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Summary 

A class of linear rank statistics are proposed for the k-sample problem 

with right censored survival data. The class contains as specral cases the 

logrank test (Mautel, 1966; Cox, 1972) and a test essentially equivalent to 

the Peto and Peto (1972) gcneralizdtion of the Wllcoxon test. Martinga1.e 

theory is used to est.abl.ish asymptotic normal.ity of test staLlstics under the 

null hypotheses considered, and to derive expressions for asymptotic relative 

efficiencies under contiguous sequences of alternative hypotheses. A class of 

distributions 1s presented which corresponds to the class of rank statistics 

in the sense that for each distribution there is a statistic with some optimal 

properties for detecting location alternatives from that drstribution. Some 

Monte Carlo resul.ts are displayed whi.ch suggest that the asymptotic properLies 

of these statistics in the two-sample case hold fai.rly well in small and 

moderate size samples. 

Some key words: Censored daLa, contiguous alternatives, linear rank 

statistic, logrank test, Pitman asymptotic relative efficiency, Wilcoxon test. 



1. ..-_ -- Introduction 

Some attention has been given in the recent survival theory literature to 

alternative formulations for the popular nonparametric statistics used in 

testing the null hypothesis of equality of several underlying survival 

distributions. Prentice (1978) has shown that statistics such as the logrank 

(L-R) (Mantel, 1966) and Peto and Peto’s generalization of the Wilcoxon (1972) 

(PPW) can be obtained as linear rank statistics for censored data assumed to 

come from a log linear model. Prentice and Marek (1979) have shown that in 

many cases such linear rank statistics may be expressed as vectors whose 

components consist of sums of welghted differences between the observed deaths 

in a given sample and the conditionally expected deaths, given the censorl.ng 

and survival pattern up to the time of an observed death. Aalen (1978) has 

shown that most of the popular two sample tests can be formulated as 

stochastic integrals with respect to appropriately defined counting processes, 

and has used martingale theory [Aalcn (1977)] in thus context to obtain weak 

convergence results for some estrmators and test statistics. Gill (1979) has 

used this martingale formulation to obtain Pltman asymptotic relative 

efficieucies (a.r.e.) for statistl.cs such as I.ogrank and both the Gehan (1965) 

and Peto and Peto (1972) generalizations of Wilcoxon’s statistic under 

contiguous sequences of two-sample location alternatives. In this paper, we 

will propose a class of nonparametric procedures which includes the L-R and 

the PPW as special cases, and we will show how the formulations ment.ioned 

above can be usrd to study the properties of these procedures. 

The most intuitive formulation for these new statistics is in the context 

outlined by Prentice and Marek (1979). The notation necessary for this 

formulation is as follows. Let. (X. .; 11j<N 
1.l 

l<i<r+lj denote the survival -i’ _- 
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variables (i.e., death times) from r+l independent random samples with under- 

lying survival functions Si(t) = P(Xij>t), i=l,Z,. . . ,r+l. We will assume 

throughout that the Si are absolutely continuous with cumulative hazard and 

hazard functions deflncd, respectively, as pi(t) = -211 Si(t) and Ai = 

gqt). Let {Yij; l(jNi, l<i<r+l] denote censoring variables with censoring -- 

distributions Cl(t) = P(Yij>t). We will assume that the observed data consist 

of {X0 
i.i 

= min (X ,j, Ylj), Alj = I[X.. < Yij]; Izj<N., l(i(r+l], where I[A] = 1 
=J - -1 

if the event A has occurred and 0 otherwise, but that the important inference 

problems are those regarding the S.. We will assume that the survival and 1 

censoring times are independent and thus xi(t) E P(Xpj 2 t) = Si(t) Ci(t). 

Let Tl < T2 < . . . < Td denote the d distinct ordered observed death times in 

the pooled sample, and let. nik be the number of subjects under observation 

in sample i just prior to T k’ i.e., n. Ik is the size of the risk set in sample 

r+l 
i at T k. .I nlk = Ilk will be the size of the total risk set in the pooled 

i=l 
sample at Tk. We will let Zk = (.21k,. . . ,zrk) deuote the transpose of a col- 

umn vector of O-1 regression coefficients denoting sample membership: Zjk=l 

+ 
if and only if the observed death at Tk LS from sample i. zk = 3 will. mean 

that the death at Tk is in sample r+l. If we let {wj; _ _ l<j<dj be a set of 

weights, then Prentice and Marck (1979) have shown that several of the pop- 

ular nonparametric 

tistics of the form 

. = Sr+l can be based on sta- 

= (nk)-’ blk’ “*k’ . ’ I 9nrk ). 

When wk E 1, the resulting test IS the L-K, while when wk=s(Tk), with 2 being 

k 
the pooled sample survrval function estlmat.or g(Tk) = n nj/(n3+1), the test 

j=l 
is Prentlcc’s (1978) generalization of the Wilcoxon test for censored data and 

is similar to the generalization of Peto and Pcto (1972). 



It is clear that a researcher should have some flexibrlity in choosing 

the werght function wk, but the only proper way to choose weights is to pick d 

set yielding a test procedure as sensitive as possible to the types of depar- 

tures from equality of the S. 1 that are anticipated in a given experiment. 

Gill (1979) has shown that In two samples of censored data, the L-K test has 

Pitman a.r.c. 1 (l.e., 1s ful,ly efficient) against a time-transformed scqucnce 

of contl,guous location alternatives when Si is a type 1 extreme value survival 

function. The L-R test is thus fully efficient for a contiguous sequence of 

proportional hazards alternatives. The approach illustrated by Prentice 

(1978) proves the L-R test is the locally most powerful rank test and is fully 

efficient against time trdnsformcd locatron alternatives for the extreme value 

distribution when there are r+l samples of uncensored data. Of course the L-R 

test reduces in this setting to the Savage exponential scores test, and ICS 

propertres have been known for some time. Gill (lY7Y) has also shown that the 

PPW is fully efficient against trme-transformed location alternntives for the 

logistic dlstributron in two samples of censored data, whrlc agarn the 

approach III Prentice (1978) yields the result that It is a locally most power- 

ful rdnk test in r+l sampLes of uncensored ddta. 

‘The most natural class of weights to use whrch generalizes the L-R and 

PPW weights seems to hc of the form wk(p) = (S”(T,)]‘, for a fixed p,O and for 

-‘- 
S (Tk) a pooled survival function estimator at Tk. When p=O, the L-R weights 

*a 
are obtCalncd, while for p=l and S =S, the geuerslized Wilcoxon weights arc 

produced. In this paper we will st.udy the propertics of tests based on the 

statistics 

Gp = : (i(T )I’ (;: 
k=l k k - ;,I 

. 
where S(u) is the left cont.inuous versron of the Kaplan-Neier product llmlt 
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. 
estimator of the survival function for the pooled rtl samples, i.e., S(u) = 

l-l (yp/I~k. Section II will give results for this statistic when there 
Tk: Tk<u 

are two samples of arbrtrarily right censored data. Those results will 

include asymptotic distribution theory under null and contiguous sequences of 

al.ternative hypotheses, a characterization of the parametric loration 

alternatives for which these procedures are fully efficient or locally most 

powerful rank tests, and tables of the Pitman a.r.e. for pairs of members of 

this class. Section IIT wi.11 examine those results that can be proved when 

the number of samples is different from two. In Section TV results of Monte 

Carlo simulations are displayed which support, in the two-sample situation, 

the claim that the asymptotic theory provides reasonably accurate approximd- 

tions for the actual properties of the statistics in small and moderate sample 

sizes. 

II.. The Two-Sample Statist.ics .__ -_.- 

For two samples of censored survival data the most direct way to obtain 

the asymptotic distribution theory for the ST’ statistics IS through the use of 

weak convcrgcnce theorems for martingales associated with stochastic integrals 

OS counting processes. To apply these results we need to recast our 

two-sample statistic in slightly diflerent notation. Assume r+l=2; let 

N 

N,(L) = 1’ Igk 5 t, hi, = 11, i=1,2, 
k=l 

and 

N 

Y&t) = I1 T[X;, z, t]. 
k=l 

In the earlier not.ation, Yi(‘Tk) = nik. 



It is not hard to verify that with this notatJ.on Gp may be expressed as 

with the convention t.hat O/O = 0. Wi.th this formulation it 1s easy to see the 

class of statistics Gil,h2, ~20, is a subset of the more general class + 
COII- 

sidered in Gill (1979). The asymptotic distribution theory derlvcd by Gill 

for that class applies here and may be summarized in Theorems 2.1 and 2.2 

below, (WC note XI passing that Theorem 2.1 may be proved more directly using 

the method of proof outl.ined for a similar statistic in Sectl.on 6 of Fleming 

and Harrington (1981) .) 

$eorem 2. I. Let ANi = Nl(u) - lim 
ttu 

Nl(u) and let variance estimators 

Vg(t), R=1,2, be given by the formulas: 

2 t {s(u)p 

v,(t) . = t Y,(u) - ..-. Y,(u) - AN1(u)fAN2(u)-1 -..- L 
J- i=l 0 y;r;;- i i Y,cu)+Y2(“) 1 t 1 Y1(u)+Y2Wl 1 

d# (u)+N (u)l 1 2 ..__ - 
Y1(u)+Y2(d 

Let N = N +N 1 2 and assume lirn N1/N s a cxisLs and satisfyies O<di<l. Then 
N- 1 

null hypothesis Ho: Sl=S2 (= S unspecified): under the 

N +N 
(a) lim ( ++ 1 vp) = ; 

A, m2w 
-- 

o alnl(u)+a2A2(u) 
{s(u)]2p dp(u), 1=1,2, 

N-m 1 2 

in probability, where p(u) = -fin S(u). 



I - 

(b) lim {Ve(m)]-’ GE N = Z - N (0,l) in dlstrlbution. 
N+- 1’ 2 

Proof: For i=1,2 observe that Yi(t)/N. 
1 

is simply the empirical distribution 

function estimator of nl(t.). Thus (N’ {Yi(t)/NL - xl(t)] : Ot<m) converges 

weakly to a time-transformed Brownian bridge, implying 

sup 
o<t<a, 

Yl(t)/N. 1 - i-I(t) j --> 0 
I - 

in probability as N-tco. The proof then follows directly from ProposItion 4.3.3 

in Gill (1979). 

There are several pertinent remarks that can be made here. First, Gill’s 

complete asymptotic results can yield more powerful results about the st-at- 

P istlc GN1 ,N2 than those we have stated here. It is possible to show that 

under certain conditions the emplrical procrsscs 

7 
,N2(t) : O;t<@ j 

converge weak1.y to a mean zero independent increment Gaussian process under 

HO’ 
even for some survival distributions that. have dlscretc probablllty mass 

at cert.aln time points. We will not riced these general results here, however. 

Second, the variance estimator V2(m) is identical to the hypergeometric 

variance est].mator that arises naturally when one views the survival data as 

producing a series of independent 2 X 2 contingency tables, one aL each death 

time, ,.SS was originally done by Mantel (1966) and as lllust.rated by Prentlrc 

and Marek (1979). In the orlglnal notation for Lhe test ststlslic, V,(a) 

takes the more farnl I,ar form 
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d 
V2(m) = Z w2 

k=l k 
! ““) (+k\ (3’) dk, 
\ “k 

where d k 
is the number of observed deaths or failures at time T k’ Of course, 

under the model assumed in thus paper, ties at observed death times can only 

be caused by grouping of the data. In the case of ties, 

where elk 1s the number of observed deaths from samp1.e 1 at Tk. 

Theorem 2.1 provides the means for approximating the significance level. 

of observed values of G P 
Nl ,N2’ 

In order to understand better the asympLotlc 

power of these procedures, however, some information is needed about the 

behavior of these statrsta cs under alLernative hypotheses. It 1s not hard to 

P show thdt GN1,N2 is consrstent against the alternatives Hl: Al(t) ?, h2(t), 

t & [u: Sl(u)S2(u) > 0); and 112: p,(t) 2 fi2(t), Olt<m, with each of the 

inequalities berng strict inequalities on some interval. (See Gill (1979), 

Section 4.1 for details .) AsympLoLrc power functions must be compared under a 

sequence of alternative hypotheses that approaches the null or with a sequence 

of srgurficance levels that approaches zero. We ~111 calculate Pitman a.r.c. 

under a contiguous scquencc of alternatrve hypotheses. The following theorem 

follows directly from Theorem 4.2.1 rn Grll (1979). 

Theorem 2.2. Let S:(t), i=l,2, be a sequence (In N) of survrval func- _ . . 

tions which satisfJes ljrn 
N* 

S:(t) = S(t) uniformly in L E [O,m). Let /3: be 

the assocrated cumulative hazard functions. Suppose we define 

yi(t) f 1,im - 
i ) 
N1 N2 + \T$ (t) - 1 
N1 +N2 3 

1=1 2 > 9) 
N-to, 
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and assume thaL the convergence is uniform on each closed subinterval of (t: 

S(t) > 01. Let u(t) = y,(t) - y,(t) and let ni(t) = S(t)Ci(t). Then for 

o<t<o, - 

( 
,4 

km 
NlfN2 ! Gp _...-- (t) 

NW \ N1 N2 i *?2 
= W -N (cl,(t), bpd 

in distribution, where 

lJ,w = ; 
n1 hh2(4 

-...--.--- y(u) (S(u)) ’ dp(u) 
o alrrl(u) + a2n2(u) 

and 

bpW12 = 5 

n1 (Ia2 (4 

o aln,(“) + a2n2(u)  
W)12p dP(u) . 

(2.1) 

The asymptotic efflcary of the statistic GP N N under such a sequence 
1’ 2 

of contiguous alternatives is defined in the usual way to be e(p,t) = {p,(t)/ 

np(t)12 We now describe briefly how this expression for efficacy can be used 

to find a class of parametric location allernatives against which the statls- 

tic GiI,N2 1s asymptotically fully efficient. 

Suppose the contiguous alternatIves are indexed by location parameters 

eN 1’ 1=1,2, and let 1 - S:(t) = Y (g(t) t #), where V is a fixed cumulntlvc 

dlstrlbutlon function and g(t) 1s an arbltrory monotonically lncreaslng time 

transformati.on. Let k/J(t) = +< Y(t), h(t) = $(t) {l-Y(t)]-‘, f(L) = .Qn h(t), 

and a'(t) = $ l?n A(t). To achieve the right rate of convergence for the 

contiguous alternatlves we let 



where Cl0 is unspecified and c is an arbl.trary positive const.ant. Assume that 

we are interested in testing the sequence of null hypotheses 11: : 0; = e; 

against the alternatives Hy : ON, < El: or Cy : eN1 # et, and that we wish to 

restrict ourselves to statistics of the form 

; K(u) -- - 
( dN1(u) 

0 i Y,(u) 

where K(u), O(u+, is a stochastic process satisfying the regularity condo- 

tlons outlined in Section 3.3 of G111 (1979). Then Gill has shown that the 

resulting asymptotic efficacy will be maximized for the contiguous location 
A ,. 

alternatives above IF‘ K is chosen as K(u) = 2’ [‘I’-’ {l-S(u)]], where S IS a 

left continuous version of the product limit survival function estimator In 

the pooled sample. Thus the time transformed location alternatives against 

which tests based on Gi K should have good sensitivity will lncludc dlstrl- 
1’ 2 

butions ‘t’ which satisfy 

A sufflcrent condrtion to ensure this 1s to hdve R’ = (I-‘I’)“. Letting H(t) = 

l-Y(t), 4 short calculation shows that the underlying survival funcLions H(t) 

P against. which GN1 ,N2 should have good power for time-transformed locatlon 

alterncllives Include, but are not necessarily llmlted t.o, survival functions 

H(t) which satl.sfy the differential equation: 

H"(t) - - $-;$‘- = (H(t@ , t & (u: H’(u) H(u) > 01 , 
H' (t) 

Theorem 2.3 1s a prccrsc statement of the results that are now possible in 

this setting. 



. 

Theorem 2.3. Let -m<t<m and let H (t) be the family of survival functi.ons 
P 

given by 

-t Ho(t) = exp(e ) , p=o 

H&t) = (l+pet)-1’P , p>o. 

Let Sp(t,S) = Hp{g(t)+O) be a time-transformed locatron shift of HP(t), and 

let SP(t,S:), i=1,2, be a sequence of location alternatlves, with 0; defined 

as above. Let p>O be fixed and known; - 1,et zu be the CY quantile of a stdndard 

normal distribution. 

(a) The level CY test which rejects II!: 0; = 0: in favor of Ey : f3: # 8: 

whenever 

iGP I>z 
i N1,N21 l-012 (11=1 or 2) 

has max~mtun efficacy against the contrguous alternatives SP(t, OT), 1=1,2, 

among all tests based on statistics of t.hc form 

(b) A level CI test whrch rejects H! according to the criterion glveu iu 

part (a) is a fully efficient test against time transformed location 

alternatives to HP(t) if and only lf 711 - - rr2 almost surely with respect to the 

probability measure specified by H . 
P 

Proof: Part (a) follows from lemma 5.2.1 in Gill (1979), whllr pdrt (b) -.._- 

follows from CorollJry 5.3.1 in the same paper. 
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Since tests based on Go 
N1 ‘N2 

reduce to the L-R whrn p=O and asymptotically 

to the PPW when p=l, it is not surprising that R,(t) is the usual logistic 

survival function, nor that lim HP(t) = exp (-et). The fully efficient 
PO 

nature of PPW against logistic shift alternatives and of the L-R test against 

type 1 extreme value shift alternatives is already well known. By using the 

full family of HP distributions, however, it is now possible to study the 

behavior of rank tests which are optimal. against models exhibiting a specific 

degree (as determined by p) of departure from the popular proportional hazards 

model in the direction of the often used logistic location shift model. 

Interestingly, this family of IIP distributions is an important subset of the 

Generalized-F family of distributions discussed by Prentice (1975). Speci- 

focally, Prentice considered the log-linear model in which the error distribu- 

tion was assumed to be that of the logarithm of an F variate on 2rny 
4 

and 2m 2 
9; 

degrees of freedom. 
Q - , 

HP is obtained by taking ml=1 and m2=p . 

Using results quoted earlier, it. IS possible to tabulate Pitman asymp- 

totic relative efflclencies comparing a test based on G 

o2 

;‘,$ wi:h one based 

On GNI ,$ 
when the underlying survival function is IIP”, where p’ may or may 

not equal one 01 the p,, L=1,2. Before we do this, however, we feel 1 t is 

instructive to examine the bchavJ.or of the II survival functions under 
P 

two samples 

two-sample time-trdnsformed location alternatives. 

Suppose Lhdt p is fixed and that we wish to consider modeling 

of survival data wl~h the distributions Sl(t) = Rp{g(t) + O,], 1~ 

takes A = Ol-O2 then an easy calculation shows that 

1 ” IL. If one 

s = s I(S )P + {l-(s”)]rAl-*‘p 
2 1 1 1 (2.2) 
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In fact, since the efficiencies of rank tests are invariant under monotonically 

increasing transformations of the data, tests based on Gp 
N1 YN2 

will be fully 

efficient against alternatives in which Sl 1s arbitrary, and S2 is given by 

equation 2.2. The right hand side of equatl.on 2.2 is a specific instance of 

the conversion function discussed by Pcto and Pcto (1972). Using equation 

2.2, it 1s not difficult to show that if Al(t) is the hazard function corres- 

ponding to Sl(t) , then 

A2 = A1 eA [(SIP + 11 - (S )“leAl-* . 
1 

The relative behavior of the two distributions Sl and S2 is now most clearly 

understood by taking S,(t) = emt (a unj t exponential) and studying t.he rat.io 

A2(t)/hl(t) = h2(t). In this case 

h2(L) = e* {eePt + (1-e-Pt)eA]-' 

and WC will call this term R(A,pt). AL t=O, A2(t) = e* A1 (t) , and hence e* 

represents the initial ratlo of Lhe hazard functions. Figure 2.1 illus- 

trates thr behavior of R(A,pt) for some representative values of A and L. We 

have chosen A so that eA = 2b for various values of b. The plots have been 

made on a scml-log 2 scale, with the horizontal axis marked in multiples of 

P 
-1 , since In this setting p acts simply as a scale factor. 

It IS clear from the form of R(A,pL) Lhat lim R(A,pt) = e* for any fixed 
P+o 

t, i.e., smaller values of [I y~rld alternatives MI which the hazards are more 

nearly proportional. Late in the survival distribution, however, p may need 

to be quite small before A2(t) hccomes “close” to c*. Table 2.1 displays 

values of R(A,pt) for selcct.ed values of S,(L) = eVt. Notice for inst.ancc 

that for e*=4, H(A, t/Z) IS much closer to R(A,t) t.han to R(A,O). Thus 

one must be careful not to assume that choosing p=‘:, in a modcllng situaLlon 

12 
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F’1gure 2.1. The Hazard Ratio H(A,pt) 
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t 
\ (P, A) 

(3, k) 
(S, 2) 

(1, t) 
(1, $1 

r: (1, 2) 

(1, 4) 

(2.k) 

(2, 2) 

(4, 2) 

(4, 9 

(4, 2) 

(4, 4) 

(P, 1) 

Table 2.1 

Values of R(A,p) = eA{ewPt + (l-e-Pt)eA]-l 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 3.0 

-- _.--___-.-^I--I ^ ._._ - _-,-__- _--__-- ^. . ,.-.-_--- -.-_l_-r- -_-. -_ 

.500 

2.000 

.250 

.500 

2.000 

4.000 

so0 

2.000 

.250 

.500 

2.000 

4.000 

1.000 

.525 .550 .574 .599 .622 .646 .668 .690 .711 -731 .818 

1.826 1.693 1.588 1.504 1.435 1.378 1.330 1.290 1.255 1.225 1.126 

.289 .332 .378 .426 .475 .525 .579 -623 -668 .711 .870 

S50 .599 .646 .690 .731 .769 .802 .832 .858 -881 .953 

1.693 1.504 1.378 1.290 1.225 1.177 1.141 1.112 1.090 1.073 1.026 

2.591 2.011 1.700 1.508 1.381 1.292 1.227 1.178 1.142 1.113 1.039 

.599 .690 .769 .832 .881 .917 -943 -961 .973 .982 .998 

1.504 1.290 1.177 1.112 1.073 1.048 1.031 1.021 1.014 1.009 1.001 

.426 .623 .786 .a91 .948 .976 -989 .995 .998 

.690 .a32 .917 .961 .a72 .992 -996 -998 .999 

1.290 1.112 1.048 1.021 1.009 1.004 1.002 1.001 1.000 

1.508 1.178 1.073 1.032 1.014 1.006 1.003 1.001 1.001 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

.999 

1 .ooo 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 
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leads to a set of location alternatives whirh are “midway” between proporti.ons? 

hazards and logistic shift alternatives. For exactly the same reason one 

f 
should therefore not consider tests based on G’ 

N1 jN2 
as tests wtuch provide a 

balanced compromise between the L-K and the PPW tests. 

As mentioned earlier, it is possible to compute Pitman asymptotic relative 

efflclencies for the family of test statistics G P 
N1 ,N2’ 

For simplicity, we will 

assume that C,(t) = C2(t) = C(t), and hence that rrl(t) = rt2(t) = n(t) under 

*0. The following argument shows that It is possible to simplify the 

tabulation of asymptotic relative efficiencies. 

In our setting 

c N ‘$ 

eN i 
- (j. = c(-l)i+l ‘, N(* . 

1 1 1 2 i 

Smce 

we hdve that 

= lun ~(-1) 
i+l 

- . (0; -cop I-.--..-----.. 
A(t,+ - ALOo) 

N* i 
AWO) 3 
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Thus we have 

u(t) = Y,W - u,(t) 

a = c a an A (t,O) 

We will be examining the behavior of the statistic GE: N under contig- 
1’ 2 

uous loratlon alternatives for a distribution H p+ ’ where p” and p may or may 

not be equal. Assume now that c=l. For S(t,e) = H,,+kg(t)+O), 

!Ln A(t,tl) = g(t) + f3 + L?n g’(t) - Rn (l+pe s(t)+e 
I. 

Hence y(t) = (l+p+~~(~)~~Oj-~ = {Sp(t,80)]ph. Denote S”;li(t,eO) by S(t). 

The asymptotic effi.cncy for Go 
N1 G-J;! 

computed at time t for contiguous location 

alternatives S“” (t,O;) = Hp.;;{g(t) + 0;, 1s given by 

r- 7 I t 
=is -- ..__._._-- (s(,&“ (s(,,)]” 

rr, (11) x2(u) 
o alrrl(u) + ap2(u) 

rrl(“) ~2(“) 
- ASIAN G(u) 

alnIl + &p,(u) 

= [ ; n(u) {s(u)p”+p dp(ll)l* / ; n(u) {s(u))2p W(ll). 
0 0 

This rxprcsslon may be easily evaludLed whrn, for instance, C(u) = 

is(u) la. (~0 would i.mply that the ddtd are uncensored.) In thcsc cases, we 

have 
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e,,(p,t) = l-t (S(u)]p’+P+a dS(u>12 / ; -(S(u)]2p+a dS(u) 
0 0 

= --a?:~+1 1_1 _ {qt)jP”+P+@+l]2 . --- 
(p”+p+a+l)2 [l - (s(t)]2P+a+1] 

Clearly, when p=@, we obtarn 

The ratio e,,(p,t)/e p"(P",t) is the asymptotic relative efficiency of 

tests based on GP 
N1 J2 

for location alternatives under H p”? with respect to 

the fully efficient. test cpq 
N1 ,N2 

. Using the results above, we have 

e ).:: ( (1 , t 1 
= (2p+n+1) (2p"+c(+l) [l-(s(t)]~~+p+“+‘]* 

e p.:c ( 0‘:’ , t 1 (p”+p+(Ytl) [l-{s(t)]2f)+n+‘] [1-(s(t)~2P”+U+11 

Obviously Icp,(p,t)/ep,(p~~,t)] = 1 when p=p$c, as it should. Although one 

would not anticipate that C(t) = (S(t)]’ in many cases, values of u can be 

used in the above exprcsslon to infer qualitative lnformatlon about the effect 

that the scverlty of censorshrp has on the asymptotrc relative efficiencres of 

these procedures. Large values of ~1 could be used ds a model for heavily 

censored data. 

The cxprrsslon gl.ven above for ep”(p,t)/ep”(p”,t) could be used to plot 

a.r.e as a function of S(t), the correct null hypothesis survival probabLlr.ty 

at time t, for srlcctcd values of pq, p aud CI. For the sake of economy, how- 

ever, we have only provrded values of llm ~e,,(p,L)/ep,(p~;,L)j in Table 2.2. 
t-m 
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Table 2.2 

Asymptotic Relative Efficiencxes: lim {e,,(p,t)/e 
t- 

,,wJJ 1 

-, -- -- 
;'; 

P 0.0 1.0 2.0 3.0 4.0 

P 

0.0 1.000 .750 .556 .438 .360 

0.5 .889 .960 .816 .691 .595 

a=0 1.0 .750 1.000 .938 .840 .750 

2.0 .556 .938 1.000 .972 .918 

3.0 .438 .840 .972 1.000 .984 

4.0 .360 .750 .918 .984 1.000 

/ 
0.0 1.000 .889 .750 .640 .556 

i 
0.5 .960 ,980 .889 .793 .710 

a=1 1.0 .88Y 1.000 .960 .889 .816 
5, 
.'! 2.0 .750 .960 1.000 .980 .938 

3.0 .640 .889 .980 I .ooo .988 
, 

4.0 .556 .816 .938 .988 1.000 

_._^--__- -...-.- _.._--- 
*> 
<. '_ 0.0 1.000 .938 .840 .750 .673 
K 0.5 .978 .988 .926 .852 .782 
I 
I (x=2 1.0 .938 1.000 .972 .918 .859 

2.0 .840 .972 1.000 .984 .951 

30 .750 .918 .984 1.000 .990 

4.0 .673 .859 .951 .990 1.000 

I  ,  __̂  _^._. - - - -  . . ^ . .  __--_ _. .  . ._. _ _ _ 
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III. Test Statistics for other than Two Samples 

Although tests for a slgnlficant difference between two homogeneous 

populatJ.ons of failure times are commonly usrd, there are many situations 

which require a test for a significant dlfferencr among r+l populations, r>2, 

or which call for a goodness-of-fit type test to compare the distribution of a 

single sample with a hypothesized standard. The Gp procedures dlscussed above 

can easily be generdlized to situations lnvolvlng any number of samples. We 

~~11 consider first their formulation when there arc more than two samples; we 

will then examine the one sample andlogues. 

ITT.1 More Than Two Samples -. 

The easiest way to extend the discussion of the statistics examined here 

to the setLlng In which there are more than two samples is 1~. Lhe context of 

llnedr rank slatlstlcs. Recall that the statistic Gp was introduced III the 

form 

Gp = : {&T )]’ (-: 
k=l k =k - Q 

and that such a statisLlc is asymptotlcal.ly fully efflcicnt against ti.mc- 

transformed location shifts for survival functions of the form HP(t) = 

(l+pey’p for Lwo samples of censored datd. When the data are uncensored, 

but the uumber of samples r+l 2 2, the following result. holds. 

Theorem 3.1. .-~--.. __ Let Sl(t) = Ilp(g(t)+Bij i=1,2,...,r+l. Suppose we wish to test 

HO: e1=c12=...=or+1 against the global alternative Hl: Bi # ej for some pair 

(i,J) wiLh l#j. Then tests based on Gp are asymptotically equivalent to the 

loc?lly most powerful rank test for testing IlO. 

The proof of Thcorrm 3.1 will be provldcd by the lemmas below. 
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c r+l 
Lemma 3.2. LetN= 2 N. Then Gp may he wrlttcn as a linear rank statistic -- 

N 
i=l l 

,I ci(k)zk with 
k=l 

r 
c;(k) = {&‘k)]p - 

. 
N 

Proof: Suppose we have any statistic of the form 2 w (z 
N , k=l k k 

- 4,) arid 
N+ 

wish to write it in the form 1 c;(k)tk. Sincr! (nlk, n2k, . . . . 11~~)’ = t za 
N k=l L=k 

we can write <k = (xl,) -I 2 t,. Thus 
R=k 

N Q 
= 1 ZQ (We - 1 w I?) . 

Q=l i=~ J J 

N -‘? 
For the last expression to equal I: cN (Q) b, over all sets of rcgrcs- 

Q=l 
sion vectors {:, : &1,2,. . . ,Nj we must have 

f: Q -1 
c,(Q) = wQ - 1 w n . 

J=l 
.I J 

The lemma is now proved by taking wl? = {S(TQ)JP . 

Lemma 3.3. Let {c.;(k); k=1,2,. ..,N] be as above, and let 

F&t) = 1 - HP(‘) , 
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f&t) = & Fp(t), -m<t<m, 

f;(t) = & f,(t), 

f’{F-l(u)] 
O<Ll<l. 

Let scores (c+(k): k=1,2,... ,Nj be given by cN(k) = -$p (A). Then tests 

N 
of H 0 based on the linear rank statistic 2 ci(k)zk are asymptotically equl- 

k=l 

va?cnt to the locally most powerful rank tests based on : 
k=l 

cN(k)~k. 

Proof: In order to prove the asymptotic equivalence of a test. based on the 

scores cN(k) = -$ (k) to that based on another set of scores c;(k) we must 
p N+l 

show 

llm N 112 = 0. 
N+@ k=l 

{cN(k) - c;(k 

(See, for example, Randles and Wolfe, (1979), pages 287 aud 319.) 

It 1s not hard to show that cN(k) = c;(k) f-or p=O, I.e., for the slttid- 

tlon in which HP(t) 1s JIL extreme value survival function. In what L‘ollows ) 

therefore, We ~111 always dSSUnle that p>O. A short CSlCLlldtLOLl sllows tlldt 

9p(u) = -p-l 

* 

[ (I-u)P(l+p) - 11. For uncensored data S(Tk) = N-l(N-k+l) and 

“k = n-k+l. If we let 

aN(k) = (y)’ - ( Ns)p 
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alld k 
bN(k) = N-' 1 (N-jtl+)-l + p-1 

j=l 

then WC may write 

N-l : (cN(k) - c;(k))' = N-l ! {a,(k) - bN(k)j2 
k=l k=l 

. 

= N-l [ ! iaN( 
k=l 

- 2 z aN(k)bN(k) 
k=l 

+ : bN(k)~21 G 
k=l 

It 1s clear thdt/aN(k)l < 1, and a short calculaLion shows that'b (k)! < IN I- 

3+p-I. To show that. each of the above three terms converges to zero, 1L is 

thus su1ficrent to establish thdt: 

N 
lun N -' 
N-Tm 

1 aN(k) = 0 
k=l 

and 

llm NV1 
N 

N-fm 
t bN(k) = 0. 

k=l 

First 

N 
llm SLIP N -' 
N-= 

2 aN(k) 
k=l 

= llm sup N 
N* 

< llm sup L- N \';- 

N-m i Fl' ! 1-O. 
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Since lim inf N 
-1 N -1 N 

N-so, 
,I aN(k) 2 0, we have that Ilm N 

k=l N- 
.I aN(k) exists and 

k=l 
equals zero. 

Second , 

lim N -I 
N ‘Q) 

t bN(k) 
k=l 

= llm [N 
N- 

tN -l 

= 1111~ N 
N-o, 

N 
+ llm N -l 

N-o, 
1 p-l {(l - hlP -1) 

k=l 

dydx + ; ~-~{(l-x)’ -1jdx 
x=0 

= 0. 

Since Lemma 3.3 shows thnt tests using thr score function cN(k) arc 

asymptotlcnlly cqulvalent to the approximate score function test based on 

Cp (k), Thcorcm 3.1 1s established. 
p Ntl 

We note In passing, continuing to Con- 

sider uncensored data, that it IS yosslble to compute the exact score function 

for the locally most powerful rank test for locntlon alternatives for the! 

distribution HP(t) when p is a positive integer. Such a test is a score 

funct Len test based on the scores 
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where ll(k) is the k tt1 order statistic in a random sample of N variables, each 

uniformly distributed on [O,l]. In this case, we would have 

cN(k) = E [-p-l[{l-u(k))p (l+p) - 111 

1 =-- (B) E (U 
P P (N-k+l) P 

1 =-- 
P 

N 

Since Gp = 1 c;(k)zk, 
“C 

with scores c (k) 
k=l N asympLotically equivalenl to 

those given by cK(k) = -c$,( Eli), we may rely on the large sample distribu- 

N 
Lion theory for G = 2 cN(k) Sk to find approximate critical regions for 

k=l 
” 

tesLs of Ho: e1=02=...=er+*. Theorem V.2.2 (p.170) in Hijek dnd Sldik (1967) 

establlshcs that g, and hence 8, may be used to construct a hypothrsls test 

based upon the x2 distribullon. Specifically, if we define 

I N ._ 
‘N=N k=l I: cN(k) 

dfld 

dc = {N;’ (Kl-NITN), N;’ (R2-N2CN) . . . N;‘(R, - NrFN)l’ , 

where R is thr i th 
1 

componenL of 8, then, OIW may show that under HO 

Q = (N-l) [ : (cN(k) - cN]2]-’ ic 
’ + 

Rc 
k 

is asymptotically distributed as xi, Of course, all of the above results hold 
$? 

with cN(k) rcplaccd by cN(k). 



I * 

In censored data, very little seems to be known currently about the 

properties of rank statlstlcs when there are more than two samples. Prentice 

(1978) has proposed a method for modifying the usual score function tests Lo 

censored dat.a, and it is possrble to compute his modified scores for the H 
P 

drstributions. Suppose mk is the number of censored observations in the 

interval [Tk, Tk+l), and let. t k,j’ J- -1,2,...mk, be the O-l regression vectors 

indicating sample membership of each of the censored observations. Then in 

our situation and in the notation of Prentice censored data rank tests may be 

based on 

d 
; = 2 {zk FN(k) + ;J(k) N ;: (k)j 

k=l 

* * 
where r (k) is a score for an uncensored observation, CN(k) is a score for N m 

a censored observation, and ; 
k+ A 

(k) = ’ ‘Q’ 
J=l 

The scores $(k) and CN(k) 

are given by 

A 
cl&k) = s . . . 

II 
J Cp(u,) .i (nj (l-uj)lnJ dujj 

1 c . . . Cl1 k J=l 

and 

$k) = J- 
II 1 < 

J @(Ilk) r: (nj (l-uj)mj dujl , 
. * . <II k j=l 

with 

f’ (H-1(1-u)) 
4(u) = _ l-e--- 

f&Hpl(l-u)) 

and 

Q(u) = fp(lcpl(l-u)] (l-u)-1 
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Straight forward calculat-ious show that 

A 

A  

CR(k) = ; - (y) I! (A) 
j=l j 

and 

. 
CR(k) = ; (1 - 

It 1s not hard to show that CR(k) = CR(k) for uncensored data. 
I 

Hypothes1.s tests may he based on t.he censored data rank statstics in much 

the same way as for the uncensored data case. The form of x2 tests, which dre 

based on the assumption of asymptotic multivariate normality for the vector t, 

is clearly specified in Prentice (1978), pp. 170-175. We will not examine 

formal proofs here establishing this asymptoLic normality. It is expected, 

however, that such proofs can be construcled, under appropriate assumptions 

regarding the censoring distributions, by appealing to the results in Ha’jek 
. 

and Sidak (1967, p. 152). 

III.2 One Simple Test __ _... _.., .I.---- Statlstlcs .._^_ ..^_._._ 

As mentioned earlier, one-sample goodness-of-fit Go test procedures can 

be formulaLed. In this situation the statistics can easily be approached from 

the stochdsLrc iutegrdl point of view. The argument hcrr is similar to thdt 

used by Wools011 (1981)) aud is heurlstlc LII nature. 

Recall thdL for two samples 

GP = 7 (&])]P ( y,(u) y2(") ] { "y; 

N1’N2 0 y,w + Y,(u) 
y2y; ) , 

1 2" 

Suppose now we think of N2 as being arbitrdrily large, giving us complete 

information about a survlvnl disLrlbution S. In this case 
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(Y,(u) Y2(u)I/~Y1(u) + Y,(u)1 E Y,(u), S(u) 2 S(u) and dN2(u)/iY2(u)3 z dB(u). 

Let SO bc a hypothesized distribution, and S, = -Rn SO. Notationdlly, let 

N=N 1, Y(u) = Y,(u), Xi = X(lk and 6k = 6 lk ; we may write Gp in this situ- 

atlon as 

G; = 7 {S,(u)]’ {dN(u) - 
0 

= $ {S,(L@ dN(u) - 7 (S,(u)f Y(u)dBo(u) 
0 

N N X0 

= 1 6k {so(x;)Ip - 
k=l 

k21 6' iS,b)f dBo(u). 

If p>O, this becomes 

while for p=O, Gi is 

N 
2 

k=l 
(Sk - p,(XE)) = ‘: [(Sk - I?n (S,(XL)]-11 . 

k=l 

The statistrcs Gi can IIC used to formulate a family of one-sample test stdtis- 

tics which Include a onr-sample version of the logronk statistic ds a specidl 

casf!. Approxlmntc crlti.cal val.ucs for thcsc tests can be found by dppeallllg 

to the following theorem, which follows from the results in Gill. 

Theorem 3.2.1. Assume that the mild rcgularlty conditions hold whrch are 

outlinrd in Scrtion 4.2 of Gill. Then under Ilo: %S o, the stat.istrc N N IS -Q’ 

asymptotically normally d1.strihutcd with mean 0 and variance 

7 {S,(U))~“~I(U) dSO(u) = 7 {S0(u)]2p+1 
0 0 

c(u)dpO(ll)~ 
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i , 

(b) The asymptotic variance in pdrL (a) may be consistently estimated by 

. 

I - 

. 

i ~S,(U)~~~ Y(u) N-l dPO(u) 

= N-l i (2& 
0 2p [l-is (X )] 1 i.f p>O, 

k=l 0 k 

= -N-l if p=O. 

It IS lntcrestlng Lo note that in uncensored daLa (C(u):]), Theorem 

3.2.1(a) lmplics that the statistic 

has asymptoLically a standard normal dlsLrlbutlon. Observe aLso from Theorem 

3.2.1 that LIE one-sample censored data logrank statistic 

[ i dk - “z Ln {S,(XO,)]-’ I2 / Z Qn {S,(XO,) 1-l 
k=l k=l k=l 

his asymptotically a X2 distrlbutlon with onr degree of freedom. In this 

N N 
setting, 1 6i 1s the ohscrvcd number of deaths dnci 1 

1=1 k=l 

the condlliondlly expected number of deaths, glvrn thr XL. 

TV. Monte Carlo Sunulatrons --. -_.. .-..- 

Thr asympLotlc distributions of the newly proposed tesL st.atlstlcs, GP , 

p.0, have been used 1n Lhe construction of hypothcsls tests of a given size. 

Therefore, Monte Carlo simulations were used to confirm that the trllc size of 
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each of these test procedures, in small or moderate sample sizes and under 

varying amounts of censorship, was indeed accurately approximated by the 

nominal significance level based upon Lhls asymptotic distribution theory. 

The simulations were also used to couflrm, in uncensored data, the analytical 

conclusions reached earlier concerning the role of p in determining power. It 

is those results from the cvaluatlon of power which wet-c particularly Inter- 

esting and hence will be given in the remainder of this section. 

IV.1 Simulation Procedure L----.. -..-- . -_.-_ -_---.-- 

In the simulations to evaluate power, four distinct configurations of 

survival distributions were inspected, with edch conflgurat.ion including two 

survival dlstributlons used to generate t.wo samples of fallurc times. At.ten- 

tion in this simulation st.udy was restricted to the two-sample problem Since 

th1.s IS where the greatest interest appears to be. If, as carller, we let 

Sp(t,O) = II (g(t)+03 denote a tlmc-transformed locatlon shift of II (t), then 
1’ 

P P 
the four conflguratlons consi.dcrcd were s l(Oli, 021) : {sPi(t,e& sPi(L,e21)] 

for i=1,2,3,4. In turn, the four test stntlstlcs evaluated were G ‘i , i=1,2,3,4. 

Since It was of particular i.ntcrest to obtain In the class of conflgurdtlous 

IsI’(fil, _ 82); p>Oj a small sample comparison of Lhe behavior of Lhe logrank 

and Wllcoxon test statistics (i.e., Go and Gl respecllvely) with that of other 

Gp stat1 stlcs, the values of p, chosen were 0, h, 1 dnd 2. 

T,ct., for example, the tlmc transformation g(t) = Lnt. Then the resulting 

survival distrlhutlons are S”(t,O) = (l+pe’t) -l/P if p>O while S’(t,O) = 

exp(-c’t.). Thus, usJng the t.ransformation [U-“-l)/pe8 WtleIl p>o, dIJd -[hlu@ 

when p=O, the approprlatc indcprndent survival random variables were obt,lincd 

by transl’ormlng lndcpcndcnt uniformly dlstrihutcd varlales, U, produced with a 

linear congruentlal random number generator (KnuLh, 1969). 
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Since the mai.u purpose was to i.nvestigate in small and moderate samples 

the performance of Gp procedures derived using asymptotic propertles, sample 

sizes Nl=N2=20 and Nl=N2=50 were consldered. 

Five hundred pairs of samples were generated for each selected configu- 

ration of survival dlstributlons and for each sample slzc. The proportions of 

samples in which each one-sided test procedure under consideration reSected Ho 

at the cr=O.Ol and (~~0.05 significance levels were calculaled. 

IV.2 Power Rcsu1.t.s 

Results of the Monte Carlo study pertaining to the evaluation of power of 

the set of procedures {G’: P = 0, %, 1, 2) are presented in Table 4.1. 

Figure 4.1 presents the plots of the hazard functions correspondlug to the 

four survival conflguratlons lnspectcd in the tables. The table reveals that 

the small aud moderate sample relative power of these four Lest procedures is 

entirely consistent with their large sample a.r.e. given in Table 2.1. In t.he 

time-transrormed extrcmr value location alternatIve (configuration I), and in 

the time-transformed logistic location alteruative (conflguratlon ITT), 

G’(i.e., the logrank) has a.r.c. 1 and 0.75 respectively whi1.c Gl(l..e., the 

Wilcoxon) has a.r.e. 0.75 and 1 respectively. Thus clear superlorltp of Go 

over G1 111 I and of Gl over Go In TT'I 1S eqUdlly appdrent in Small SampleS. 

In dddiLion, Table 4.1 reveals in smaller samples that the loss In power 

obtaIned by using G % rather than Gl in TIT IS less than that obtalnrd by using 

G’ ralher than G O in I 2 , and secondly that G4 1s more powerful than G in III. 

Roth of Lhese observations also conform to what earlier a.r.e. results indl- 

cated. Agaln, in couflguration TT we find agreement bet.ween our small sample 

results and a.r.e. calculations. Specifically G4 is more powerful than G1 
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which III turn is more powerful than Go. Finally, we observe small sample 

conflrmatlon of the facts that Go and G2 have relatively low power In con- 

figurations IV and I respectively. 

The research of the first author was supported by a grant from the 

National Science Foundation; the second author received support from the 

National Inst,itutes of Heal.th for his work. 
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Figure 4.1. Ihzard Function Plots for the Altcrnatlvc Hypothesis 
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Table 4.1 

Monte Carlo Estimates of the Power 

I of the Cp(p = 0, '1, 1, 2) One Sided Test Procedures 

of 11 0 : S1 = S2 vs. HA: Sl < S2 (500 Simulations) 

(P,eel) (p,e O2 
I&%!1 

) N1=N2 of Test Go G# G1 G2 

20 .Ol .386 .338 .292 .204 
.05 .668 .62o ,578 .456 

I. co,21 co,11 
50 .Ol .I358 .800 .734 .610 

.05 .954 .938 .894 .812 

20 .Ol .308 .320 .290 .258 
.05 .548 ,576 564 .516 

II. (%,2.25) Gi,l) 
50 .Ol .646 .694 .682 .604 

.OS .844 .878 .868 .830 

20 .Ol .206 .222 .234 .204 
.05 .444 .470 .488 .470 

IIT. (1,2.5) (1,1) 
50 .Ol .534 .616 .624 .518 

.05 .754 .834 .864 ,828 

20 .Ol .148 .186 .202 .206 
.05 .336 .402 .416 .426 

IV. (2,3) (2,l) 
50 .Ol .294 .406 .470 .516 

.05 .534 ,662 .722 .742 

n 

.k 0 

Each survival distrlbuLlon is of the form Sp(t,U1) = (l+pe It) -l/P 
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