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Abstract
This report contains the results of investigations into the
operating characteristics of various nonparamerric test procedures
used when examining censored survival data. The procedures are all
two~-sample test statistics, and include the Gehan-Wilcoxon, Log-Rank,
and some new Smirnov-type statistics recently developed. These Smirnov-
type statistics will be referred to as the Generalized Smirmov and

K% . procedures. (N, and N, are the two sample sizes, and a > 0
Ll,hz 1 2 -

is a free parameter.)
Let S1 and S2 denote two survival distributions. When testing
HO: Sl = SZ’ theoretical considerations and Monte Carlo results

support the conclusion that for 0 < a <1, the K; N procedures have excellent
172

sensitivity to detect crossing hazards departures from HO in which substantial
survival diffesrences exist later, but not earlier in time. Furthermore,

Kg N procedures for o > 2 have excellent sensitivity to detect

1272
acceleration alternatives, that is, large early survival differences
which disappear quickly in time. The Generalized Smirmov procedure

turns out to be more versatile than the Kg N procedures, providing
1°72

good power generally against any of the crossing hazards alternatives
examined. The Gehan-Wilcoxon and Log-~Rank turn out to have relatively

low power against most of the crossing hazards alternatives examined.
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0. Introduction

This report transmits all the resulcts obtained by Thomas R. Fleming
of the Mayo Clinic, Rochester, Minnesota and David P, Harrington of
the University of Virginia, Charlottesville, Virginia on the project
for Ebon Research Systems described in FDA Task Order Number 5. The
primary purpose of the project was to evaluate the operating characteristics

f some newly proposed test statistics useful in comparing two samples

of censored surviwval data, and to compare these characteristics with
those of certain statistics which have been in common use. The investigation
was for the most part limited to underlying survival distributions with
crossing hazard functions, i.e., survival distributions for which
substantial differences evident at one point in time fail to exist
at other points in time.

The outline of this report is as follows. Part I provides some
general background information essential for understanding the specific
numerical work done on this project, The new Smirnov-type test
statistics we examined are defined in Part I, and the important known results
about these_statistics are sumnarized there. Part II describes the specific
configurations of censoring and survival distributions that were
used to produce Monte Carlo simulations of two~sample censored
survival data; these simulations were used to evaluate the size and
power of hypothesis tests based on the statistics studied. Part III
contains a summary of the results of the simulations. Recommendations
are given in Part III on how to pick the most semsitive test statistie,

from among those considered, for detecting an anticipated difference



in two underlying survival distributiens. Complete tables of all
the simulation results can be found in Part IV. Parts V and VI

contain references and an appendix, respectively.




I. Background Information

A detailed summary of the theoretical basis for much of the work
done on this project can be found in the Preliminary Report submitted to
Ebon., For the sake of brevity, we will only restate here the information
from the Preliminary Report which is essential to understanding the results
of the project.

A. Crossing Hazards Alternatives.

Suppose Xll’ XlZ’ eeey XlNl and XZl’ X22, Prea X2N2 are two independent

samples of failure time random variables. These variables usually
denote the time to a prespecified event (e.g., time to tumor progression)
for each experimental unit in a study. In most survival studies,

the failure time of each experimental unit may be censored, so let

, YlN ) and (YZL’ Y22, vy Y2N ) denote the censoring

(Y. Yohs oun
117 12 1 2

times of the experimental units. For each experimental unit in the

study, the observed data are usually Tij = nin (Xija Yij) and

Gij = I[Xij < Yij]’ where I[A] = 1 if the event A occurs, and 0 otherwise;

we will take this always to be the case. For simplicity, we will

assume Xij and Yij are statistically independent, although all results

obtained continue to hold under the less stringent assumption detailed
in Fleming and Harrington (1979),

Let Si(t) = P(Xij > t), i=1,2; the most commonly encountered
hypothesis test in the analysis of failure time data is HO: Sl(t) = Sz(t)
for all t. 1If the alternative of interest is Hy: Sl(t) < Sz(t) over

some interval in t, the altermative is called one-sided. The general




alternative Hl: Sl(t) # Sz(t) for some values of t is called

two sided. The alternative hypotheses to the basic null hypothesis are
clearly very complicated composite hypotheses. It is not realistic
to expect that a single testing procedure would be adequately powerful
against all alternatives of interest.

A particular type of alternative that may arise is called the

"erossing hazards' alternative. If ui(t) = - %Eﬁn Si(t), i=1,2,

then vi(t) is called the hazard rate or intensity function of the

=

survival distribution Si(t). Bi(t) = f vi(s)ds is called the cumulative
0

hazard function, and it is well known that Si(t) = expl[- Bi(t)]. Now,
when two underlying survival distributlons have hazard functioms which
cross at some point, then the survival curves will exhibit differences
over a time interval, but those differences may disappear outside

that interval. For example, at a fixed walue t_ it is clearly possible

0

that one might have Bl(t = Bz(to) (and hence Sl(to) = SZ(tO)) even

0’
though Sl(t) >> Bz(t) (and hence Sl(t) < Sz(t)) at some L < ty.
This will happen 1if the hazard functions cross at a point prior to time

t, in such a way that the areas bounded by each of hazard functions

a
and the time axis between t = 0 and ¢ = t, are equal. This particular
type of departure from the null hypothesis in which substantial early
survival differences disappear later in time has been called the
"acceleration alternative”. The preliminary report for this project

contains on page 2 a sketch of crossing hazard functions and the

associated survival functions Si(t).



The crossing hazards phenomenon can often go undetected by test
statistics that depend upon cumulative differences in the survival
functions or, more specifically, cumulative differences in the hazard
functions. The Gehan-Wilcoxon and the Log-Rank statistics are of
this type., It is reasonable to expect, though, that procedures based
upon maxinum observed differences (perhaps weighted in some fashion)
in empirical survival functions or empirical cumulative hazard rates
might be more likely to detect crossing hazards alternatives to the
null hypothesis HO: Sl(t) = Sz(t) for all t. Such procedures are
usually called Kolmogorov-Smirnov-type (or just Smirnov~type) procedures
because of the well known goodness—of-fit test based on the maximum
observed difference between empirical and hypothesized cumulative
distribution functions. Two kinds of Smirnov-type procedures have
been proposed in the manuscripts by Fleming and Harrington (1979)
and Fleming, O'Fallon, O'Brien and Harrington (1979). (These manuscripts
can’be found in the appendixes of the Preliminary Report.) It is
the sensitivity of these procedures that was investigated in this
project. Specific definitions and properties of these test statistics
are given in the next subsection.

B. The New Smirnov-Type Procedures.

The Preliminary Report gave a detailed account of these new
Smirnov type procedures, including both a theoretical and
heuristic discussion. We will limit ourselves here to careful
definitions of the procedures, and a complete statement of the
asymptotic distribution theory used to obtain significance levels of

the test statistics.



The asymptotic distribution theory of the Smirnov-type statistics
provides the most natural way to classify the statistiecs. The procedures
described in both Fleming et.al. (1979) and Fleming and Harrington (1979)
are based on suprema of appropriately scaled empirical processes. The
processes used in the first wanuscript have asymptotic distributions
which have the variance~covariance structure of a time transformation
of a Brownian bridge, while those used in the second paper have
asymptotic distrabutions of time transformations of a Brownian motion.

We will discuss the Brownian bridge type procedure first.

1, Brownian Bridge Type Procedure,

Let Xij’ Yi' and Tij be the failure time, censoring time, and
observed random variables, respectively, that were discussed earlier.
The following notation was established in the Preliminary Report,

but we review it here for the sake of completeness. Let:

P(X,. > t)

5; (t) 1j

P(Y.. > t)

Ci(t) i]

ﬂi(t) = P(Tij > t)

d

vi(t) - Ezin Si(t)
d

¥ (0 = -ty €00
t

Bi(t) = f Ui(s)ds
0
t

a, () = [ v, (s)ds
0

Ni(t) = number of experimental units in sample i still under

observation just prior to time t (i.e., the sizeof the

risk set in sample 1 at time t)



Di(t) = number of deaths observed in sample i at

time t

8., = I[X.. <Y. ] (r[A] is the usual indicator random
ij ij - 713

variable of the event 4.)

o . -1 .
B, () = .Z, [Ni (Tij)] dij' (This is the
JeT,.<t
ij-
Nelson empirical cumulative hazard rate estimator
of Bi(t) for untied data.)
~ _ _1 ~
ai(t) = .X [Ni(Tij)] (l—dij). (ui(t) is the
j:T,.<t
ij=
Nelson empirical estimator of ai(t).)
S - - 8. (0)]
$;(t) = exp [~ B,(t)]
C.(t) = exp [ o, ()]

Observe that we have allowed the censoring distributions C1 and 02 to

differ from one another.

We define the empirical process Y (t) to be
No,N,
N8 o) 5E (e !
t s-) N,C,.(s- 33 .
~ A 2 ~
v () =305 (0 + 5,1 [ | - a(8, (-8, ().
172 0 LNlCl(s—) + N2C2(sd)

(Recall that Nl and N2 are the two sample sizes; we always take

f(s-) = lim £(a) for any function £(s).)
ats

The Preliminary Report discusses why we believe that a test

statistlc based on sup YN N (t) should provide a particularly sensitive
172



test for detecting one- or two-sided crossing hazards

type alternatives in situations where the underlying survival distributions
exhibit their most substantial differences in the middle portion of the
survival curves; i.e., at those values of t for which Si(t) = ,5, This
conjecture is supported by the results summarized and tabulated in
Sections III and IV. The calculation of approximate P-values using

sup YN . (t) is made possible by the following theorem, the proof

t 172
of which may be found outlined in Fleming, et.al. In the statement

of the theorem,":%" refers to weak convergence in D[0,7], the space

of functions on an interval [0,t] with discontinuities of at most
the first kind.

Theorem. Let 0<t<t, where t is such that wi(1)>0, i=1,2,
and let W= {W(t): t>0} be a standard Wiener process. Let S(t) be

the common but unspecified wvalue of Si(t), i=1,2, under.HO, and take

ws(t) to be the time transformed Brownian bridge defined by

ws(t) = W(1-5(t)) - [1-S(£)]w(l).

Then, under HO,

{YNl’N2(t): Ogectharlly = {Wo(t): Ogestl

as N.,N

L in such a way that lim Nl/NZ = A, 0<k<wm,

vam

The above weak convergence result implies that

lim P {_ sup Yy (t) > a = Pr-sup wg(t) > a.L

Ny oN e L?ftgr 1’72 O<t<r J



The specific formula used to calculate the probability on the

right hand side of the above equation, along with the computational

algorithm used to calculate sup Yy N {t), can be found in Section 3.1.3

1°72
of the Preliminary Report,

2. Brownian Motion Type Procedure.

The notation established in the previous subsection holds here as

well. 1In additiom, we will need the following notation:
p— ~ ~ -]
N.C., (s- - &
Hy oy (8) = | i) NG 36N + (5, (-0
Ny t,NlCl(s—) FNC sy | 2D 2"

~

where o is a fixed nonnegative parameter. (Corresponding to each value

of a will be a unique test procedure).
We define the empirical process B> (t) to be
NI’NZ

t - ~
BX () =] (s) d(B,(s) - B,(s)),
Moo 0 MY 1 2

and we let B

NN denote the stochastic process {Bg (t): O<t<t}.

1*™2 1°N2
The following asymptotic result is essential in formulating a Smirnov-type

procedure based upon the process B .
NysNp

Theorem. Let S(s) be the common value of Si(s), i=1,2, under HO,

and let {W(t), t>0} be a standard Brownian motion.

Then, under HO’

t =
Bg o= 82z(8%(e) = | (5¢s)) ¥ (vis)) Su(s) : O<t<r},
1’2 0

where 1 is such that ﬂl(1)>0, i=1,2, and Ny, N> so that N1/N2+A, Q<A<

1f (Ga(t))z is a consistent estimator of ca(t) = Var B (t),

then the above result implies that (ca(T))ul B% N (t), O<tsT, has,
1'72




for large sample sizes Nl and NZ’ approximately the distribution of a
time transformed standard Brownian motion on [0,1]. Therefore, we have,

for any value a, that

-

lim P (aa(r))nll sup B; N (g) > a_]
N]_,NZ-*m L?ftgr 1*72

A Kolmogorov-Smirnov type procedure can therefore be based on the observed

= P r_sup W{u) >a b
[?fugl

- —

- -1 a
2 (o (1)) sup B
2 « O<tgt Nl’NZ

value of Kg N (t), with significance levels
1’

computed according to the right hand side of the above equation. For
reasons explained in the Preliminary Report, the particular consistent
variance parameter estimate we have chosen is

T

(6 ()7 = I [§,C (s-) + NyCy(sm)1 7T G5([8; (s)1% + 5,519}

. R ~1. - . -1.
{Nzcz(s—)[Sl(s—)]dBl(s) + NlCl(s-)[Sz(s-)] dB ,(s).}

The complexity of the statistic Kg N APpears at first glance
1°72

a bit overwhelming. Each of its component pieces, however, can be
easily motivated and such explanations can be found in pages 16-18 of the
Preliminary Report. To understand the numerical results found in
Sections IIT and IV it is essential only to be aware of the role a plays.
e is a free parameter which is constrained to be nonnegative. If

a>l, K; N tends to emphasize nonzero values of the difference
1’72
Sz(u) - Sl(u) for those values u at which Si(u) T 1:; such differences

are often called early differences. The greater the value of a,
the more emphasis placed on early differences. Such an emphasis, however,

will always cause a corresponding de-emphasis of differences observed at




other time points, and the larger the value of g, the more K; N will
12

discount differences in SZ(u) - sl(u) at points where Si(u) <<l, i=1,2,

Procedures based on small values of a<l, on the other hand, emphasize changes
in the difference éz(u) - §1(u) which oeccur when Si(u) T 0, i=1,2,
i.e., differences which are said to occur later in time.

The qualitative role of o is supported by both the asymptotic
theory and heuristic explanations of the test statistic (see Preliminary
Report). Until this project, however, we had very little intuition
about how large or small o must be to provide acceptable power against
specific instances of crossing hazards alternatives. Although we
are still a long way from a complete quantitative understanding of
the role of o, the results tabulated in the next two sections provide
a very good beginning at establishing guidelines for a judicious choice
of «.

Ve feel it is important to emphasize a point here regarding the
choice of a. The parameter a is a component of the statistic K;l,NZ
that should be specified by a researcher in advance of seeing the
data. If a data analyst chooses to use Kgl’No and feels that it is
of utnost importance to detect differences in~underlying survival
distributions which occur early in time, then o should be chosen as
large as is prudent (a = 2 is nearly always large enough.) To examine
the data first, however, before choosing o would be irresponsible
"data dredging', since it is clear that with a clever choice of «,
very many data sets can be shown to contain statistically significant

differences between underlying survival distributions.

11



Both the Brownian motion and the Brownian bridge based procedures
are clearly complex statistics. The asymptotic distribution theory
only tells us how to construct hypothesis tests of a given size; analytic
power calculations seem nearly impossible at this stage. Monte Carlo
simulations seem to be the only manageable means of determining the
power of these procedures in some representative situations. Furthermore,
the simulations provide a method to determine if the true size of
these test procedures in small and moderate samples is accurately
approximatad by the nominal significance level based upon the appropriate
asymptotic distribution theory. The configurations of censoring and
survival distributions used to produce the simulations are briefly
described in the next section, and specified in detall in Section IV.
All random variables generated in the configurations were produced
by transforming unaform random variables generated with the linear

congruential method (Knuth, 1969).

12
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The exact formulas for the hazard rates of the survival distributions
and for the censoring distribution functions employed in generating the
censored survival data are given in Section IV with the tabulated
results. We feel it is important, however, to explain the general
strategy used in choosing the specific distributions, and to give
a summary of the kinds of distributions chosen. The reader will
then be able to judge Section III, The Qualitative Summary of the
Results, more critically.

We used seventeen distinct configurations of survival and censoring
distributions in all, with each configuration including two survival
distributions wused to generate the two independent samples of failure
times, and a single censoring distribution used to generate the
two independent samples of censoring times. All censoring and survival
random variables were generated independently, with each observaticn
time taken to be the minimum of a survival and a censoring random variable;

that is, T,. = min (X.., Y..) (as indicated earlier). The sample sizes
i3 ij” 43

8, = 8§

N, and N, of the two independent samples used for testing HO: 1 2

1 2
were taken to be equal for a given simulation. For each configuration
two distinct values of the common sample size Ni were inspected. Five
hundred pairs of samples (one thousand pairs of samples when evaluating
size) were generated for each selected configuration of survival
and censoring distributions for the two populations and for each
sample size. The proportions of sanples in which each one-sided

test preocedure under consideration rejected H, at the ¢ = 0.0l and

0

13




a = 0.05 significance levels were calculated for each configuration
at each sample size.

In all except two cases, the survival distributions chosen possessed
plecewise constant hazard rates, and thus were piecewise exponential
distributions. The two exceptions were configurations 8 and 12
which contained one or more Weibull survival distributions with a
shape parameter different from one. Semi-logarithmic plots of the
survival functions can be found in Section IV with the tabled results.

The configurations chosen fell into three main categories:

1. The null hypothesis class of distributions, i.e., configurations
in which Sl = 52.

2. Representative classes of either commonly arising crossing
hazards alternatives, or proportional hazards altermatives.

3. Distributions which could reasonably be considered to have
generated the FDA 165-174 or 165-150 mouse study data. ' These
configurations enabled us to evaluate the power of the Smirnov-type
procedures as well as the power of the Gehan-Wilcoxon and the Log-Rank
procedures in situations that were of particular interest to the FDA,
We will now summarize the kinds of configurations used in each of the
above categories.

0f the seventeen configurations used, the first six fell into
category 1. In configurations 1, 3 and 5, equal exponential survival
distributions with constant hazard rates A = 2,1 and 0.5 respectively

were used with a censoring distribution that produced only terminal

censoring, that is, Yij = T, a constant, for all i and j. Configurations

14




2, 4 and 6 were generated using the same three exponential survival
distributions listed above. Here, however, the censoring distribution
was chosen to be a truncated uniform distribution (see Figure 4.2)
which was selected to replicate as closely as possible the type of
censoring dastribution that was observed in the time~to-RE-tumor

data of FDA study 165-174., With this approach, we were able to inspect
the true size of the various test procedures in data which was lightly,
moderately or heavily censored; specifically, the expected percents
censored in configurations 1 through 6 were 13%, 25%, 37%, 47%, 617

and 687 respectively, 1In category 1, configuration 6 most nearly
approximates the actual configuration seen in FDA study 165-174, and
hence enables us to inspect the true sizes of the procedures in the
actual setting in which we are currently most interested. 1In each

of the first six configurations, simulations were performed separately,

)

first for N, = N2 = 20, and then for N

1 = N2 = 50, since the intent

1
was to inspect in small and moderate sample sizes the behavior of
procedures whose significance levels were determined using appropriate
asymptotic results,

Configurations 7 through 12 fell into category 2. Each of these
configurations had the truncated uniform censoring distribution
identical to that emploved in configurations 2, 4 and 6. Configuration
7 presents a 'proportional hazards" or "Lehmann" alternative. Specifically,
two exponential distributions representing a doubling in median survival
were generated. This configuration was chosen to enable us to

compare the behavior of the Smirnov-type procedures to that of the

Log-Rank in the situation in which the latter test procedure would be expected

15



te have its greatest relative sensitivity. (see Peteo & Feto (1972)).
Configurarions 8, 9 and 12 present departures from the null
hypothesis in which substantial differences existing between survival
distributions later in time fail to exist early in time. By inspecting
the formulas for the Gehan-Wilcoxon and Log-Rank test statistics,
as we will do in Part IIT, it is quite clear that the Gehan-'ilcoxon
procedure will have unacceptable power and the Log-Rank procedure
generally marginally acceptable power to detect this type of crossing
hazards alternative. Configuration 8 used two Weibull distributions
in which Sz(t) >> Sl(t) for large t even though Sz(t) is slightly
less than Sl(t) for £t 2 0. This type of departure from HG could be
expected to arise when one is comparing the survival of aggressively
treated patients with coronary heart disé;se to that of patients
treated more conservatively. Configuration 9, comprised of two
plecewise exponential distributions, is very sinilar in.form to
configuration 8 except for the fact that Sl(t) = Sz(t) for small t,
Thus, configuration 9 wzll enable us to determine whether any additional
power the Smirnov-type procedures may have over the Log-Rank procedure
in configuration 8 will still exist in a situation in which Sl(t) f Sz(t)
for all t and in which the hazard functions technically don't cross.
Configuration 12 is again similar to configuration 8. However it
uses two Weibull distributions, one with an increasing and one with

a decreasing hazard function, having enormous survival differences

Jater in time.

16




Configurations 10 and 11 both present crossing hazards alternatives
to the null hypothesis where all survival distributions are piecewise
exponential., In configuration 10, large differences exist between
survival curves over the middle range of the survival distribution
although Sl = 52 for both small t and large t. Configuration 1l
presents the situation in which large early differences between
survival curves disappear somewhat later in time, These types of
departures from the null hypothesis, sometimes referred to as "acceleration
alternatives", are commonly observed when one is comparing survival
or time to progression of disease curves for two chemotherapeutic
or radiation therapy anti-tumor regimens in perspectively randonized
clinical trials, From the formulation of their test statistics, we
would anticipate the Log-Rank procedure to have unacceptable sensitivity
to these departures, while the Gehan-Wilcoxon procedure should have
marginally acceptable power against configuration 11. Here, as
throughout configurations 1 through 12, we inspected both small and
moderate sample size behavior, that 1s, we generated sample sizes
Nl = Nz = 20, and then Nl = N2 = 30,

The last five configurations (13 through 17) are members of category
3. The data from mouse study 165~174 was used to construct survival
and censoring distributions in 13, 14 and 15. The time scale was
taken so that 1 unit = 180 weeks. The censoring pattern was essentially
the same as the one used in configurations 2, 4, 6 and 7 through 12.

Specifically, the censorship distribution was a truncated uniform

distribution having a lag time of 60 weeks and complete censorship

17



at 111 weeks (see Figure 4.15). This distribution was chosen since
it was found toc very nearly approximate the Kaplan-Meier estimates
of the censoring distributions for both the female control group 1
and the female high dose Red dye #40 group in the time-to-RE-tumor
data for study 165-174. Configuration 13 used piecewise exponential suyrvival
models to approximate the actual departure from the null hypothesis
that was observed in the female mice from study 165-174 when Kaplan-Meier
astimates of time-to~RE-tumor curves were generated for the pooled
control groups and then for the low dose Red dye #40 group (see Figure
4,16). The maximum difference of 0.12 between these curves occurs
at t = 1,08, Configuration 14 used similar piecewise exponential
survival models, but enlarged the maximum difference at t = 1.08
to 0.20. In configuration 15, this difference was enlarged still
further to a difference of 0.27. The survival curves in 15 were each
within reasconable confidence bands which could be const;ucted about
the corresponding Kaplan-Meier estimated time-to-RE-tumor curves
given in Figure 4.16., The sequence of configurations 13 through
15 allows us to examine the dependence of the power functioms of
Smirnov-type, Gehan-Wilcoxon and Log-Rank procedures on the degree
of difference in survival distributions for crossing hazards alternatives
of this type.

Configurations 16 and 17 were modeled after the 165~150 mouse
study. The censorship distribution was a truncated uniform distribution

which would have closely approximated the actual censoring discributions

in the control, low dose and medium dose groups of female mice if no

18




interim sacrifice had been performed (see Figure 4.17). Configuration
16 used piecewise exponential survival curves to approximate the actual
departure from the null hypothesis that was observed in the female
mice from study 165-150 when Kaplan~Meier estimates of time-to—-RE-tumor
curves were generated for the control group and then for the pooled
low, medium and high dose Red dye #40 groups (see Figure 4.18). The
maximum difference of 0.11 between the curves occurs at t = 0.91.
Configuration 17 enlarged the observed maximum difference of 0,11

to 0.17 at t = 0.9] to examine, as before, the change in power

caused by a change in the true difference between the survival curves.

In mouse study 165-150, 50 animals of each sex were entered in each dosage
group. Twice that number were entered in study 165-174., Hence in configurations
13 through 17, simulations were performed separately, first for Nl = N2 = 50, and
then for N1 = NZ = 100. This, for example, enables power calculations for the
situations in study 165-150 in which pooling by sex was not and was done respectively.

It should be noted that the intent in configurations 13 through
17 of our Monte Carlo investigation was not to prove or disprove
that substantial evidence exists to support a hypothesis concerning
the carcinogenicity of Red dye #40. Rather, our intent was selely
to evaluate for future experiments the general behavior of certain
test procedures. Specificallyv,we wanted to compare their ability
to detect certain meaningful types of crossing hazards alternatives
to the null hypothesis that may have truly existed in the Red dye #40

mouse experiments.
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ITII. Qualitative Summarv of the Results

A. Gehan~Wilcoxon and Log-Rank Test Statistics

Before discussing the results of the Monte Carlo simulations,
it will be useful to briefly review the general form of the Gehan-
Wilcoxon and Log-Rank two sample test statistics, For simplicity

we will momentarily assume no ties exist in the data. Previcus authors,

‘ including Prentice and Marek (1979), have ghserved that the Log-Rank test

statistic can be formulated as

(027" 0%
R Nl(Tj) + NZ(Tj)

‘ i

) - } (4.1)

it~

{p. (T
1 1]

!

where {Tj: i=1l, ...,d} is the set of d distinct observed death

times in the pooled sample, and ¢ is an appropriate variance estimator.

LR
Furthermore, the Gehan~Wilcoxon test statistic can be formulated as
Nl(Ti)

}o(4.2)
Nl(Tj) + Nz(Tj)

-
@) .Z

& {Nl(Tj) + Nz(Tj)} {Dl(Tj) -

~

where again ¢ is an appropriate variance estimator.

GW
Inspection of (4.1) reveals that che Log-Rank test statistic

can essentially be viewed as a weighted difference, where the difference

is between the "total observed deaths” in one sample and that sample's

"total expected deaths given HO holds". Now, on the average the

observed number of deaths in sample i will exceed the expected

. number of deaths under HO in any interval in which
population i has the greater hazard function. The reverse will hold
over intervals in which population i has the smaller hazard. Therefore,

one would not anticipate that the Log-Rank test will be particularly
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sensitive to crossing hazards alternatives., For similar reasons, inspection
of (4.2) leads one to speculate that the Gehan-Wilcoxon test procedure
also will lack sensitivity to that type of departure from HO.

Interestingly, because the Gehan-Wilcoxon statistic differs from the
Log-Rank statistic primarily because of its weighting factor
{Nl(Tj) + Nz(Tj)} (see (4.2)), we anticipate the Gehan-Wilcoxon
procedure will have greater sensitivity than the Log-Rank procedure

to departures from H_, which are most evident early in time. However,

0
the Log-Rank will have the greater sensitivity to those differences
most evident later in time.

B. Results of Category 1 Simulations: Size

Results of simulations for all configurations 1 through 17 appear
in Tables 4.1 through 4.17 respectively. 1In each configuration
the behavior of eight one-sided test procedures were inspected;
specifically, the Smirnov-type procedure based upon an ﬁnderlying
Brownian bridge process (hereafter exclusively referred to as the
Generalized Smirnov procedure), the Smirnov-type procedures based
upon an underlying Brownian motion process and corresponding to

o = 0,1,2,3 and 4 (procedures hereafter referred to as Kg N procedures),
1772

and finally the Gehan-Wilcoxon and Log~Rank procedures,

Results pertaining to size of these procedures are presented
in Tables 4.1 through 4.6 respectively. Overall, the Generalized
Smirnov procedure comes very close to the nominal 0.0l level at both
Ni = 20 and Ni = 50, but is slightly couservative at the 0.05 nominal

level. In comparison the Kg . procedures for ¢ = 1,2,3 and 4
172
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are quite comservative at Ni = 20, but comparable in size to the
Generallzed Smirnov procedure in samples of size Ni = 50, Interestingly,

the Kg procedure is very conservative at both N, = 20 and N, = 50,
Ll’NZ i i

much like the small sample behavior of classical Kolmogorov=Smirnov
statistics in uncensored data.

C. Results of Category 2 Simulationg:

General Crossing Hazards or Proportional Hazards Altermatives.

In Table 4.7 it is clear that the Log-Rank test procedure is, as
we would anticipate,most sensitive in detecting proportional hazard
alternatives, However, its gain in power is not large. For example,
when Ni = 50 and the nominal level is 0.05, the power of the Log-Rank

is 0.87, of the K% is 0.83, of the Gehan-Wilcoxon is 0.82 and of

2 l,}IZ

a
the Generalized Smirnov is 0.80. Interestingly, of all the KHl’NZ procedures

considered, Ké . is the most powerful against the Lehmann alternative,
1°72

Tables 4.8, 4.9 and 4.12 present results for departures from the
null hypothesis in which substantial differences existing between
survival distributions later in time £fail to exist early in time.

As we anticipated, the Log-Rank has marginally acceptable power against
these alternatives, far better than the unacceptable power of the Gehan-
Wilcoxon procedure. In turn, however, the Generalized Smirnov procedure

has power clearly better than that of the Log-Rank. The power of the

K; N procedures to detect these later differences depends dramatically
172

upon the choice of a. The procedure based upon Kg N is the most sensitive
1’72
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of all eight test procedures in each of the three configurations.

Possibly the most interesting of the three configurations is #9 since

here Sz(t) > Sl(t) for all t. When N, = 50 and looking at the 0.05

i
level, the power of the Gehan-Wilcoxon is only 0.25, compared to

0.69 for the Log-Rank and 0.85 for the Generalized Smirmov, a marked
reversal of the relative power of the latter two procedures from that

which existed in the proportional hazards setting. The Kg N K§ N
l’

2 1'72

and K§ y_ Procedures had powers of 0.95, 0,35, and 0.10 respectively,
1°72

providing clear evidence of the powerful effect of the free parameter a.
The Generalized Smirnov procedure is unquestionably the most

sensitive procedure in detecting large differences between survival

curves over the middle range of the survival distribution, as shown

in Table 4.10. When an "acceleration alternative" exists, that is,

when large early differences between survival distributions disappear

later in time as in Figure 4.11, the Generalized Smirnov procedure

again is considerably more semnsitive than both the Gehan-Wilcoxon

and Log~Rank procedures. The powers of these three procedures

for Ni = 50 at the 0.05 level are 0.82, 0.52,and 0.21 respectively.
2

and KN

again providing clear evidence of the dramatic effect the parameter a

Further, Kg had powers of 0.12 and 0.84 respectively,
l’N

N

2 1’72

can have in the ability of Kg N o detect crossing hazards departures
1°72

o

Nl,N2

from H,. The power of K to detect "acceleration alternatives”

0

is substantially increased by choosing larger o values, as we concluded
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earlier from theoretical consideratiouns.

D. Results of Categorv 3 Simulations:

Acceleration Alternatives in FDA Mouse Studies

Results of configurations 13 through 15, mecdeled after data from
mouse study 165-174, and results of configurations 16 and 17, modeled
after data from mouse study 165-150, are presented in Tables 4.13 through
4,17,
These results clearly confirm earlier conclusions, based upon
theoretical considerations, that the Log~Rank procedure has unacceptable
sensitivity and the Gehan-Wilcoxon only marginally adequate sensitivity
to detect "acceleration alternatives'. In fact the power of the
Gehan-Wilcoxon becomes considerably less acceptable relative to the
power of the Generalized Smirnov or K§1’N2 (for o« = 2,3 or 4) procedures
as the magnitude of the acceleration alternative increases.
When dealing with samples of size 100 (as would be the case in study 165-150
with pooling by sex and in study 165-174 if pooling by sex is not performed) and using

¢ = 0.05 level tests, both the Generalized Smirnov and K; {for ¢ = 2,3 and 4)

1°%2
procedures appear to have reasonably good power to detect the type of
acceleration alternatives seen in studies 165-174 and 165-150 1f
the maximum separation between curves is at least 0.17 to 0.20.
The results of these specific configurations are given in Table 4,14
for study 165-174 and in Table 4.17 for study 165-150.

Data presented in Tables 4.13 through 4.17 confirm earlier

theoretical conclusions that K; N procedures with o > 1 have much
"2
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greater power to detect large early survival differences which disappear
later in time than procedures with o < 1. It is of interest to look
more closely at results in Tables 4.14 and 4,17. As stated earlier,
they present two acceleration alternatives in which the maximum
separation between curves is of the same order of magnitude. However,
in Table 4.14 the increase in power corresponding to an increase in

o is less than that observed in Tables 4,17 for an equivalent increase
in a. This is due to the fact that the maximal separation between
curves occurs "sooner" in configuration 17 than in configuration 14,
specifically 0.97 vs 0.80 as opposed to 0.83 vs 0.63. This provides
further testimony to the dramatic ability of the parameter o to

, st .
determine precisely over what intervals the procedure LN . has its
1772

greatest sensitivity to detect departures from HO'

E. General Recommendations :

From the results obtained from theoretical considerations as

procedures

. . cos . a
well as Monte Carlo simulations, it is quite clear that KN
1’72

2N

for @ < 1 have excellent sensitivity, unsurpassed by any other two-
sample test proceduress considered, to detect crossing hazards departures
from HO in which substantial survival differences exist later, but
not earlier, in time, (see, for example, Tables 4.8, 4.9 and 4.12).

Furthermore, K; y procedures for o of two or greater have excellent
1’72

sensitivity to detect acceleration alternatives, that is, large early
survival differences which disappear quickly in time, (see, for example,

Tables 4.11 and 4,13 through 4.17).
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Unfortunately, as one might expect, individual K; N procedures
1'2

for a # 1 lack the versatility of having good power against crossing

2
low power in configurations 11 and 13 through 17, while K; N
l’

hazards alternatives of all forms. Specifically Kg N has relatively
1!

2

for a = 2,3 or 4 has low power in configurations 8, 9 and 12,
However, this versatility of good power against any substantial
crossing hazards departure from HO certainly is a property of the
Generalized Smirnov procedure, In every configuration 8 through 17,
the Generalized Smirnov procedure has either the best or close to
the best power of any of the eight procedures considered. For this
reason, we would generally recommend that the Generalized Smirnov
procedure be employed when one is interested in detecting crossing

hazards alternatives to H,, including the "acceleration alternative'.

0°
We hasten to point out that we do not mean to imply‘that the Generalized

Smirnov procedure is always superior to the Gehan-Wilcoxen or Log—Rank

procedures relative to any departure from the null hypothesis. The

latter two procedures are classical procedures each having been shown

to be very powerful in their abilities to detect certain types

of differences between survival distributions. Hence, the Generalized

Smirnov procedure should be viewed as complementing the Gehan-Wilcoxon

and Log—-Rank procedures and not as a competitor. The procedure one

chooses to use to test for the equality of two survival distributions

will therefore depend upon the type of distributional differences

for which one desires particular sensitivity. In conclusion the
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Generalized Smirnov procedure would appear to be the appropriate

choice when one wishes to have sensitivity to differences which

are large at some point in time, independent of the type of differences
existing elsewhere. Thus, it would appear from our results that the
Generalized Smirnov procedure would be the most appropriate of the
procedures which we have considered to test for substantial "acceleration

alternatives" to the null hypothesis.

27




IV. Tabled Results of the Simulations

In tabulating the results of the simulations, we have opted for
clarity at the expense of economy., The following pages contain seventeen
tables, numbered 4.1 - 4.17; each table presents the simulation results
(estimated size or estimated power) for a single configuration of censoring
and survival distributions. Each tabled wvalue is the observed proportion
of times that the indicated test statistic produced a significance
level less than or equal to the given nominal significance level
(either @ = ,01 or &« = .05). Appropriate sample sizes are indicated
in the table headings, and the number of replications or simulations
used in computing the proportion of rejections of HO is given at the
top of the page. The Brownian bridge type procedure is referred to
as the Generalized Smirnov procedure, while the specific choices of
the Brownian motion procedure are labeled KQ, o =0,1,2,3 and 4.

Tables 4.1 through 4.12 each appear on a separate page, with
graphs of the relevant censoring and survival distributions given in
a figure just above each table. The graphs for the simulations based
on the FDA mouse study data are a bit more complex, and were thus
displayed separately. Figure 4.13 shows the three separate configurations
of survival and censoring distributions from the 165-174 mouse study
data. So as not to clutter the graphs, important values of the hazard
and survival functions are given on the next page, while the three
pertinent power tables (4.13 - 4.15) follow on the next two pages.

The distributions estimated from the 165-150 mouse study data are
shown in Figure 4.14; power Tables 4.16 and 4.17 again follow the page

of hazard function and survival function values.
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The last four graphs of this report follow Tables 4.16 and 4.17. These
graphs are labeled Figures 4.15 through 4,18 and they show the Kaplan-
Meier estimates of censoring and survival curves from the FDA mouse
study data used to construct the distributions for configurations
13 through 17. Figures 4,15 and 4.16 show the empirical censoring
and survival curves, respectively, referred te earlier for project
number 165-174, The_censoring distribution used in configurations
13 through 15 is superimposed on Figure 4.15, while the survival
distributions used in configuration 13 are shown on Figure 4,16.
Figure 4.17 shows both the Kaplan~Meier estimate of the censoring
pattern for the relevant data in the 165-150 study, and the censoring
distribution we chose for configurations 16 and 17. Figure 4.18
displays empirical survival curves for part of the 165-150 data,

and the pilecewise expomnential survival distributions used in simulation

configuration 16. '
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1.0

and Log-Rank One-Sided Test Procedures of

HO:

= 8S_.wvs H,: 8. < 52 (1000 simulations)

1" 71

Monte-Carlo Estimates of the Sizes of the Generalized

Smirnov, K® (¢ = 0,1,2,3,4), Gehan-Uilcoxon

1-C(t)

> 2
u i 1.0
hs 0.5 ~
e &L
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@ o)
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2 5
ke H 1-C(t)
> 0
L e
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s 0.1 ) [} © 1 1 1
0 0.5 1.0 time - 0.5 1.0 1.5 time =+
FIGURE 4.1: CONFIGURATION 1
Expected Percent Censored: 13.5%
Sample Size: Nl = NZ = 20 Nl = N, = 50
Level of Test: 01 .05 .01 .05
Generalized Smirnov .012 044 .010 .039
KO .001 .029 .002 .028
Kl .003 .029 .007 .039
Kz .004 .035 .013 .042
K3 .006 .038 .011 D46
Kq D06 L047 .012 .051
Gehan-Wilcoxon 008 042 .008 047
Log~Rank 006 043 011 .046
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TABLE 4.2 b.cs:

Monte-Carlo Estimates of the Sizes of the Generalized
Smirnov, K° (o = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-Sided Test Procedures of

HO: Sl = 52 vs Hl: Sl < S2 (1000 simulations)

2 o

- =2 a3 Lol _

s A

G 2 /“—/

< 0 .

° e 1-C(t)

by A
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= £ 0.5L &

=4 =

oped o
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0.1 L ] \ | 1
0 0.5 1.0 time - 0.5 1.0 1.5 time -
FIGURE 4.2: CONFIGURATION Z
Expected Percent Censored: 25.4%

Sample Size: Nl = N2 = 20 Nl = N2 = 30
Level of Test: .01 .05 01 .05
Generalized Smirnov 014 .057 .012 051

g’ .000 .020 .003 036

Kl .003 .033 L0809 048

K2 004 .037 .006 051

K 004 .042 .005 047

g* .003 L042 .002 .040
Gehan-Wilcoxon .007 .056 .011 054
Log~Rank .007 .045 .011 .050
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TABLE 4.3 SIZE

Monte-Carlo Estimates of the Sizes of the Generalized
Smirnov, K® (¢ = 0,1,2,3,4), Gehan-Wilcoxen
and Log-Rank One-Sided Test Procedures of

HO: Sl = S2 vs Hl: Sl < 82 (1000 simulations)

R 5 1-C(t)
o pa 1.0 | §
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2 v
b 2,
_ =y 0.5 &
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2 B c
2 2 1-C(e)
o} 9]
115} © g
0.1 . , [ 4 1
0 0.5 1.0 tine -+ 0.5 1.0 1.5 time -
FIGURE 4.3: CONFIGURATION 3
Expected Percent Censored: 36.8%
Sample Size: hl = N2 = 20 Nl = N2 = 530
Level of Test: .01 .05 .01 .05
Generalized Smirnov . 006 .036 .00¢ .040
g .000 .033 .003 .035
Kl .000 .033 .Q04 .035
%2 .000 .033 .004 034
K3 .002 .033 .003 .035
K* .002 .038 004 ,033
Gehan-"ilcoxzon .003 .058 .004 .033
Log—Rank .006 .060 006 .040




TABLE 4.4 SIZE

Monte-Carlo Estimates of the Sizes of the Generalized
Smirnov, X* (a = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-Sided Test Preocedures of

HO: Sl = 52 vs Hl: Sl < 52 (1000 simulations)

l ] O
. oy
dd i
= — 1.0
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I -9 1-C(r)
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0 ¥
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0 0.5 1.0 time =+ 0.5 T.0 I.5 time -+
FIGURE 4.4: CONFIGURATION &
Expected Percent Censored: 47.4%
' = = 2 = =
Sample Size: Nl NZ 20 Nl N2 50
Level of Test: .01 .05 .01 .05
Generalized Smirnov .007 .038 .006 041
KO .001 .023 .007 .035
Kl .002 .034 010 043
K2 .003 .035 .008 045
K3 .005 .030 .006 045
K4 .005 .033 .006 .036
Gehan-Wilcoxon .004 .048 011 .050
<
Log-Rank 004 .049 .0158 .054

33




[T X [ 3

Monte~Carlo Estimates of the Sizes of the Generalized
Smirnov, g (¢ = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-Sided Test Procedures of

HO: S1 = 52 vs Hl: Sl < S2 (1000 simulations)

1.0
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0 0.5 1.0 time - 0.5 1.0 1.5 time =
FIGURE 4.5: CONFIGURATION 5
Expected Percent Censored: 60.7%
Sample Size: Nl = NZ = 20 Nl = NZ = 50
Level of Test: .01 .05 .01 .05
Generalized Smirnov 011 .045 .007 .039
k0 . 004 .036 .005 042
Kl . 004 042 . 006 .040
9
K" .005 043 .006 .036
K .005 044 .006 .038
K 005 042 .005 .038
Gehan-~Wilcoxon .010 .061 012 046
Log~Rank .009 .Q64 0Ll 049
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TABLE 4.6 SIZE

Mente~Carlo Estimates of the Sizes of the Ceneralized

Smirnov, g* (o = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-Sided Test Procedures of

HO: Sl = 82 vs Hl: Sl < 52 (1000 simulationms)

time -+

ry
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a S a
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-
g 'g 0.5
z - a
5 3
o X
0.1 , , ; :
0 0.5 1.0 time » 0.5 1.0 1.5
FIGURE 4.6: CONFIGURATION 6
Expected Percent Censored: 9%
Sample Size: Nl = = 20 Nl = N. 50
Level of Test: 01 .05 .01 .05
Generalized Smirnov .008 .033 006 .034
KO . 001 .030 .005 .030
K+ ,003 .031 .007 ,032
K2 .003 .033 L007 .033
' .003 .035 .009 034
K’ .003 .033 .009 .035
Gehan-Wilcoxon 010 .052 .009 .038
Log-Rank .010 .046 .007 .036
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TA3Ln 4.4 SOWER

Monte~Carlo Estimates of the Power of the Generalized
Smirnov, x® (a = 0,1,2,3,4) Gehan-Wilcoxon
and Log=Rank One-Sided Test Procedures of

HO: S1 = 82 vs Hl: Sl < 52 (500 simulations)
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>
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0.5 1.0 time -+ 0.5 1.0 1.5 time —
FIGURE 4,7: CONFIGURATION 7
Sample Size: Nl = N2 = 20 Nl = N2 = 50
Level of Test: .01 .05 .01 .05
Generalized Smirnov .236 470 .566 .798
KO .068 .392 .410 .752
Kl .156 YA .570 .832
K2 .166 426 542 784
K .140 .372 466 700
K4 .110 .354 .396 .618
Gehan~Wilcoxon .228 478 .568 .820
Log-Rank 276 .522 640 872
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TABLE 4.8 POWER

Monte-Carlo Estimates of the Power of the Generalized

Smirnov, ' (¢ = 0,1,2,3,4) Gehan-Wilcoxon

and Log-Rank One-~Sided Test Procedures of

HO: S1 = 82 Vs Hl: Sl < 52 (500 simulations)
S(t) = exp[—(Zt)'S]
1.0
o
I e 1.0¢ .
o m
2 Z ~
fa)
K 2 1-C(t)
S ke
A w 0.5 ){
. £
E
;
“ 0.1 \ i © ] 1
0 0.25 0.5 time =+ 0.5 1.0 1.5 time ~
FIGURE 4.8: CONFIGURATION 8
Sample Size: Nl =N 20 N1 =N, = 50
Level of Test: .01 .05 01 .05
Generalized Smirnov .252 L426 .638 .818
KO 046 450 .578 .932
Kl .092 . 304 414 .710
K° 034 154 .136 280
K 012 .068 .024 .090
e .010 .034 .002 014
Gehan~Wilcoxon .034 .130 .0B4 .188
Log-Rank .140 .358 418 .692
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Monte~Carlo Estimates of the Power of the Generalized

Smirnov, K* (¢ = 0,1,2,3,4), Gehan-Wilcoxon

and Log-Rank One-S5ided Test Procedures of

HO: S1 =

52 vs le S1 < 82 (500 simulations)
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FIGURE 4.9: CONFIGURATION 9

Sample Size: Nl = = 20 Nl = = 50
Level of Test .01 .05 .01 .05
Generalized Smirnov 310 488 714 .854

k0 .050 .552 783 948

Kt .074 364 430 724

K2 034 .196 .190 .348

K3 016 .100 .070 .192

K4 .010 .054 024 .03
Gehan-Wilcoxon .028 148 .080 .254
Log-Rank 150 .416 406 .688
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TABLE 4.10 POWER

HMonte~Carlo Estimates of the Power of the Generalized
Smirnov, x® (¢ = 0,1,2,3,4), Gehan~Wilcoxon
and Log-Rank One-Sided Test Procedures of

HO: Sl = 52 vs Hl: Sl < S2 {500 simulations)
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FIGURE 4.10: CONFIGURATION 10

Sample Size: Nl = NZ = 20 Nl = N2 = 50
Level of Test: .01 .05 .01 .05
Generalized Smirnov 198 .400 . 604 . 804

«° .010 .072 .060 .304

gt .052 . 280 .346 674

K2 084 .294 .386 666

x> 080 250 .302 ,530

kg .068 194 .202 432
Gehan-Wilcoron 072 274 246 . 504
Log-Rank .054 .178 .132 .330
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TABLE 4.11 POWER

Monte-Carlo Estimates of the Power of the Ceneralized
Smirnov, K® (¢ = 0,1,2,3,4), Gehan-Wilcoxon
and Log—-Rank One=-Sided Test Procedures of

of S1 5 VS Hl: Sl < S2 (500 simulations)

1.0
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FIGURE 4,11: CONFIGURATION 11
Sample Size: Nl = Nz = 20 Nl = N2 = 50
Level of Test: .01 .05 .01 .05
Generalized Smirnov 144 .368 .580 .822
KO . 000 .052 012 .120
Kl .032 <234 276 . 646
x? .108 402 .580 .8432
g3 ,162 498 .700 .894
K .186 .534 .732 .896
Gehan~-Wilcoxon .102 0322 .262 522
Log~Rank 042 162 .068 214
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TABLE 4,12 POWER

Monte—-Carlo Estimates of the Pawer of the Generalized

Smirnov, K® (& = 0,1,2,3,4), Gehan-Wilcoxon

H.,: S

and Log-Rank One-Sided Test Procedures of

0" "1

= 8, vs H.,:

2

1

Sl < 52 (500 simulations)

. 1.0
s5(t) = exp[—(.St)'S] >
N iS]
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FIGURE 4.12: CONFIGURATION 12
Sample Size: Nl = N2 = 20 N]. = N, = 50
Level of Test: 01 .05 .01 .05
Generalized Smirnov . 680 .840 .992 .998
. K’ « 264 .858 -990 1.000
Kl .258 .642 .914 .980
- K2 .110 .362 .512 .760
K .070 .202 .226 406
K* .04k .110 .064 .168
Gehan~Wilcoxon 068 .188 154 .366
Log—-Rank .352 656 .882 974
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INFORMATION FOR CONFIGURATIONS 13-15

Values of t: (ta,tb) }‘1 A2 sl(tb) SZ(tb)

CONFIGURATION 13

(0.00, 0.36) .03 .03 .99 .99
(0.36, 0.72) .35 .18 .87 .93
(0.72, 1.08) .74 4k 67 .79
(1.08, 1.11) 4.70 8.70 .58 .61

CONFIGURATION 14

(0.00, 0.36) .03 .03 .99 .99
(0.36, 0.72) .35 .18 .87 .93
(0.72, 1.08) .91 .30 .63 .83
(1.08, 1.11) 2.67 12.10 .58 .58

CONFIGURATION 15

(0.00, 0.36) .03 .03 .99 .99
(0.36, 0.72) .35 .18 .87 .93
(0.72, 1.08) 1.04 17 .60 .87
(1.08, 1.11) 1.04 13.70 _ .58 .58
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Monte-Carlo Estimates of the Power of the Generalized
Smirnov, X* (a = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One~Sided Test Procedures of

HO: Sl = 52 vs Hl: Sl < 52 (500 simulations)

TABLE 4.13 (FOR CONFIGURATION 13)

Sample Size: Nl = N2 = 50 Nl = N2 = 100
Level of Test: .01 .05 .01 .05
Generalized Smirmov .060 .200 .152 .400
k? .022 144 034 .302
- 044 .180 .120 394
K .056 .208 174 442
K3 .068 234 .208 478
K4 .072 238 .218 .478
Gehan-Wilcoxon . 064 .226 160 | .398
Log~Rank .048 154 074 .232

TABLE 4.14 (FOR CONFIGURATION 14)

Generalized Smirnov 154 458 494 .778
KO .054 .314 274 .608
K 112 412 408 698
K2 144 L446 .484 .776
KB .168 L4656 504 772
g 172 456 498 766
Gehan-Wilcoxon .096 316 234 524
Log~-Rank 044 .166 .094 .258
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FIGURE 4.14
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! Smirnov, ' (@ = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-~Sided Test Procedures of

HO: Sl = 52 vs Hl: Sl < S2 (500 simulations)
TABLE 4,15
Sample Size: Nl = N2 = 50 N1 = N2 = 100
Level of Test! 01 .05 .01 .05
Generalized Smirnov 362 .630 .810 .934
g’ .166 480 618 .878
gt .262 576 - .734 .916
K2 .336 .608 774 .920
K> .362 .622 774 .920
o .362 .610 .758 .910
Gehan~Wilcoxon .180 . 406 408 .658
Log-Rank .068 .192 140 .344
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INFORMATION FOR CONFIGURATION 16-17

-Values of t (ta,tb) Al AZ Sl(tb) SZ(tb)
CONFIGURATION 16
(0.00, 0.35) .00 .00 1.00 1.00
(0.35, 0.65) .20 .00 .94 1.00
(0.65, 0.91) .49 W23 .83 .94
(0.91, 1.03) .00 1.47 .83 .79
(1.03, 1.05) 9.10 71.50 .69 .68
CONFIGURATION 17
(0.00, 0.33) .00 .00 1.00 1.00
{0.35, 0.65) .20 .05 .94 .99
(0.65, 0.91) .63 .05 .80 .97
(0.91, 1.03) .00 2.06 .80 .76
(1.03, 1.05) 7.30 5.60 69 .68
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Monte~Carlo Estimates of the Power of the Generalized
Smirnov, k* (o = 0,1,2,3,4), Gehan-Wilcoxon
and Log-Rank One-Sided Test Procedures of

HO: Sl = 52 vs Hl: Sl < 82 (500 simulatiomns)

TABLE 4.16 (FOR CONFIGURATION 16)

Sample Size: Nl = N2 = 50 Nl = NZ = 100
Level of Test: .01 05 .01 .05
Generalized Smirnov .020 . Lb4 .076 .322
x° .008 .080 .04 \142
e .016 .126 .046 .262
K2 .024 .182 .108 402
K> .056 .236 .166 .524
K* .088 302 244 620
Gehan-Wilcoxon .040 .170 044 ,184
Log~Rank .020 .090 .022 072

TABLE 4.17 (FQR CONFIGURATION 17)

Generalized Smirnov .060 324 460 .812
KC 012 132 146 552
Kl .040 .254 .298 .734
K’ 074 364 482 1830
K3 .118 .450 .596 .886
g 166 .526 688 916
Gehan-Wilcoxon .046 174 .112 .332
Log-Rank .016 074 .032 122
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