {so(xk)}" {1—so(xk)}" Ak,
k=1



Observe that the statistic continues to be the difference between the sum of
weighted expected and welghted observed numbers of deaths.

It can be shown that Nm]‘/2 Zénz ~ N(0,02) as Nsw
b ]

with o2 = | {So(x)}2p {l—SO(x)}2Y no(x)dh,(x). The variance o2 is

0
-1 =1 N Xk 2 2
consistently estimated by N V=N~ 1I | {SO(x)} p{l—SO(x)} Y dhy(x).
k=1 0
7(N)
—£.Y
Then vl/Z N(O,l) .

For example, with p>0, y=0, we have

N N
JME e T [1={5,x))P)- £ AR5, ()P
ps0 _ k=1 k=1
172 N N .
v [z @ a-{s }*1?2
k=1 0

By setting p=0, y=0, we obtain the one-sample version of the log-rank test,

which is given by

N K ¥ ok
Z(0 I [-ansyxH] - 1 A
0,0 _ k=1 k=1
1/2 N *
v {z [~n so(}:k)]}”2
k=1

Note that to calculate these one-sample statistics, one need only specify

k

x-, Ak) and § (Xk) for the kth individual; k=1, ..., N. As stated above, the
0

one-sample GP*Y test statistics are only available for p>0, y=0,1,2.

A6. Two-sample Non-linear Rank Tests. Through this SAS procedure, one

can compute two-sample supremum—type non—~linear rank tests of equality of

survival distributions. These tests are based upon the "Kappa Rho" («?) class

(6) (5)

of statistics and the generalized Smirnov statistic.
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To provide motivation for the kP class of statistics note that in
biclogical problems and in many other areas of application, the proportional
hazards model frequently is thought to adequately represent the relationship of
a2 covariate to a continuous endpoint. As a result, the Cox partial likelihood
score statistic and more specifically the logrank statistic, G®, provide the
standard against which other censored data rank statistics must be compared.
The Renyi-type statistic x0 is essentially a supremum version of the logrank
statistic. kU provides ome natural way to obtain a test procedure which nearly
maintaing the sensitivity of GO against proportional hazards alternatives, yet
which 1s more powerful than G° when the hazard ratio is clearly non-constant.
Simulation studies do confirm the high power of k0 against proportional hazards
alternatives and confirm that k¥ is more versatile than G® across several
distinctly different configurations in uncensored or lightly censored data(e).
Similarly, it is apparent that kP provides a supremum version of the linear
rank statistic 67, with «° being more versatile in uncensored or lightly
censured data.

To formulate the xP statistics, choose a value of p>0. Let §i(t) and
Ei(t) denote estimates of Si(t) and Ci(t)' Then

P = (32)71/2 sup P (1)

t>0
where
ey o Y Y C oL €5 B
P ey = g L 15,0+ (5,000 5,8, o &, (0
dND (X) dN] (X)‘
* 1{8 (oM PO 7y - 3 !
and where

dN, (x)+&, (x)
1 - 20+] ~ 20+l 0 1
L {18,012 + [, 001%™} 1t% Gowy x>0 { NE NN

Q

™~

L]
O 8
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Note that for o=p+l, kP is identical to the K* statistic of Fleming and

7 except for the formulation of 2. P is superior to K in the

Harrington
sense that kP has appropriate size even in small and moderate sample size
applications.

Another supremum—type test statistic is the generalized Smirnov (GS) test.

It is formulated as follows:

GS =SUP Y (t)
t N0’Nl

t NOCO(X) N1C1(3)11/2

1 + +
where Y (t) = “{§ (£)+8 (¢ )} J { C
N,sN) 2120 1 0 ﬁgﬁo(x)+nlcl(x)f

le(X) dNO(x)
_ 1
Yl(x) Yo(x)I ?

* 1{Y (x) ¥ (x>0} {

where §i(t+) i:? §i(u) .

The GS statistic is a versatile test statistic with sensitivity to any
survival differences which are large at some point in time, independent of the
type of differences existing elsewhere. The corresponding test produced is
especially sensitive to departures from Hb in which the two survival
distributions exhibit a substantial difference in their middle range, but

possibly have this difference disappear when hazard functions cross.
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B. SURVDIFF Statement Specification

PROC SURVDIFF options;

Options:

DATA=data set_name
Specifies the name of the data set to be used. If omitted, it uses the

last one created. -

GW
Indicates the Gehan~Wilcoxon statistic. This option is appropriate for

1-, 2- and r>2-sample problems.

GS
Requests generalized Smirnov test. Option appropriate for two—sample

problems only.

SAMPLES=r
Specifies the number of samples. Use 1, 2, and R for 1, 2, and r>3
samples, respectively. If omitted, data will be scanned for number of

samples. If used, it speeds up processing. There are two methods of

specifying the number of samples:

1) If the "SAMPLES=r" option is not used, the procedure scans the data
set or by-group to determine the number of levels of the CLASS
variable and performs only those requested tests appropriate for

the number of samples.

1i) If the "SAMPLES=r" option is used, the procedure requires that the

data set or each by-group meet the following criteria:

a. If SAMPLES=1 is specified, SOFT= must be coded and the CLASS

statement omitted.

b. If SAMPLES=2 is specified, tests are performed only on the data
set or by-groups which have 2 levels of the variable in the CLASS

statement.

c. If SAMPLES=R is specified, tests are performed only on the data
set or by-groups which have >3 levels of the variable in the

CLASS statement.
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VARNAMES [keywordi-key;yorq_yariablq_pamei];

EKeyword

TiIME=variable name of observation time
This numeric variable contains the time in days (actually any time units
are permissible) from time 0 to the event of interest or censoring.
If not specified, the variable, TIME, appropriately defined is assumed to

exist on the data set.

EVENT=variable name of event indicator
EVENT indicates whether the observation time 1s an event (death) time or
time of censorship where l=censor, 2=event. If not specified, the
variable EVENT appropriately defined is assumed to exist on the data

set.

SOFT=variable name of hypothesized survival
SOFT indicates the expected survival probability, So(t), used in the one-
sample, linear rank tests. It is specific to the individual and to the
individual's observation time. SOFT is required and only appropriate for

one—-sample problems.

CLASS class_variable-name;

The class variable name defines the groups to be compared. It may be a
nuneric or character variable. If character, the maximum length is
sixteen characters, Omit he CLASS statement for one—sample problems.

gar fopndncfes Line ate C "’"5'-—%‘“ /lé/ !ﬂtuffﬁf P Lowk "7[/ fﬁ’ﬂ wE ]
GRHOG ({py3) * ({vy}) » « - ({6 1) ¢ (vgl)s #* /VOT”"“ C/

The notation ({pif)*[{yi}) refers to a set of p's and y s to be used.

The limit on the number of p* combinations is 100. These options are

appropriate for 1-, 2—, and r »3 sample problems.

Examples: GRHOGAMMA 0*%0 1#0; would result in a log-rank and Peto-Peto
Wilcoxon test, respectively, or their analogs for 1-, 2-, and r>3 sample

situations.

Coding GRHOGAMMA (0 1) * (1 2 3); is equivalent to coding GRHOGAMMA 0#*1
0%2 0*3 1*1 1*2 1*3; At least ome p (0<p<32767) and y (0<y<32767)
combination must be specified with the GRHOGAMMA statement.

BETA Bl 82 . o » Bk; or BETA By TO BZ BY increment;
BETA indicates the B term for testing departures from a proportional
hazards model with hazard ratio exp(8), as described above. The default
is B=0, which corresponds to testing the equality of the hazard and thus
equality of survival. Non—zero values for BETA are appropriate for two-
sample problems only, A maximum of 100 BETA's may be specified where
~32767<BETAS32767. The increment is any positive number such that
OKincrement<32767.
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KAPPARHC Py Py o o » Pk}
KAPPARHO specifies the pj values to be ueed in the KAPPARHO statistic.

The maximum mmber of rho values that can be specified is 100, where
=1£{p$<32767. This option is appropriate for the two—sample situation
only.

BY by_variable(s);

As with other procedures, analyseis will be done separately for each level

of the by-variable provided the data are sorted accordingly.

C. Testing One-S8ided Hypotheses

Only for the 2-sample situation can a one-sided test be computed.

For kP and generalized Smirnov statistics, one-sided p-values are given
where, under the alternative hypothesis, the second sample in sort order of the
class variable is the one assumed to have longer (better) survival,

For the GP*Y class of statistics, specification of the level of the class
variable must be done in conjunction with specification of B. Let A;(t) be the
hazard for sample 1 (first in sort order of the class variable) and A,(t) the
hazard for sample 2. If Az(t)<A1(t) the survival in sample 2 is longer
(better) than sample 1; i.e. smaller hazard implies better survival. The
formulation in this procedure is Xz(t)=ll(t)e3. Thus, if B is negative,
eB<l and it follows that the second sample in sort order of the class
variable i1s hypothesized to have longer survival than the first sample in sort
order. For B positive, the first sample in sort order is hypothesized to have
longer survival than the second. To be consistent with the supremum
statistics, when setting B#0, it is necessary to specify the appropriate
negative 8 and define the class variable so that the second in sort order has
the longer hypothesized survival. A note appears on the output to ald in the

interpretation for one-sided tests.
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For all the linear rank statistics, only two-tall P—values are printed,
but one-tail P-values can be easily calculated. Suppose, for example, R+#0 and
the zlternative of interest is in the direction of f=0. If in the sample with
hypothesized longer survival, the sum of the weighted observed events is
greater than the sum of the weighted expected, then the one-tail P-value is
one—half of the two-tail P-value. If, in the sample with hypothesized longer
survival, this sum of weighted observed events is less than the sum of the
weighted expected, then the one-tail P-value is 1-(.5*two-tail P-value).

As already mentioned, one~tail P-values are printed for the kP and the
generalized Smirnov statistics. Note that for the supremum statistics, the

one-sided P~value is not simply 1/2 of the two-sided P-value.

D. General Comments

There are no default test statistics. Desired test statistics must be
specified.

Only one of each of the statements is permitted.

Two—-gided P-values are always printed. For the generalized Smirnov
statistic, two-tail P-values above 0.80 are difficult to compute precisely (see
ref. 5) and thus are denoted ">0.80".

Label and format capabilities are available only for the CLASS variable.

Since the availability of test statistics and options is specific to the

number of samples (groups) being compared, we prepared the following table.
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Gehan— Generalized
No. of Samples GP»Y Wilcoxon kP Smirnov
(r) (GRHOGAMMA ) {(GW) (KAPPARHO) {GS)
1 Yes (p>0, v=0,1,2) Yes No No
2 (BETA=0) Yes (p>0, v>0) Yes Yes Yes
2 {(BETA#0) Yes (p>0, v>0) Yes No No -
3 >3 (BETA=0) Yes (p>0, v>0) Yes No No
Statement and Option SpecificationsT
No. of
Samples FROC options CLASS VARNAMES stmt GRHOGAMMA | KAPPARHO | BETA
(r) GW GS SAMPLES= DATA= stmt | EVENT= TIME= SOFT= stmt stmt stmt
1 KA NA omit, 1 OPT NA OPT* OPT* REQ REQ NA NA
2(g=0) | OPT OPT omit, 2 OPT REQ OPT* OPT* NA OPT OPT OPT
default
=0)
2(8%0) | OPT NA omit, 2 OPT REQ OPT* OPT* NA OPT NA REQ
23(B=0) OFT NA omit, R OPT REQ OPT* OPT* NA OPT NA NA

T NA not applicable or appropriate.

will stop.
OPT optional.

REQ required.

Note that at least one test statistic must be specified.

If specified an error will result and processing

* If not specified, appropriately defined variables with variable names EVENT and TIME
respectively are assumed to exist on the data set.
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E. Example
The example presented below is taken from the study of Lininger et. 31213)

114

and is used as an example by Fleming et. a to sequentially test the

comparability of survival in the two regimens. The results presented below

'5(14) first analysis date of 9/12/77. The

correspond to Fleming et. al.
primary goal was to evaluate the survival experience among patients having
extensive stage small cell lung cancer, comparing two regimens of chemotherapy.
In regimen A, the "experimental" treatment, patients received cyclophosphamide
(CTX), vincristine (VCR), VP-16, and cis-platin (CDDP) alternating with
adriamycin (ADR) and imidazole carboxamide (DTIC). Regimen B, the "standard”

treatment, consisted of ADR, VCR, VP-16 and CDDP alternating with CTX and

DTIC.

SMALL CELL LUNG CANCER SURVIVAL DATA.
STATUS: 1=CENSORED 2=DEATH

REGIMEN=_B.STND REGIMEN=A .EXPT
OBS DAYS STATUS OBS DAYS STATUS

1 19 1 18 8 1
2 119 1 19 47 1
3 136 1 20 62 1
4 216 1 21 87 1
5 312 1 22 98 1
6 398 1 23 155 1
7 9 2 24 166 1
8 10 2 25 187 1
9 99 2 26 223 1
10 122 2 27 335 1
11 148 2 28 373 1
12 228 2 29 383 1
13 233 2 30 395 1
14 280 2 31 402 1
15 282 2 32 488 1
16 375 2 33 22 2
17 420 2 34 142 2
35 171 2

36 635 2



FROC SURVDLIFF &W e5 ,
cEocAmA (0 L)% ; A
RAPPARNO Q 1
CLASS RECINEN ;
VARNANES TIME=DAYS EVENT=STATUS ;
TITLE? EXANMPLE OF LOC~RAM, PETO-PETO-WILOOKON, GERAN-WILCOKON,
TITLEY KAPFA-RNO & CENERALIZED SMIRMON STATISTICS. 3

EXAMPLE OF LOGRANK, PETO-PETQ-MILCOXON, GEHAN-WILCOXON,
KAPPA-RHG § GEMEAALIZED SMIRNDY STAJ]STICS.

."..."....‘..‘.."....'....'...............‘...-........-'

G ANQ GAnmk |:sr® ILOGRANK)

FOX VARIABLES: TIME=DAYS __ EVEMT=SIATUS @
@lsn- MHOe___ 0.00 CAMMA=____D.00

—— BUNDIE _DE_LYINIS ..o
@u-sun DFFNESSUM OF
@ uE 1 GHTENS/MEIGHIED
“!‘IIEH@ N UNMS. D3SERVED EXPECTED {(O~Eie®2/F

P PR 17 11 11.00 6.4 3.35
A_+EXPrT 19 % 3.00 Teb6Z 2.81
TOEAL 14.00 14,00 bl6

CMI SQUARE= a.z:.nr- @ruu—uu.sn ’- o.mzo@

wees OAS. DELETED DUE TO:  WISSING VALUES= @ stee
Lddds INVAL IO CATA= ] stee
CRNSREHRINESSRCIEERINARRIRIRNSORNREERINASIRLRENELE0NERRASEED

G RHU GammA TEST LPETC-PETO WILCGXON)

FOR VARTABLES: TIME=DAYS ... EVENT=SIAIUS
BETA=_____D.0000 RHO=___ 1,00 GAnMa=___ 0,00

BYSPER _QF_FMINIS ___

U=5Un OF Easum OF

WEIGHTED HWEIGHIED
M 0BS5S, OUBSERVED EXPLCTED (O-Eles2/E

REGIMEN

_8.5TAD 17 1 8.21 4,97 2.10
a_.EXPT 19 % 2.56 5.7% 1.80
101aL 36 15 10.76 10.76 3.90

CHl SQUARE= 4.89 OF= 1 TWO~-TAILED P= 0.0271
esvs OBS, DELETED DUE TO: MISSING VALUES* ¢
e INVALIU DAlas= 0
I....ll.l‘."....'!l‘l'....l...l.l‘ll.'.'.Il‘ll'l‘..‘l‘.....

B
EXANPLE OF LDG-RAKK, PETO-PETO-WMILLOXON, GENAM-WILCOXQN,
KAPPA~RMO € GENEMALIZED SHEMNOY SEATISTICS.
BERRRRNRR RPN 4 RS0 a bR I bOD S (241 2] 1] X1

GEHAN-MILLCOXON TEST
FOR VARIABLES: TIME=DAYS = EVEMIsSIATUS
SETA=_____£.0000
e SUHBEE_OF LYENIS_ ___

O=SuK OF E=SUM UF
WEIGHTED WEJGHTED

REGINEN N ObS. OBSERVEVD  EXPECTED {O-Eles2/E
B 5IND 11 11 5.7 3.67 1-22
a_.ExrT . 19 * 2. 04 .17 1.07
TETAL s 15 T.83 T.83 2.29

CHI SQUARE» 3.35 ODF= 1 TMO~TAILED P= 0,0%7]

sdee 085, DELETED DUE TO: KISSING YALUE§= 0
INVALID DATA= []
P EERIIRY Y o

PRESIASEFROREPERNIRES

KAPPA-RHO TEST
FOR VAR JASLESS TIME-DAYS . EVENT=SIAIUS |
RHO=____0,00

REGIMEN N CBSERVED EVOCATS
«B-5THD 134 11
A_LEXPT 19 &
TOTAL 36 i5

OKE-TAILED P= 0.0029 TWO-TAILED P= 0.0059

~=NOTES

FOR THE 1-S1DED TESTe SAMPLE A_.EXPT
15 HYPOTHESIZED 10 HAVE CUNGER (BETIER:
SURVIVAL THAN SAMPLE _B.STND

eses OBS, DELETEC DUE J0: e
[21T) NISSING VALUES=s 0 seae
saee INVALID DATA= 0 #usw

CEEF RN NEBS LRI VR CN SO PRI I RENRINER VRSS20

EXAMPLE OF LOG-R&HK, PEVG-PETO=NILCUAON, GEHAN-WILCOXUN,
KAPPA~RHU L GEMERALIZED SmiANUY STATISTICS.

BOBANEELENATIN SN RERRRISENRINSOPIORNNIRAIS
GENERAL IZED SHIRNQY
FOR WARIABLES: TIME=DAYS. .. EVENT=SJAJUS

REGIMEN L OBSERVED EVENTS
-B.5TND il 11
A_LEXPT iv L]
TaTAL 36 1%

@v- 1.7554 4» 1.7556 M= 0.5557
TIMECVI=s 420 TIMEIAI® 420

OME~TAILED P= 0,0016 BMO-TAILED P= C.0U32

==NOTES

FOR VHE }=-SIDED TEST, SAMPLE A_.EXPT
1S HYPUTHESIZED TD HAYE LONGER (BETTER)
SURVIVAL THAN SAMPLE _B.STwD

sees 085S, DELEYED DUE T0: eess
[T1YS MISSING VYALUES= 0 eesex
tses INVALID DATA= g oeses

PYYTYIYITSSYNTY JITR RS LS AL RIS 22 D240 X 42 LA 1 e 2 1]

PROC BURVDIER § D
GRIUGUNA 00 i
CLAsS RECINEN
VARMANES TIME=DAYS EYENTITATUS
BETA ~0.69) ;

TITLEZ EXAMPLE OF “LOG-RAMX™ STATISTIC FOR TESTING A SPECIFIED
TITLE] DIFFERENCE IN BAZARDS, THE WULL BYPOTHESLS IS :

TITLEA MAZARD FOR A. EXPT=HAZARD POR _D.STND* (EXP(BETA}). WITN 1
TITLES BETA=-0.493, EXP(BETA)=0.5 . PROPORTIONAL HAZARDS ASSUMED.;

EXANPLE OF “LOG-RANX™ STATISTIC FO® TESTING A SPECIFIED
OLEFEREMCE 1M HAZARDS. THE WULL HYPOTHESIS {5 3
HAZARD FOR A._EXPTuHAZARD FOR _D.SIND®[EXPIBETA)), WITH
SETA=-0, 693, EXPIBETA)=D.5 » PROPORTIONAL HAZAKRDS ASSUHED.
Crnwsndi it ol N Ot ROR NN RO BREORRROSEIRRENEESPSROSRRGENS

& RHO GAmmA JEST
FOR YARIABLES: TIMEsDAYS __ EVENI=SIATUS _
GETA ___=0. 8030 RMO=____ (1,00 GaMMa=____Q,00
_.._WEBELDE.HHIS-___

UsSUN OF EsSun DF
WEIGHTED  WEIGHTED

REGIMEN N O8S. DASERVED EXPECTED (0-El%*2/E
<B:.5TKD 17 1] 11.00 2.74 0.%%
A_EXPY i+ 4 3.00 5.26 0.97
ToTaL 3 | 1] £4.00 14,00 1456

CHE SQUAREs |.50 ODfm |

==NOTE) UMOFR THIS WULL HYPDTHESIS, SAMPLE a_.EXP]
HAS LOKGER IRETTER) SURVIVAL
THAN SAMFLE _D.3TRD

sses DA5. DELETED Due TO: AISSING WaLUES= [} ceps
(111} INVALID DATaA= 0 Lbddd
LLill SES00CARRIGANNNERINIRONNRLNPRINDNES

TWO-TAILED Pu D,208%
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@ Test being specified.

@ Variable names which reflect time and event status, respectively.

@ The beta, rho, gamma specifications. Note default beta is zero.

@ The class variable and sample names.

Note: to get the samples into the desired sort order for subsequent one~-
gided tests we defined the standard regimen B as '__B.STND' and the
experimental regimen A the value 'A .EXPT' so that the sample with the

hypothesized better survival would appear second in SAS sort order.

@ Number of valid observations in sample.

@ Sum of observed number of events in sample.

@ Sum of weighted observed number of events.

Sum of weighted expected number of events.

Note: When rho=gamma=0 the weights are unity. When rho>0 or gamma>0 are
specified, the weights are, in general, values less than unity; hence, in
this situation the totals for@ and are less than the total( 6 ).

Also, the linear rank statistics are nomparametric procedures. As such,

in the 2-sample problem, for example, events occurring in one sample after

the longest event or censorship time in the other sample are ignored. 1In
it

this example, note that the total for@ is 15, while for@ and
is 14. The death at 635 days in the regimen B_.EXPT is in essence ignored.

@ As an exploratory tool, this displays the samples for which differences

@
©@)

®

between weighted observed and expected number of events stand out. The
total conservatively estimates the correct chi-square value printed at .

Degrees of freedom.

Two~tail P-value associated with test of H, which in this case is the

test of equality of survival curves.

Observations will be deleted and noted here if any of the following

conditions hold:

- missing values: 1f the time—variable, event-indicator-variable, or
SOFT~-variable as required are missing.

— invalid data: the time-variable is negative or the status-variable is
other than a 1 or 2. SOFT, if used, wust satisfy O<SOFT<I1.
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The rho value specified in the KAPPARHO statement.

(::) V is the maximum of the one-slded, standardized differences. TIME(V) is

the time in days when V was observed. A is the maximum of the two-sided,
standardized differences. TIME(A) is the time in days when A was observed.
R is the average survival over the two samples at the largest time which
satisfies No(t)*Nl(t) > 0, In this example, the time would be 420 days.
This two-tail P-value tests whether or not the ratio of the hazards for
regimen A .EXPT over regimen _B.STND differs from 0.5 (i.e., e-0'693=0.5),
assuming a constant hazard ratio over all times. To obtain a one-sided P-
value associated with Ho: AA(t)/AB(t)Sp.S versus HA: AA(t)/AB(t)>O.5 where
AA(t) and AB(t) refer to the population hazard for regimen A and B
regpectively, we focus on the sum of the weighted observed and the sum of
the weighted expected numbers for the A .EXPT regimen. We see a value of
3.00 for the sum of the weighted observed number of deaths and 5.26 for the
sum of the weighted expected number of deaths. The one-sided P-value is
hence 1-[1/2 % 0.2089] = 0.89555. Had the sum of the weighted observed
been greater than the sum of the weighted expected, the one-tail P-value

would have been [1/2 x 0.2089] = 0.10445,

In summary, the hazard ratio as described above i1s not detectably different
from 0.5 in the two—-sided context (P=0.2089). Also, the hazard ratio is
not detectably greater than 0.5 in the one-sided context (P=0.89555).
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