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Summary

A class of linear rank statistics are proposed for the k-sample problem
with right censored survival data. The class contains as special cases the
logrank test (Mantel, 1966; Cox, 1972) and a test essentially equivalent to
the Peto and Peto (1972) generalization of the Wilcoxon test. Martingale
theory is used to establish asymptotic normality of test statistics under the
null hypotheses considered, and to derive expressions for asymptotic relative
efficiencies under contiguous sequences of alternative hypotheses. A class of
distributions 1s presented which corresponds to the class of rank statistacs
in the sense that for each distribution there is a statistic with some optimal
properties for detecting location alternatives from that distribution. Some
Monte Carlo results are displayed which suggest that the asymptotic properties
of these statistics in the two~sample case hold fairly well in small and

moderate size samples.

Some key words: Censored data, contiguous alternatives, linear rank

statistic, logrank test, Pitman asymptotic relative efficiency, Wilcoxon test.




I. Introduction

Some attention has been given in the recent survival theory literature to
alternative formulations for the popular nonparametric statistics used in
testing the null hypothesis of equality of several underlying survival
distributions. Prentice (1978) has shown that statistics such as the logrank
(L-R) (Mantel, 1966) and Peto and Peto's generalization of the Wilcoxon (1972)
(PPW) can be obtained as linear rank statistics for censored data assumed to
come from a log linear model. Prentice and Marek (1879) have shown that in
many cases such linear rank statistics may be expressed as vectors whose
components consist of sums of werghted differences between the observed deaths
in a given sample and the conditionally expected deaths, given the censoring
and survival pattern up to the time of an observed death. Aalen (1978) has
shown that most of the popular two sample tests can be formulated as
stochastic integrals with respect to appropriately defined counting processes,
and has used martingale theory [Aalen (1977)] in this context to obtain weak
convergence results for some estimators and test statistics. Gill (1979) has
used this martingale formulation to obtain Pitman asymptotic relative
efficiencies (a.r.e.) for statistics such as logrank and both the Gehan (1965)
and Peto and Peto (1972) generalizations of Wilcoxon's statistic under
contiguous sequences of two-sample location alternatives. In this paper, we
will propose a class of nonparametric procedures which includes the L-R and
the PPW as special cases, and we will show how the formulations mentioned
above can be used to study the properties of these procedures.

The most intuitive formulation for these new statistics is in the context
outlined by Prentice and Marek (1979). The notation necessary for this

formulation is as follows. Let {Xij; IEjENi, 1§1§r+1} denote the survival




variables (i.e., death times) from r+l independent random samples with under-
lying survival functions Si(t) = P(Xith), i=1,2,...,rtl, We will assure
throughout that the Si are absolutely continuous with cumulative hazard and
hazard functions defined, respectively, as Bi(t) = =fn Si(t) and Ai(t) =
gEBi(t). Let {Yij; 15N, 1<i<r+1} denote censoring variables with censoring
distributions Cl(t) = P(Yijzt). We will assume that the observed data consist

of {XQ. =min (X ,, Y,
1] 1]

13), ‘513' = I[Xij < Yij]; 1SN, 1<i<r+1}, where I[A] = 1

if the event A has occurred and 0 otherwise, but that the important inference

problems are those regarding the Si' We will assume that the survival and

censoring times are independent and thus ni(t) = P(X(i)j >t) = Si(t) Ci(t).

Let Tl < T2 < ... < 'l‘d denote the d distinct ordered observed death times in

the pooled sample, and let Ny be the number of subjects under observation

in sample i just prior to Tk’ i.e., .y is the size of the risk set in sample

r+l

iat Tk' 2 D, = My will be the size of the total risk set in the pooled
i=1 ,

sample at Tk. We will let Zk = (zlk""’zrk) denote the transpose of a col-

umn vector of 0-1 regression coefficients denoting sample membership: ij=1

if and only if the observed death at T, ts from sample i. Zk = § will mean

k
that the death at T, 1s in sample r+l. If we let {wj; 1<j<d} be a set of

weights, then Prentice and Marek (1979) have shown that several of the pop-

ular nonparametric tests fpr H : 5. =5, = ... =85 can be based on sta-
XD 0 lgrr r+1
n;JA/ ¥ ¢ X?

) d /-.,V_) ‘u _:*R/ ’\,,\_ ! -1 )
tistics of the form kglwk(zk - qk), where g = (nk) (nlk’ Nops ++ooly )
When W, = 1, the resulting test is the L-R, while when wk=§(Tk), with S being

_ k
the pooled sample survival function estimator S(Tk) =0 nj/(n]+1), the test
j=1 )

is Prentice's (1978) gencralization of the Wilcoxon test for censored data and

is similar to the generalization of Peto and Peto (1972).




It is clear that a researcher should have some flexibility in choosing

the weight function w,, but the only proper way to choose weights is to pick «

Kk’
set yielding a test procedure as sensitive as possible to the types of depar-
tures from equality of the Si that are anticipated in a given experiment.
Gill (1Y979) has shown that in two samples of censored data, the L-R test has
Pitman a.r.e. 1 (1.e., 1s fully efficient) against a time-transformed sequence
of contiguous location alternatives when Si is a type 1 extreme value survival
function. The L-R test is thus fully efficient for a contiguous sequence of
proportional hazards alternatives. The approach illustrated by Prentice
(1978) proves the L-R test is the locally most powerful rank test and is fully
efficient against time transformed location alternatives for the extreme value
distribution when there are r+1 samples of uncensored data. Of course the L-R
test reduces in this setting to the Savage exponential scores test, and 1ts
properties have been known for some time. Gill (1979) has also shown that the
PPW is fully efficient against time-transformed location alternatives for the
logistic distribution in two samples of censored data, while again the
approach in Prentice (1978) yields the result that i1t is a locally most power-
ful rank test in r+l samples of uncensored ddta.

The most natural class of weights to use which generalizes the L-R and
PPW weights seems to be of the form wk(p) = {S*(Tk)}p, for a fixed p>0 and for
S*(Tk) a pooled survival function estimator at Tk' When p=0, the L-R weights
are obtained, while for p=1 and S*=§, the generalized Wilcoxon weights are

produced. In this paper we will study the properties of tests based on the

statistics

d -
P _ N N .

A

where S(u) is the left continuous version of the Kaplan-Meier product limit




~

estimator of the survival function for the pooled r+l samples, i.e., S(u) =

It (nk-l)/nk. Section IT will give results for this statistic when there
T :T <u

aie ktwo samples of arbitrarily right censored data. Those results will
include asymptotic distribution theory under null and contiguous sequences of
alternative hypotheses, a characterization of the parametric location
alternatives for which these procedures are fully efficient or locally most
powerful rank tests, and tables of the Pitman a.r.e. for pairs of members of
this class. Section IIT will examine those results that can be proved when
the number of samples is different from two. In Section IV results of Monte
Carlo simulations are displayed which support, in the two~sample situation,
the claim that the asymptotic theory provides reasonably accurate approxima-

tions for the actual properties of the statistics in small and moderate sample

slZes.

II. The Two-Sample Statistics

For two samples of censored survival data the most direct way to obtain

. . . ) . .
the asymptotic distribution theory for the 6P statistics is through the use of
weak convergence theorems for martingales associated with stochastic integrals
of counting processes. To apply these results we need to recast our

two-sample statistic in slightly different notation. Assume r+l1=2; let

Nl .
N](L) = E I[xlk <t, 6ik =1}, i=1,2,
k=1
and
.0
Yi(t) = 3 I[Xl > t].
k=1

In the earlier notation, Yi(Tk) =0,




It is not hard to verify that with this notation g may be expressed as

ot ¢

with the convention that 0/0 = 0. With this formulation it 1s easy to sce the

Yl(u) Y. (u)

Y. (u)+Y (u)

sz(u)

)

o le(u) ]
N Yl(u)

f{b( )P
N, o v

2 ¥, (u)

1’

class of statistics GE N p>0, is a subset of the more general class con-
1772
sidered in Gill (1979). The asymptotic distribution theory derived by Gill

for that class applies here and may be summarized in Theorems 2.1 and 2.2
below. (We note in passing that Theorem 2.1 may be proved more directly using

the method of proof outlined for a similar statistic in Section 6 of Fleming

and Harrington (1981).)

Theorem 2.1. Let ANi(u) N (u) ~ lim Nl(u) and let wvariance estimators
ttu

VE(t)’ £=1,2, be given by the formulas:

. - 2p 2

2t {s(u)} {Y LW Y, (u)} i ANi(u)—l} dN_(u)

V() = 2 f = ~ Y5 1 - -
1 =1 o Yl(u) Y. (u)+Y.. {(u) Yi(u) 1 Yi(u)
. 20 : 2
2t {s(u)i Y. (u) Yz(u) ANl(u)+AN2(u)*1
V)= 2 [ g4 V) R AT I
2 i=1 o (u) Yl(u)+Y2(u) 1(u) 2(u)-
1
d{N, (u)+N, (u)}
Yl(u)+Y2(u)
Let N = N1+N2 and assume Lim Nl/N 2 a exists and satisfies O<ai<1. Then
N~ ‘
under the null hypothesis HO: SI=S2 (= $ unspecified):
N N, L n, (W, (u) 2p
(a) lim ( ) V,(t) = f {s(wt™ ap(u), 2=1,2,
Norco N] 9 2 3 a]n (u)+a n (u)

in probability, where B(u) = -£n S(u).




{(b) 1lim {Vﬂ(m)}—% Gg N = Z ~N(0,1) in distribution.
N-o 172

Proof: For i=1,2 observe that Yi(t)/Ni is simply the empirical distribution
3
function estimator of nl(t). Thus {N° {Yi(t)/Nl - nl(t)} : 0<t<w} converges
weakly to a time-transformed Brownian bridge, implying
sup Y (t)/N. - 1 (t)! —> 0
0<t<oo L Lo

in probability as N+»., The proof then follows directly from Proposition 4.3.3
in G111 (1979).

There are several pertinent remarks that can be made here. TFirst, Gill's

complete asymptotic results can yielid more powerful results about the stat-

istic GS N than those we have stated here. It is possible to show that
1’72

under certain conditions the empirical processes

converge weakly to a mean zero independent increment Gaussian process under
HO’ even for some survival distributions that have discrete probability mass
at certain time points. We will not nced these general results here, however.

Second, the variance estimator Vz(m) is identical to the hypergeometric
variance estimator that arises naturally when one views the survival data as
producing a scries of independent 2 X 2 contingency tables, one at each death
time, as was originally done by Mantel (1966) and as 1llustrated by Prentice

and Marek (1979). 1In the original notation for the test statistic, Vz(m)

takes the more familiar form
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where dk is the number of observed deaths or failures at time Tk' 0f coursce,

under the model assumed in this paper, ties at observed death times can only

be caused by grouping of the data. In the case of ties,

2 .P \'\ L
A
. ok d
6" = I {8(T, 1" {z,, - (qn;, /n)},

k=1

where 21y 18 the number of observed deaths from sample 1 at T

Theorem 2.1 provides the means for approximating the significance level

K’

of observed values of Gg N In order to understand better the asymptotic
1’72

power of these procedures, however, some information is needed about the

behavior of these statistics under alternative hypotheses. It 1s not hard to

show that GP is consistent against the alternatives H,: A, (L) > A, (t),
NN, 17 M T

t & {u: Sl(u)Sz(u) > 0}; and H Bl(t) > Bz(t), 0<t<ee, with each of the

5*
inequalities being strict inequalities on some interval. {See Gill (1979),
Section 4.1 for detarls.) Asymptotic power functions must be compared under a
sequence of alternative hypotheses that approaches the null or with a sequence
of significance levels that approaches zero. We will calculate Pitman a.r.e.

under a contiguous sequence of alternative hypotheses. The following theorem

follows directly from Theorem 4.2.1 in Gull (1979).

Theorem 2.2. Let Sf(t), i=1,2, be a sequence (in N) of survival func-

. . N
tions which satisfies 1lum SN(t) = S(t) uniformly in t £ [0,®). Let Bi be
Noow !
the associated cumulative hazard functions. Suppose we define

1 ~
NN\ P ag®
-2 (g) - 17, 1=1,2,
N, ? dp

v, (t) = lim

N



and assume that the counvergence is uniform on each closed subinterval of {t:
S(t) > 0}. Let y(t) = yl(t) - yz(t) and let ni(t) = S(t)Ci(t). Then for

0<t<e

N_+N, \!!2 2
L | e B IR ORE RO OR CXOTY

in distribution, where

t m (u)n2 (u) b
t) =
pp( ) g alnl(U) + aznz(u) v(u) {S(u)} df(u)
and (2.1)
2 t nl(u)nz(u) 2

i - p

t = .
001 = [ e SWIP @)

The asymptotic efficacy of the statistic Gg N under such a sequence
1’72

of contiguous alternatives is defined in the usual way to be e(p,t) = {pp(t)/
Gp(t)}2 We now describe briefly how this expression for efficacy can be used
to find a class of parametric location alternalives against which the statis-

tic Gﬁ 18 asymptotically fully efficient,
I’NZ

Suppose the contiguous alternatives are :indexed by location parameters

GT, 1=1,2, and let 1 - S?(t) =Y (g(t) + ef), where ¥ is a fixed cumulative

distribution function and g{t) :is an arbitrary monotonically increasing time

transformation. Let $(t) = S ¥(t), A(t) = §(t) (1-9(0)}7Y, 2(0) = fa A(t),
d

and £'(t) = It fn A(t). To achieve the right rate of convergence for the
contiguous alternatives we let
I
-
N -
N 1+1 3-1
B, =8, + c(-1) {-———~—~—~ ,
i 0 Ni(N1+N2)



where 60 is unspecified and c is an arbitrary positive constant. Assume that

we are interested in testing the sequence of null hypotheses Hg : GN = GN

1 2
against the alternatives Hﬁ : Gﬁ < (f; or ﬁ? : Bﬁ_# Gg, and that we wish to

restrict ourselves to statistics of the form

t ((aN. (u) AN (u)
1 2
PR AT T T,W

where K(u), 0<u<w, is a stochastic process satisfying the regularity condi-
tions outlined in Section 3.3 of G111 (1979). Then Gill has shown that the
resulting asymptotic efficacy will be maximized for the contiguous location
alternatives above 1f K is chosen as K{u) = 2’ [W-l {1~§(u)}], where ; is a
left continuous version of the product luimit survival function estimator in
the pooled sample. Thus the time transformed location alternatives against
which tests based on GSI,NZ should have good sensitivity will include distri-

butions ¥ which satisfy
g v f1-s(0}) = fsiP .

A sufficient condition to ensure this 1s to have 2' = (1-W)p. Letting H{t) =
1-¥(t), a short calculation shows that the underlying survival functions H(t)

against which Gﬁ N should have good power for time-transformed location
172

alternatives include, but are not necessarily limited to, survival functions

H(t) which satisfy the differential equation:

H'(t)
H'(t)

=]

-

|

'(
(t

D - e e 10 5 o)

[==1

Theorem 2.3 15 a precisc statemenL of the results that are now possible in

this setting.




Theorem 2.3. Let -o<Xt<o and let Hp(t) be the family of survival functions

given by

exp(e_t) . p=20

Ho(t)

(1+pet)-1/p , p>0 .

1l

Hp(t)

Let Sp(t,e) = Hp{g(t)+6} be a time-transformed location shift of Hp(t), and
let Sp(t,ef), i=1,2, be a sequence of location alternatives, with 0? defined
as above. Let p>0 be fixed and known; let z, be the o quantile of a stdndard

normal distribution.

(2) The level ¢ test which rejects Hg: Bf = 62 in favor of ﬁf : 6? # Bg
whenever
1
=% P _ .
! > =
{Vz(m)} iGNlaNZE zl_O{/2 (£=1 or 2)
has maximum efficacy against the contiguous alternatives Sp(t, Gf), 1=1,2,

among all tests based on statistics of the form

0 dN_ {u) dN, (u)
1 2
(J; k) { IAON Yz(”)g'

(b)Y A level o test which rejects Hg according to the criterion given in
part (a) is a fully efficient test against time transformed location
alternatives to Hp(t) if and only 1f n,o=, almost surely with respect to the
probability measure specified by Hp.

Proof: Part (a) follows from lemma 5.2.1 in Gi1ll (1979), while part (b)

follows from Corollary 5.3.1 in the same paper.

10



Since tests based on Gg N reduce to the L-R when p=0 and asymptotically
172
to the PPW when p=1, it 1s not surprising that Hl(t) is the usual logistic

survival function, nor that 1lim H_(t) = exp (-et). The fully efficient
p=0

nature of PPW against logistic shift alternatives and of the L-R test against
type 1 extreme value shift alternatives is already well known. By using the
full family of Hp distributions, however, it is now possible to study the
behavior of rank tests which are optimal against models exhibiting a specific
degree (as determined by p) of departure from the popular proportional hazards
model in the direction of the often used logistic location shift model.
Interestingly, this family of Hp distributions is an important subset of the
Generalized-F family of distributions discussed by Prentice (1975). Speci-

fically, Prentice considered the log~linear model in which the error distribu-

ts 1.
“w

tion was assumed to be that ol the logarithm of an F wvariate on 2m1 and 2m,

degrees of freedom. Hp 1s obtained by taking m1=l and mZ:p-I.
Using results quoted earlier, 1t 1s possible to tabulate Pitman asymp-
!
with one based
oo,

when the underlving survival function is Hp*’ where p" may or may

totic relative efficiencies comparing a test based on G

Py
N

G
on Nl
not equal one of the P 1=1,2. Before we do this, however, we feel 1t 1s
instructive to examine the bchavior of the Hp survival functions under
two-sample time-transformed location alternatives.
Suppose thal p 1s fixed and that we wish to consider modeling two samples
of survival data with the distributions SI(t) = Hp{g(t) + Bi}, 1=1,2. If one

takes A = 61—82 then an easy calculation shows that

s, = 8, 16sP + f1-sHeh 7P (2.2)

11



In fact, since the efficiencies of rank tests are invariant under monotonically

increasing transformations of the data, tests based on Gﬁ N will be fully
1772
efficient against alternatives in which S1 1s arbitrary, and 82 is given by

equation 2.2. The right hand side of equation 2.2 is a specific instance of
the conversion function discussed by Peto and Peto (1972). Using equation
2.2, it 1s not difficult to show that 1f Al(t) is the hazard function corres-

ponding to Sl(t), then

Ay = Ay D (5P + {1 - (sl)P}eA]'l

The relative behavior of the two distrabutions 51 and 82 is now most clearly
understood by taking Sl(t) = e_t (a unit exponential) and studying the ratio

Az(t)/Al(t) = A2(t). In this case
At = e (e P+ (1-ePhety !

and we will call this term R(A,pt). At t=0, Az(t) = eA Al(t), and hence eA
represents the initial ratio of the hazard functions. Figure 2.1 illus-
trates the behavior of R(A,pt) for some representative values of A and t. We
have chosen A so that eA = 2b for various values of b. The plots have been
made on a scm1~log2 scale, with the horizontal axis marked in multiples of

p 7, since 1n this setting p acts simply as a scale factor.

It 1s clear from the form of R(A,pt) that Lim R(A,pt) = eA for any fixed
p=0

t, i.e., smaller values of p yield alternatives in which the hazards are more
nearly proportional. Late in the survival distribution, however, p may need
to be quite small before Az(t) becomes "close" to eA. Table 2.1 displays
-t

values of R(A,pt) for selected values of Sl(t) = e Notice for instance

that for eA=4, R(A, t/2) 1s much closer to R(A,t) than to R(A,0). Thus

one must be careful not to assume that choosing p=% in a modeling situatiou

12
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Figure 2.1. The Hazard Ratio R(A,pt)
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(1, %)
(1, %)
(1, 25
(1, 4)

(2,%)
(2, 23

(4, %)
(4, %)
(4, 2)
(4, 4)

(p, 1)

Values of R(Q&t) =

Table 2.1

0.0 0.2 0.4 0.6 0.8 1.0
.500 .525 .550 .574 .589 .622
.000 .826 .693 .588 .504 1.435
.250 .289 .332 .378 .426 L4735
.500 .550 .599 .646 .690 731
2.000 .693 1.504 .378 .290 1.225
4.000 .591 .011 . 700 .508 1.381
.500 .599 .690 .769 .832 .881
.000 .504 .290 .177 .112 1.073
.230 .426 .623 .786 .891 .948
.500 .690 .832 .017 .961 .872
.00 .290 .112 .048 .021 1.009
.000 .508 .178 .073 .032 1.014
.000 .000 .000 .000 .000 1.000

eA{e-pt + (l—e_pt)eﬂ}-l

1.2 1.4 1.6
.646 .668 .690
.378 .330 .290
.525 .579 .623
.769 .802 .832
177 .141 112
.292 .227 .178
.917 .943 .961
.048 .031 .021
.976 .989 .995
.992 .996 .998
.004 .002 .001
.006 .003 .001
.000 .000 .000

1.8

.711
. 255

.668
.858
.090
. 142

.973
.014

.998
.999
. 000
.001

.000

.731
1.225

711
.881
1.073
1.113

.982
1.009

.999
1.000
1.000
1.000

1.000

L e T . T

3.0

A et e R g e

.818
.126

.870
.953
.026
.03%

.998

.001

.000

.000

.000
.G00

.000



leads to a set of location alternatives which are "midway" between proportional

hazards and logistic shift alternatives. For exactly the same reason one

1

should therefore not consider tests based on Gﬁ N as tests whaich provide a
2

balanced compromise between the L-R and the PPW tests.

As mentioned earlier, it is possible to compute Pitman asymptotic relative

p

efficiencies for the family of test statistics GN N For simplicity, we will
1'72

assume that C](t) = Cz(t) = C(t), and hence that nl(t) = nz(t) = n(t) under
HO. The following argument shows that 1t is possible to simplify the
tabulation of asymptotic relative efficiencies.

In our setting

A
%
o _ o = c(onyitl E Ny
i { NL(N1+N2)
Since
ap A0 - A(L,8)
T X () ’
we hdave that
N, N\ 2 dﬁ )
172
y.() = lim v i () - l(g
i Noos \ N1+N2) dBl
N, N (N *N,) Ace, o 1) - ACt,8,)
L=
oo Nty N3—1 A(t’eo)
N. Alt, e ) A(L,H )
_ i+l 3~1 N
- éj{': c(-1) (N1+N2 ) (6; -8 :f )\(L 8,) g
= ¢( 1)i+1 a4, g@ £n A(t,B)‘




Thus we have

¥(t) = yy(t) - y,(¢)

{

_ .9

= ¢ gz &n A (t,0)

38 ? 820
0
We will be examining the behavior of the statistic Gg N under contig-
172

uous location alternatives for a distribution Hp*’ where p* and p may or may

not be equal. Assume now that c=1. TFor §(t,8) = Hp*{g(t)+0},

2n A(t,0) = g(t) + 8 + 2n g'(t) - fn {1+ped{BI*0y

Hence y(t) = {1+p*cg(t)+00}—1 = {Spw(t,ﬁ )}p‘_ Denote Spw(t,so) by S(t).
P
NI'N2

alternatives Spw(t,0§) = Hp*{g(t) + BT} 18 given by

The asymptotic efficacy for G computed at time t for contiguous location

2

fuy (€ /o (e}

it

. t
epw(p’ )

= 1

Pt n. (u) m,(u) - 2
- !l ] = Eu) + i m,(u) s {si” apew /
0 11 272

nl(u) nz(u)

alnl(u) + aznz(u)

t 2
J {Sw3“P dp(u)
0

t o t
[ ) 5P™P apal” 7§ n(w) {8312 dplu).
0 0

This expression may be easily evaluated when, for instance, C(u) =
{S(u)}u. (¢4=0 would imply that the data are uncensored.) In these cases, we

have

16




t " t
epu(p,t) = [-f {s(u)}P P as? / f {51 gseu)
0 0

2p+atl [1 - {S(t)}p*+p+a+1]2
(prepra+1)® 1 - {5(£)}2P70]

Clearly, when p=p*, we obtain

i« N S - 2pF+a+]
ep*(p ,t) = SovarT - [1 - {s(t)} ]

The ratio ep*(p,t)/ep*(p*,t) is the asymptotic relative efficiency of

tests based on Gs N for location alternatives under Hp* with respect to
1’72

pv'r

the fully efficient test G .
Nl’NZ

Using the results above, we have

e p*+p+u+]]2

p*(P’t) _ _ (2ptot1) (2p%+a+]) [1-{S5(t)}
e (PFst)  (preprarl) (-5 1P (1-{s (0}

2p*rot]

]

Obviously {ep*(p,t)/ep*(p*,t)} = 1 when p=p*, as it should. Although one
would not anticipate that C(t) = {S(t)}u in many cases, values of o can be
used in the above expression to infer qualitative information about the effect
that the severity of censorship has on the asymptotic relative efficiencies of
these procedures. Large values of & could be used as a model for heavily
censored data.

The expression given above for ep*(p,t)/ep*(p*,t) could be used to plot
a.r.e as a function of S(t), the correct null hypothesis survival probability
at time t, for selected values of p*, p and o. For the sake of economy, how-

ever, we have only provided values of lim {e *(p,L)/ep*(p*,L)} in Table 2.2.
£
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Table 2.2

Asymptotic Relative Efficiencies:

lim
s

{epf\_(p,t)/epf‘_(p"-’,t)}

0.0 1.0 2.0 3.0 4.0
P
4.0 .000 .750 .556 438 .360
0.5 .889 .960 .816 .691 .595
a=0 1.0 .750 1.000 .938 .840 .750
2.0 .556 .938 .000 .972 .918
3.0 438 .840 .972 .000 .984
4.0 . 360 .750 .918 984 1.000
0.0 .000 .889 .750 640 .556
0.5 .960 . 980 .889 .793 .710
o =1 1.0 .889 1.000 .960 .889 816
2.0 .750 .960 .000 . 980 .938
3.0 .640 . 889 .980 .000 .988
4.0 .556 .816 .938 .988 1.000
0.0 .000 .938 .840 L7150 .673
0.5 .978 .988 .926 .852 .782
o =2 1.0 .938 1.000 .972 .918 .859
2.0 . 840 .972 .000 .984 .95t
30 .750 .918 984 .000 .9%0
4.0 673 .859 951 .990 1.000
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ITI. Test Statistics for other than Two Samples

Although tests for a significant difference between twoe homogeneous
populations of failure times are commonly used, there are many situations
which require a test for a significant difference among r+l populations, r>2,
or which call for a goodness-of-fit type test to compare the distribution of a
single sample with a hypothesized standard. The 6P procedures discussed above
can easily be generalized to situations involving any number of samples. We
will consider first their formulation when there are more than two samples; we

will then examine the one sample analogues.

ITT1.1 More Than Two Samples

The easiest way to extend the discussion of the statistics examined here
to the setting in which there are more than two samples is in the context of
linear rank statistics. Recall that the statustic GP was introduced in the
form

= 3 5101 Gy - 4

k=1 k k k
and that such a statistic is asymptotically fully efficient against time-
transformed location shifts for survival functions of the form Hp(t) =
(1+pet)-1/p for two samples of censored data. When the data are uncensored,

but the pumber of samples r+l1 > 2, the follewing result holds.

Theorem 3.1. Let Sl(L) = Hp{g(L)+6j} i=1,2,...,r+l. Suppose we wish to test

H.: 81=62=...=6

0

[+ 2saiust the global altermative H1: Bi # Gj for some pair

(i,3) with 1#j. Then tests based on 6P are asymptotically equivalent to the
locally most powerful rank test for testing HO.

The proof of Theorem 3.1 will be provided by the lemmas below.
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- r+l

Lemma 3.2. Let N= 2 Nl. Then GP may be written as a linear rank statistic
i=1
N
z CN(k)zk with
k=1
% ~ D k ~ p
ey (B = (5P - 2 {s(1)1P/my
2=1
N = ->
Proof: Suppose we have any statistic of the form 2 wk(zk - qk) and
N . k=1 N
- X . - N X “w e . - 1 = >
wish to write it in the form k% cN(k)zk. Since (nlk’ Dyps oo nrk) E zy
N =1 2=k
we can write a = (n )-1 $ z,. Thus
k k k
2=k
N N N (w ¥ _ 7
3w (B - 30 = I ow B - I { = 3z é
k=1 k=1 k=1 k 2=k J
N N2 Wy
= X w,2z,~- 2 X2 z, —
N
N £ -1
= Z zy{wy,- X w n )
gzt B E gm0
N k) >
For the last expression to equal 2 x () z, over all sets of regres-
2=1

+
sion vectors {z}2 : 2=1,2,...,N} we must have

" 2
CN(Q) =Wy - E W n

The lemma is now proved by taking W = {S(TE)}p .

Lemma 3.3. Let {c;(k); k=1,2,...,N} be as above, and let

Fp(t) =1 - Hp(t) )
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d

fp(t_) = T Fp(t), -0< <o,
£(0) = £ (1)
p v “p 77
fé{Fél(u)}
¢p(u) = - 21 y 0<u<1.
f {F
RERYO¥
Let scores {CN(k): k=1,2,...,N} be given by cN(k) = -¢p (E%T). Then tests
. . N % ->
of H, based on the linear rank statistic X ¢, (k)z, are asymptotically equi-
0 oy N y
- N
valent to the locally most powerful rank tests based on J CN(k)zk.
k=1

Proof: 1In order to prove the asymptotic equivalence of a test based on the
- T _E_ o . 2
scores cN(k) = ¢p(N+1) to that based on another set of scores cN(k) we must
show
N

1m N1 3 {cN(k) - c;(k)}z = 0.
N~ k=1

(See, for example, Randles and Wolfe, (1979), pages 287 and 319.)

It 1s not hard to show that cN(k) = c:(k) for p=0, 1.e., for the situa-
tion in which Hp(t) 1s an extreme value survival function. In what follows,
therefore, we will always dassume that p>0. A short calculation shows that

¢p(u) = ~p'1 [(l-u)p(1+p) - 1}. For uncensored dala S(Tk) = Nhl(N-k+1) and

~

nk = n-ktl. If we let

N+k+1)p

ay () = ( k (N-kH)p

N+1

2]



and K

VP
- P SieyPl o ool J(N-RELT

J=1
then we may write
T3 o=l 3 g 2
N z (k) - c . (k)}® = N z {a. (k) - b (k)}
=1 N N k=1 N N
‘l[gi(m 3 s (b, ()
=N a, (k -2 2 a,(k)b (k
k=1 Y k=1 NN
N
+ 3 fh ()%,
k=1

i i
It 1s clear thdtiaN(k)Ei 1, and a short calculation shows LhaLibN(k)iE

3+p_1. To show that each of the above three terms converges to zero, it is

thus sufficient to establish that

...1 N
lim N z aN(k) =90
N-ce k=1
and
..1 N
lim N 2 bN(k) = 0.
N k=1
First
..1 N
Lim sup N z aN(k)
N2 k=1
. N _ p [}y
= lim sup N by (H—gtl) i}-[ﬁ¥T) %
N-w k=1
~ \p‘\
N AT ¢
< 1im sup 21— (———l =0
= Nowo C ANTLD )
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N N

Since lim inf an 2 aN(k) > 0, we have that lim N-] z aN(k) exists and
N~ k=1 N k=1
equals zero.
Second,
.—1 N
lim N 3 bN(k)
N> k=1
., N Kk _apqip-l
= lm [N? 5 3 (E,_%il
N0 k=1 j=1
N
5 S S Y C LRSS
k=1
N k .
= 1im N 2 0z (1- iﬁl)p 1
N0 k=1 j=1
N
+ lim N 1 Zop 1 f(1 - %;T)p -1}
N—oo k=1

1 X -1 1 -1
If a-pPlagax + [ opT (-0 -13ax
x=0 y=0 x=0

Since Lemma 3.3 shows that tests using the score function c;(k) are
asymptotically equivalent to the approximate score function test based on
¢p(ﬁ§7)’ Theorem 3.1 1s established. We note in passing, continuing to con-
sider uncensored data, that 1t 1s possible to compute the exact score function
for the locally most powerful rank test for location alternatives for the

distribution Hp(t) when p is a positive integer. Such a test is a score

function test based on the scores
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cy(k) = E {0,001,

where U( is the kth order statistic in a random sample of N variables, cach

k)

uniformly distributed on {0,1]. In this case, we would have

S0 = B 1-p T 1{1-U 3P (1) - 1])

_1_ 4p p
"o ) B Wiy
_ 1 Iapy Do Ntp-k-2
=5 Gh GG

Since GP = c;(k)zk, wilh scores c;(k) asymptotically equivalent to

k

M=

those given by cN(k) = ~¢p(§11)’ we may rely on the large sample distribu-

M=

- >
tion theory for R = cN(k) z, to find approximate critical regions for

k=1 k

tests of H: 91:02:...=9r+1. Theorem V.2.2 (p.170) in Hdjek and Sidak (1967)

g
establishes that R, and hence Gp, may be used to construct a hypothesis test

based upon the ¥2 distribution. Specifically, if we define

— l N
c. == 3 c (k)
NTN 2N
and
P - N SO, NDE (RN,G NER - NSO}
Ro= N (Rp=Nje), Np® (Ry-Nyepd oo N SR = N o)ty

where Rl is the 1th component of ﬁ, then, one may show that under H0

= g k P ; | ;
Q= (D L2 o0 - g1 R R

is asymptotically distributed as xi. Of course, all of the above results hold

with cg(k) replaced by c;(k).
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In censored data, very little seems to be known currently about the
properties of rank statistics when there are more than two samples. Prentice
(1978) has proposed a method for modifying the usual score function tests Lo
censored data, and it is possible to compute his modified scores for the Hp

distributions. Suppose my is the number of censored observations in the

interval [Tk’ T, ..), and let z R 3=1,2,...mk, be the 0-1 regression vectors

ktl k,y

indicating sample membership of each of the censored observations. Then in
our situation and in the notation of Prentice censored data rank tests may be

based on
= g (28, + 3, Cylk
v = zk (—N( ) b(k) N( )}

where CN(k) is a score for an uncensored observation, CN(k) is a score for
m

P y ! = d ~ -
a censored observation, and b(k) JE] zkj' The scores cN(k) and CN(k)
are given by
~ k m
c (k)= [ ... f o) T {n.(I-u.)d du}
N u. < <u k j=1 J J J
1 T k
and
~ k mi
CN(k) = uj< <£ ¢(uk) jgl {nj(l-uj) . duj} ,
1 k
with
I'{Hnl(l-u)}
¢(u) = - —9f~@1-
f {H 1-
p{p( u)}
and
o) = £ {0 (1w} (1-u)”!
p P
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Straight forward calculations show that

~ 1 pt1 k n.
ey =5 - &= 1k
=t 3
and
- 1 k _Ej
C.(k) == §1~- 1 ( — )}
N p =1 nj+p

It 1s ngt hard to show that EN(k) = EN(k) for uncensored data.

Hypothesis tests may be based on the censored data rank statstics in much
the same way as for the uncensored data case. The form of ¥? tests, which are
based on the assumption of asymptotic multivariate normality for the vector 3,
is clearly specified in Prentice (1978), pp. 170-175. We will not examine
formal proofs here establishing this asymptotic normality. It is expected,
however, that such proofs can be constructed, under appropriate assumptions

regarding the censoring distributions, by appealing to the results in Hdjek

and Sidak (1967, p. 152).

III.2. One Sample Test Statistics

As mentioned earlier, one-sample goodness-of-fit 6P test procedures can
be formulated. In this situation the statistics can easily be approached {rom
the stochastic integral point of view. The argument here is similar to that
used by Woolson (1981), and Ls heuristic .n nature.

Recall that for two samples

Y](u) Yz(u) le(u) sz(u)
¥ () + Y, () ¥, (u) B ¥, (u)

@ = fswiP g P
0

Suppose now we think of N2 as being arbitrarily large, giving us complete

information ahout a survival distribution S. 1In this case
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{Yl(u) Yz(u)}/{Yl(u) + Yz(u)} - Yl(u), g(u) ~ S(u) and sz(u)/{Yz(u)} < dp(u).

Let S0 be a hypothesized distribution, and ﬁo = -fn SO. Notationally, let

0 _ 0 = . ; P . . -
N=N 1, Y(u) = Y](u), Xk = X1k and 6k =6 1k 5 ve may\wrlte G" in thus satu
ation as o

\ r
! “w“ b 1@”91
“ 1“‘ 1\:" 4; FJ. \ 4”1
[ \ ;)

o = f {8, {aN(w) - Y(w)dp, ()}

1/
[ve] s3]
= [ s, e - 5,(IP Y(w)dp,(w)
0 0
N N Xi
- - x9y3P . p
= I & {5,(X)1" - 2 J  {5,(w)}" dB,(u).
k=1 K 0K k=1 0 0
If p>0, this becomes
5 p_ 1 0,0
18, s IR R ENCSI)
while for p=0, G§ is
N N
${5, - By(XD}= I (6, - fn {S,(K)} ]
k=1 k=1

. ) .
The statistics G% can be used to formulate a family of one-sample test statis-
tics which include a one-sample version of the logrank statistic a4s a special

case. Approximate critical values for these tests can be found by appealing

te the following theorem, which follows from the results in Gill.

Theorem 3.2.1. Assume that the mild regularity conditions hold which are

1

-%
outlined in Section 4.2 of Gill. Then under HO: S=SO, the statistic N 1&; 18

asymptotically normally distributed with mean 0 and variance

2ptl Cu)dp,(u).

O 8

{So(u)}an(u) dBO(u) = g {So(u)}
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(b) The asymptotic variance in part {a) may be consistently estimated by

[ 88,037 v(u) N7 dpy(u)
0

N .

= ¥l 3 et [1-{so(xg)}2pl if p>0,
k=1
N

< -N! 3 g so(xg), if p=0.
k=1

It 1s 1interesting to note that in uncensored data (C(u)z1), Theorem
3.2.1(a) implies that the statistic

XO
(o 3 1 (5,00)1° - 1 15,017 dfy )]

has asymptotically a standard normal distribution. Observe also from Theorem
3.2.1 that the one-sample censored data legrank statistic
N N . N

0,,-1,2 0
(3 6, - &0 {S,(X)} 17/ 2 2n {S.(X)
k=1 k=1 O K k=t 0 K

}-l

has asymptotically a ¥? distribution with one degree of freedem. In this

N N
- : . -1
setting, Z Gi 1s the observed number of deaths and Z In {SO(Xg)} 1S
1=1 k=1
the conditionally expected number of deaths, given the Xg.

IV. Monte Carlo Simulations

The asymptotic distributions of the newly proposed test statistics, Gp,
p>0, have been used in the construction of hypothesis tests of a given size.

Therefore, Monte Carlo simulations were used to confirm that the true size of
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each of these test procedures, in small or moderate sample sizes and under
varying amounts of censorship, was indeed accurately approximated by the
nominal significance level based upon this asymptotic distribution theory.
The simulations were also used to confirm, in uncensored data, the analytical
conclusions reached earlier concerning the role of p in determining power. It
is those results from the evaluation of power which were particularly inter-

esting and hence will be given in the remainder of this section.

-

IV.1. Simulation Procedure

In the simulations to evaluate power, four distinct configurations of
survival distributions were inspected, with each configuration including two
survival distributions used to generate two samples of failure times. Atten-
tion 1n this simulation study was restricted to the two-sample problem since
this 1s where the greatest interest appears to be. If, as earlier, we let
Sp(t,ﬂ) = Hp{g(t)+0} denote a time-transformed location shift of II_(t), then
the four configurations considered were Spl(eli, 021) = {5 i(t,Gli), S i(L,ezl)}
for i=1,2,3,4. 1In turn, the four test statistics evaluated were Gpi, i=1,2,3,4.
Since 1t was of particular interest to obtain 1in the class of configurations
{sp(el, 62); p>0} a small sample comparison of the behavior of the logrank
and Wilcoxon test statistics (1.e., G0 and 61 respectively) with that of other
6P statistics, the values of P, chosen were 0, %, 1 and 2.

Let, for example, the time transformation g(t) = £nt. Then the resulting
survival distributions are Sp(t,O) = (1+peet)-l/p if p>0 while So(t,a) =
exp(-eet). Thus, using the transformation [U-p-lllpee when p>0, and —[EnU]/ee
when p=0, the appropriate independent survival random variables were obtained

by transforming independent uniformly distributed variates, U, produced with a

linear congruential random number generator (Knuth, 1969).
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Since the main purpose was to investigate in small and moderate samples
the performance of P procedures derived using asymptet:ic properties, sample

sizes N]=N2=20 and N =N2=50 were cons:dered.

1

Five hundred pairs of samples were generated for each selected configu-
ration of survival distributions and for each sample size. The proportions of
samples in which each one-sided test procedure under consideration rejected HO

at the a=0.01 and o=0.05 significance levels were calculated.

IV.2 Power Results

Results of the Monte Carlo study pertaining to the evaluation of power of
the set of procedures {Gp: p =0, % 1, 2} are presented in Table 4.1,
Figure 4.1 presents the plots of the hazard functions corresponding to the
four survival configurations ainspected in the tables. The table reveals that
the small and moderate sample relative power of these four test procedures is
entirely consistent with their large sample a.r.e. given in Table 2.1. 1In the
time-transformed extreme value location alternative (configuration 1), and in
the time-transformed logistic location alternative (configuration III),
Go(i.e., the logrank) has a.r.e. 1 and 0.75 respectively while G1(1.e., the
Wilcoxon) has a.r.e. 0.75 and 1 respectively. This clear superiority of GO
over G1 i 1 and of G1 over G0 in TIT 1s equally apparent in small samples.
In addition, Table 4.1 reveals in smaller samples that the loss 1n power
obtained by using G!2 rather than G1 in TIT 1s less than that obtained by using
G% rather than GO in I, and secondly that G;§ 1s more powerful than 62 in IIT.
Both of these observations also conform to what earlier a.r.e. results indi-

cated. Again, in configuration T1 we find agreement between our small sample

: 1
results and a.r.e. calculations. Specifically G* is more powerful than G
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which in turn is more powerful than GO. Finally, we observe small sample
confirmation of the facts that GO and G2 have relatively low power 1in con-

figurations IV and I respectively.

The research of the first author was supported by a grant from the
National Science Foundation; the second author received support from the

National Institutes of Health for his work.
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Figure 4.1.
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Table 4.1

Monte Carlo Estimates of the Power !
of the Gp(p =0, %, 1, 2) One Sided Test Procedures

of HO: S1 = 82 vs. HA: S1 < 82 (500 Simulations)

33

S1 52
0 Level
(p,e (p,e %) N,=N, of Test ¢ G 6! G
20 .01 .386 .338 L2492 204
.05 .668 .620 578 .456
I. (0,2) (0,1)
50 .01 .858 .800 134 .610
.05 .954 .938 894 .812
20 .01 .308 .320 .290 .258
.05 548 .576 564 516
TI. (%,2.25} (%,1)
50 .01 .646 .694 .682 604
” .05 844 .878 .868 .830
20 .01 .206 222 .234 L204
.05 A 470 .488 LAT70
I1r. (1,2.5) (1,1)
50 .01 .534 .616 .624 .598
.05 754 .834 .864 828
20 .01 .148 .186 .202 .206
.05 .336 402 416 426
V. (2,3) (2,1)
50 .01 .284 406 470 .516
.05 534 662 .722 742
% O] "1/
Each survival distribution is of the form Sp(t,Ol) = (l+pe 't) P
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